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On 3-class groups of non-Galois cubie fields
by

Krvoaxr Tiworas {Tokyo)

Introduction. In this paper we give information about a certain
direct summaend of the 3-class group of o non-Galoiz eubic extension
field of the rational numbers ¢, and show using it that for any finite
elementary abelian 3-gronp €, there exist infinitely many pure cubic
tields whose 3-class groups are isomorphic to G-

Throughout this paper we use multiplicative notafion for groups
and modules, and the action of a group or & ring on a2 module is expressed
by exponentiation. Furthermcre (2°)° = #”. The cubic Hilbert symbol

b
(a;? ) used here corresponds to (a, ), in [5].

1. A divect summand of the 3-class group. Let I be a non-Galois
cubic extension field of @, let K be the normal closure of I, and let %
be the quadratie subfield of K. Let o be a generator of the Galois group
@{E |k}, and let T be the generator of ¢ (K /L), Then G(K /() is generated
by {o, =} with the relations o® = 7* = 1, ov = vo2 For any finite algebraic
extension field # of @, let H(¥) denote the 3-class group of ¥, As the
canonical homomorphisim H(L)—H (K) is injective, we may consider
H(L) as o subgroup of H(K). For all nonnegative integers 4, we define

H{(E) = {h e H(K)| ¥ =1} |
and
H (L) = fthe H(EK)| k" = h}.

Then H,(K) is a subgroup of H(K)} and is a ZIG(K[Q)]-module; H{L)
is a subgroup of H({L) and H (L) = H,(K)Y'™; H,(K) = H(K) for large
(cf. [4], Proposition 1). Furthermore let N: H(K}—H(k) be the map
induced by the norm map from ideals of K to ideals of k. Note that
N{H(L)) = {1} since H{L) = H{KY"™ and H(Q) = {1}.

Now we let H be a maximal direct summand of H(L) contained in

H (L) = {he H(E)| b° =k = h}.
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Since Hy (L) iz an elementary abelian 3-group, then
(1.1) Hx (H(L)%HI(L)) =H,(L).

Our goal in this seetlonis fo compute the rank of H. Since H has exponent 3,

it suffices to compute |[H| (= the order of H).

Levma 1.1 H(LPnH(L) = H (L),

Proof. We first show that H(L)nH,(L) = Hy (L) ~H, (L), Let
heH(LPnH (L); i.c. b = h} with h, e H{L). Then

h(la-—1)2 o h}+o+azwau — hl—su — B h_l

sinee A*°o € N (H(L)) = {1} and A° = h. Also 1" = 1, which implies
that hy e Hy(L). So k= k7™ e B (LY. Next let hed I A
NH,(L); ie I = h("“)‘ with %y € Hy(L). Then b = 50" = p7% ginee

Btert =1 So A7 =B = hy and hence k e H(L)2 Wenext show thai
A (L)Y = Hy(L). Let h e Hy(L). Then K
WY w3 = 78 e B (K) AHy (D) = Hy (L)

sinee BU*oF® = 1 and B ¢ H,(K). This proves the lomma.
LEexwmA 1.2. There 48 an ewaci sequemce

1—~H, (L) —H,( L) =% 7, (L)ta—1)2—>1

Proof. The proof is immediate from the fact that H,(K)}nH,(I)
= H,(L),
Lemma 1.5, For i =1, 2, le
Vi = (Hy(L), Hy (K)>  and
Then

V:={heH(E) b e T,).
(B 1 (B) [ Hypo (L)) = |V Vil | H(K) [H (L))

Proof. This lemma is proved in [6], Lemma 6.
We now compute |H| using the above lemmas.

(1.2)  H| = |{H,(DIH(L)*nH (L) (by (L)
= |H; ()|}l 3(1})("_1)” (by Lemma 1.1}
= H, (L) By (D) /IHy(L)]  (by Lemma 1.2)
= (D) [ Hy(HD)| Vo) Vol (Ho () (by Lemma 1.3)
= | H ()| Ho(L)| ™ [Hy (K | Vo Val |Hy(E) [Ho (K|
= |5y (E)] | H(K) [Ho(J) |7 |V o[ Vo] |V, /V,|7" (by Lemma 1.3).

Now the four numbers of the lagt side of the abové equation are given
as follows (cf [3], Theorem 4.3 and [6], Section 2):

icm

_exactly #;—r.. Leb py, ..
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LK) = 31 (),
\H () [Ho( B)) = 35~ | H(E) /N (Hy( E)),
[VZIVZI =81 72 IH(K I‘—N(El(K)}l
P1/Val = 33 (R,

where ¢ is the number of primes of % which ramify in K, and #,, #4, 7y, 7,
are all nonnegative rational integers, which are in fact defined to be
the ranks of certain matrices (over the finite field F,of 3 elements) as-
sociated with the groups Hy(K) = {1}, H(X), ¥,, Fy, respectively. We
note that 0<<r <P <F < rygmax(0,f—~1). Tsing these eguations,
equation (1.2) becomes

[H| = 3375 N (H,(K)) [N (Hy(K)]|.
Letting | (H,(K)) /N (H,(K))| = 3" we obtain the following resuls.
THROREM 1.4. With the above notations,
rank H = rg—TFy4- 7 —~1 -+ 4.

OoroLLArY 1.5. H(L} has an elemeniary abelian dirvect factor of
rTonk vy—7Fy -7 —ry -H U contained in H,(L).

The following lemina, which provides ug a sufficient condition thag
H (L) iz an elementary abelian 3-group, will be ugeful in the subsequent
gections.

LevMA 1.6. If rank H(L) =7, —y, then H(K) = H,(K), and hence
H{L) = H (L}, which is an elementary abelian 3-group.

Remark., Let H,(K)={heH (K} N{h) =1}. Then H,(EK) is
an elementary abelian 3-group of rank {—1—», +rank H (k) —z, where z
ig the rank of a certain subgroup of H(%)/H{E)® (cf. [2], Proposition 3.2).
So

mnkI-II( y = i—1—p +rank H(k)—=z.
Kote that if H(k) = {1}, then H,(K) is an elementary abelian 3-group
of rank {—1—7; (smee wHL{E) = H (K}

Proof. It is clear that (o—1)° maps H, {K)/H,,(K) injectively
into H,{(K)/H,{K) for all integers ¢ > 0. So to show that H(K)= H,(K),
it suffices to show that |H,(K)/H,(K)| = 1. Now

() H ()| = |2 (B)H,(L)] [Hy (E)[ | H, (D)

s | Vof Vil \HL(E)| " H (L) (by Lemma 1.8)
= 8L H (I

It ig easy to see that H, (L) = {h e H(L)| ®
The lemma 18 now immediate. _

Wow we want to deseribe explicitly a matrix over F, whose rank is
.; P, be the primes of k which ramify in K, let T;

= 1}; henee [H,(L)| = 5™k EE)
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be the unique prime of K above p;, and let Sfi,- be any prime of k({) above p,,
where £ is a primitive cube reot of unity. Let o be an element of %(Z)

guch that () = k({, ?/; ). Furthermore let p,, ..., p, be the rational
primes which ramify fully in %. If we let H;(X) be the subgroup of H,(K)
generated by the ideal classes of the §5,’s and by the image in H(K) of
H (%), then the factor group H,(K)/H,(K) is either trivial or cyclic of
order 3, and in the latber case there is an ideal 9 of T whose ideal class
together with Hi(K) generates H,(K) (cf. [4], proof of Proposition 2).
Let p,., be & ratiomal number such that N () = (p,,,) when H (K)
# H)(K), and let p,,, =1 when H,{(K) = H{(K). Then

Fi—ry =rank {ay) (I<<i<e+1, 1<ji<y,

where e 15 an element of the finite ficld F, given by
’ " By o . .
(1.8) £oi =(T) I<i<s+1,1K5<1).
j .

We note that if p; is not decomposed over {, then (@) =1 for
3

any p; (cf. [7], proof of Lemma 3).

2. Applications te pure cubfc fields. Lot notations be the same as
in_Section 1. We firgt prove the following theorem.

TreorEM 2.1. Let & be any finile elementary abelian 3-group. Then
there cwist infindtely many pure cubie fields whose 3-cluss groups are iso-
morphie fo G.

Prooi. Let m =rank @ Let pq,...,7,, ¢ be rational primes sabis-
fying the following conditions: :

C (i) 9, =1(mod 9) for 1 L7 m, ¢ =2 (mod 9);

(it) p; % 2 cubie residue modulo Py i i<

(iil) py...p;_, g I8 @ cubic nonvesidue modulo p, for each i.

By Dirichlet’s theorem on rational primes in an arithmetic pro-
gression, there exist infinitely many such primes py, ..., 9, ¢ In fact,
p (resp. ¢) can be choosen from a congruence modulo 9p, ... p,, (resp.
99, ... Pp)y With coefficients ih Z. Now leb % = p; ... p,,q and I = Q(y/n).

Note that the normal closure K of L is Q(¢, %/'n), where { iy a primitive
cithe root of unity. We want to show that H (L) is'an elementary abelian
3-group of rank m. Using [1], Theorem 4.5, and &ssumptlon (1), it is easy
to compute that

rank H(L) = 2m ~rank (y,),
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where (y,;) i8 the m X m matrix (over ¥y} whose 4j-th element y,; satisfies

o — (mp“ ﬂ)
p ol

where p; i8 any prime of G(7) above p;. For 1 « 4 < j < m, we have from
agsumption (i) that

- g(pi,%) =(19upj) 2(.1’_’1') 1
Py Pi Pils ’

which implies that y; = 0 if ¢ < j. Also from assumptions (i) and (iii),

£ = (19,-, ﬂ) _ (f_u_p]---p,-lq) _ (pl-upi_lq)”l 1.
Ps Ps P: 3

So rank (y;) = m, and hence rank H(L) = m. In view of the definitions
of the two matrices (v} and (e;), where (ay) is defined by equation (1.3},
it is elear that

rank (yy) < rank{ay) = F1—71.

Combining these and Corollary 1.5 we know that rank H(L) =7, —r,
whieh together with Lemma 1.6 shows that H (L) is an elementary abelian
3-group of rank m.

Remark. In the above proof, Lemma 1.6 together with the remark
following this lemma shows that H(X) is also an elementary abelian
3-group of rank 2m.

A stetement similar to Theorem 2.1 is frue for the normal clogures
of pure cubic fields. :

TemorEM 2.2, Let & be any clementary abelian 3-growp. Then there
ewist infinitely many pure cubic fields such that the 3-class groups of their
normal closures are isomorphic to @, _

Proof. The above remark gives the proof when rank & is even.
So agsume that rank ¢ = 2m—1. Let p;,..., P, ¢ be rational primes
satisfying the conditions (i), (iil) giver in the proof of Theorem 2.1 and
following another omne:

();p,_‘l(mon)forl = m— 1,pmrm4(mod9) g =2 (mod 9).

~ Again Dirichlet’s theorem shows that there exist infinifely many such

primes Py, ..., Pm, g Let L =Q( 3|/ﬁ where % = 9y ... Pnls and let K
be its normal closure, We want to show that H(K) has exponent 3 and

" rank 2m —1. Again by [1], Theorem 4.5, and assumption (i)_, we have

ranlk H(L) = 2m—1—1ank (vg),

7 - Acta Arithmetica XXXV.4 -
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where (y;;) is the {m—1) xm matrix whose {j-th element y,, satislies

£ = (M)
Py ’

where p; for each § =1,...,m—1, is any prime of O() above p;. The
game argument g8 in the proof of Theorem 2.1 shows that rank (y;)
=m—1, rank H(L) = m, and rank (o) =7, —r; 2 m. Hence, these,
Corollary 1.5, Lemma 1.6, and the remark following this lemma combine
to yield the desired regulf.

3. Some examples. Tn this section we further illustrate Corollary 1.5
and Lemma 1.6 with some of the examples that appear in [2], Section 4.
We use the notation in Section 1. As our firsd example we let L be a cubie
extension of @ obtained by adjoining & root of #3—3-1354-2-13-17= 0
to Q. Then rank H(L) = 2; k = Q(V —23) and H(k) is cyclic of order 3.
Furthermore the rational primes which ramify fully in L are 3 and 13,
and both of them decompose in k. We want to show that Z (L} is in fact
equad to H, () which has exponent 3. By Corollary 1.5 and Lemma 1.6,
this follows if we ean show that rank (a;) = 2. To see this, we let py and Pa

(resp. p; and p,) be distinet primes of & above 13 (resp. 3), and let ﬂ- for

each 4 == 1, ..., 4, be any prime of %({) above p;, where { is a primitive
. . b b
cube root of unity. It is easy to prove that we may take —— + (_4“ —

a]s /2
—W) with o = 3-13 and b = 2-13-17 as an element o of k() such

|

that EA{&) = k(L ei/cx). We also note that H, (K) = H, (K) sinee kis complex

and is not Q(Z) (ef. [3], p. 28}. Then for each j =1,..., 4, [ = (1,?:1 Ot)
_ By

3, a
and % = (._’:) Using the results in [3], Section 4, it is eagy to com-
” .
pute that
13,13 1 :
N R
5]."1 SBI EBI 3
o .—_(1'3’_’71’?3 ) =(1i3 5) *1,
Ps Py

where #; = 1—(1—{} and 9y = 1—(1—£)% (c¢f. [3], Proposition 3.3). So
rank (ey) = 2, and hence H(L) — H, (L}, which is generated by el ()
and elp (§,), where i, (resp. P3;) is the unique prime of I above 13 (resp. 3),
and clg, (%B;) for 4 =1, 3, denctes the ideal class of P, in H (L). Furthermore
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H(K) = Hy(K), which has ovder |H,(K)] = 3*"""|H (k)] = 2% Also it is
proved in [2], Section 4, that rank ,H,(K) =3, where H,(K) is the
subgroup of H,(X) given in the remark following Lenuna 1.6, 1 follows
from these that H(H) is either an elementary abelian 3-growp of rank 4,
or the direct product of an elementary abelian 3-group of rank 2 and
a c¢yclie group of order 9. For another example we let L be a cubie X~
tengion of @ obtained by adjoining a root of #*—2-5-7%+2-3:3-T =0
to @. Then rank H(L) = 1; &k =Q(V37) and H(k) = {1}. The rational
primes which ramify fully in L are 2, 5, and 7. Tn %, 2 and 5 remain prime,
and 7 deeomposes, Now let P be any prime of %(E) above 7, where [ is
a primitive cube root of unity, let P be any prime of ¥ above 7, and

b be a?\H
let a = ~~2—+(T~§) with @ =2-5-7 and b =2-3-5-7. Then

K (&) = k({, Yo). Note that H,(F) = H}{K) since a wnit 6-+¥37 of &
is not a norm of any element of K (cf. [2], Section 4, and [3], p. 28). An

“elementary calculation shows that

B -l

which implies that rank (a;)>1, and that the unique prime P'** of
L above 7 is non-prineipal. These resulfs, Corollary 1.5, Lemama 1.6, and
the remark following this lemma ecombine to show that H(L) = H,{L}
= {cl (P, which is cyclic of order 3, and that H{K) = H,(K)
= (el (B), clz (BT, which is an elementary abelian 3-group of rank 3,
where clz(%) denotes the ideal class of an ideal U of a number field #.

We conclude this seetion with & remark concerning Lemma 1.6.
The proof of this lemma shows that H{H) = H,(K) if and only if rank
H{L) = 7—r.. Clearly H(K) = H, (&) implies that H(L) = H,(L); but
the converse is not always true. For example, let L —Q(}/182) and
K =0, 1/1_8—2), where £ is a primitive cube roct of unity. It is proved
in [43, Section 3, that T (L) = H, (L), but that H(K) = H,(K) # H,{H).
In this example the four numbers ry, 7y, ¥y, 7, that appear in Theorem 1.4
arve a8 followk: 75 =B, Fy =4, 7 =3, 1y =1L, '
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Jobasnenne x pabore: ,, 006 ommoit Teopeme Xapme-JimrraByna
B Teopmu nA3era-pynrnpm Prmana’

Acta Arith. 31 (1976), crp. 45-B1
Aur Mozep {Bpatucaasa)

1. Xapaw o JIntrasyn ([17, 177-184) goxasann CReEyIONIyi TeopeMy:
ompesck

AT, T+ I, T Tys),

codeposcm HeuemHuil HYao Gyuryun £(e). Iipw sToy, MeTox TIpenIoReHHMY

VIOMUHABIIMMICA YUEHLIMH OCTABIAN OTKPHITEM BOIPOC © BiEAEEi

ramoTeast JInENenéda Ha PACCTOARMA HeweTHHX Hymeh gymsmm (%)
B sToM HAUPABICHEE HOKAMEM, YTO HMEET MEeCTO

TEOPEMA. Ecau cnpagedaieq sunomesq Junderdgfia, mo crmpesok

P+, FHUTHIV, T2 Tole),
codepucUm Hevemuull Hijb grrryun £(s).
Iiyers 4
- - 1
S B = 2 ezf. lnn b < v
(1) (@, b) : o’

n<asn<bsag

(cp. [3], crp. 33, 34) ofo3HAuART 2IEMEHTADHYI TPRFOHOMETPHIECKY IO
cymuy. B pafore [4] MBI IOK232Id, ¥TO TPM YCIOBHIM

(2} IS (&, b)| < A(dWatd, O0< A<,
oTpEaoK
(3) 3447, l+i(T+T1!ﬂ+4:’2y)(T)), = To(dy )y

COMEPIHAT HEYETHHHA HyTh JyHHIE £{s) (w(T) w-CROTE YIOMHO MeRIeHHO
pospacraomag K 4 oo Qyawums).
T'unoreaa Hnnnene@a (18], erp. 97 323) 3AKII0YAETCA B TOM, 9T0
(34t} < A(e)t, To(S)s

maa mioboro &> 0. Jlamee mamomumM (€M. [2], erp. 88), wro puA




