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Theorems 1 and 3 and from the lemma it follows that if M is a complete metrizable
closed subspace of a collectionwise normal space X or M is a closed subset of a para-
compact p-space, then the Dugundji Extensions Theorem is valid for the pair
(X, M).

In [3] we give an example of a hereditarily paracompact space and a closed
.separable metric space M< X such that the Dugundji Extension Theorem is not
valid for the pair (X, M). This implies that the theorems on the factorization of
a map f: X— Y through X5 Z—Y, uZ = uM>uY, such that h|M is a homeomor-
phism onto a closed subspace #M < Z, cannot be obtained without additional assump-
tions on embedding the set M < X, even if we assume that the space X is nice.

Another corollary which can be obtained from Theorem 3 by putting
M = {point} = ¥, is a result of Archangel'skii [1] stating that each paracompact
p-space has a perfect map onto a metrizable space.
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Uniform homotopy

by

Allan Calder (St. Louis, Miss.)

Abstract. For X a finite dimensional normal space and Y a compact space, let
B*:[BX, Y1—[X, Y] be the natural quotient map from the set of uniform homotopy classes of maps
from X to Y to the set of homotopy classes of maps. It is shown that if there exists a topological
group G with the structure of a CW-complex of finite type such that its classifying space dominates ¥
then kerf* = 0. Hence if #* is a homomorphism, for suitable group structures on the sets, maps
from X to Y are homotopic if and only if they are uniformly homotopic. The condition that Y be
compact can be removed when considering bounded maps.

This paper is concerned with the problem of when are uniform homotopy and
homotopy equivalent. More specifically, under what conditions on the spaces X
and Yare a pair of maps X—Y homotopic if and only if they are uniformly
homotopic? This is known to be the case when X is countably compact and Y is
compact [5], [16]. On the otherhand, if Y is the circle S* and X is not pseudocompact
then there is a map from X to Y which is homotopic to a constant map but not
uniformly so [5], [8] [25, p. 225].

In fact the techniques used allow consideration of a shghtly different problem,
namely, “when does the embedding f: X—BX of a space into its Stone~ ~Cech com-
pactification induce a bijection p* between the set [X, Y], of homotopy classes
of maps from BX to Y, and the set [X, Y] of homotopy classes of maps from X
to Y. This is equivalent to the original problem for Y compact.

For X a finite dimensional (covering dimension) normal space and Y a space
dominated by a CW-complex B, where B is the classifying space of a group G and G is
a CW-complex of finite type it is shown that f* is onto and has the null ‘class as
“kernel”. Hence if f* is a homomorphism then f* is a bijection. If in addition to
all this, Y is also compact then every pair of maps from X to Y are homotopic if
and only if they are uniformly homotopic. :

As corollaries we have that if X is a finite dimensional normal space-then the
Cech cohomology of X (based on locally finite covers) is isomorphic to that of X in
all dimensions over a finite coefficient group and in dimensions higher than 1 over
a finitely generated abelian coefficient group, and that a map from X into an n-sphere
(n>1) is uniformly homotopic to a constant map if and only if it is null homotopic.
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§1

(1.1) For convenience we shall work in the category of pointed normal spaces
and maps. That is, every space is normal and has a distinguished point, *, and maps
(continuous functions) take * to *.

(1.2) For spaces X and ¥, a map H: XxI—Y is called a uniform homotopy
if it can be “extended” to a map H: fX xI— Y. Here I is the closed unit interval
and f$(...) denotes S.tonc—Cechlcompactiﬁcation.

(1.3) If Y is a compact metric space with metric g then H: X x I- Y is a uniform
homotopy if and only if for every ¢>0 there exist a 6 >0 such that |r— /| <§ implies
that o(H(x, ©), H(x, t))<e for all xe X. This is the definition in [5].

(1.4) A map H: XxI- Y is a uniform homotopy if and only if for every finite
open cover % of Y there exist finite open covers ¥~ of X and %" of I such that ¥ x #~
refines H ™', [9]. ' : : :

" For other equivalent definitions see [16] and [17].

- (1.5) Two maps f, g: X~ Y are called uniformly homotopic if there is a uniform
homotopy H: X x I— ¥ such that H(x,0) =f(x) and H(x, 1) = ¢g(x) for all x € X.
Write 1 59 ‘ : o : ‘

Clearly if Y'is compact then f° F‘g if and only if the irextensions f (N, B@): X»Y
are homotopic. It is not true for ¥ noncompact that f’ 59 if B(f), B(9): BX-BY
are homotopic (see (5.4), cf [17, (8.1)]). o ‘

(1.6) A map which is uniformly homotopic to the constant map will- be called
uniformly trivial. : o

(1.7) A map is bounded if the closure of £ (X)is compact. A map f: X~ ¥ extends

to a map B(f): BX—Y if and only if f is bounded. .
. (1,8-) 1t follows easily from (1.4) that if Y is locally compact and H: X x I—Y
is a uniform. homotopy then if H|(Xx {¢}) is bounded for some ¢e I then it is
bounded for all te] and H(BXxI)cY. o

Hence, iffr;g and f is bounded then so is q.

(1.9) LemMA. If P is a finite complex and f, g- X=P are contiguous maps (for
each xe X, f(x) and g(x) are contained in a single simplex of P) then f. 79

Proof. Let ¥ be the vertex set of P. Let {r,: P~I: v e ¥} be barycentric coordi-
nates on P. Since f and g are continguous we can define H: XxI—Y by

an(x’ t) = (I_t)nuf(x)+tﬂ:ug(x)"
Then, H s a uniform homotopy by (1.3).

(1.10) LemMA. Let X be a normal space, P a simplicial complex and f: X—P
a bounded map. There exist a simplicial complex Q and maps n: X —-Qand g: QP
such that ' k

(1) g is bounded,

(2) dimQ@<dimX,
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4) g is null homotopic if f is null homotopic.

Proof. For terminology and general reference in this proof see {4, Appendix 2].

Since f is bounded, by restriction to the carrier of f(X) we may assume P is
a finite complex [14, p. 43, Thm 1.5]. So (1) will follow automatically.

In the notation of (1.9) let

U = {(fr,)"1(0,1]: ve V}.

Then % is a numerable cover of X. “Numerable” is equivalent to “locally finite”
for normal spaces and so by [5] or [6], % has a numerable refinitement % . of
order <dim X+ 1. That is, the nerve v#% of % has dimension <dim X. Let v¥~ be
the nerve of ¥ and n¥: v~y be a canonical map (projection in-the terminology
of [9]). Define h: v¥ =P by

h((fr) 70, 1) = v

for all v e V and extend simplicially. Let g = hn¥ and let n: X—v% be a canonical
map defined using a numeration of %. Then gr is contiguous to f and so by (1.9)
gnﬁf. Taking Q = v gives (2) and (3).

Suppose f is homotopic to (~) the constant map to *. Then gn~*and so by
[18, (4.2)] there is a numerable refinement %" of % such that ¢’ = gy ~*, where Ty
is a canonical map. As before % can be chosen so that dimv# <dimX. Let
n's X—v# be a canonical map. Then ¢z’ is contiguous to f so taking Q = vy
gives (2), (3), and (4). .

§2
(2.1) A CW-complex is said to be of finite fype if it has a finite number of cells
in each dimension. In otherwords, a CW-complex with compact skeleta.
(2.2) Let f: X—BX be the embedding of a space X into its Stone-Cech com-
pactification. For spaces X and ¥, [X, Y] denotes the set of homotopy classes of maps

. from X to Y, If fea e [X, Y] then we denote « by [f]. The null homotopy class

will be denoted by 0.
(2.3) Lewma. If X is a finite dimensional normal space and Y is dominated* by
a CW-complex of finite type, then f: X~+BX induces a surjection

p*: [BX, Y]=[X, Y1,

where f*[f] = [fB]

(*In Jact, of course, Y then has the homotopy type of a CW-complex of finite
type.) :
. Proof. Let B be a CW-complex of finite type which dominates Y. That is, there
exist maps @: Y—B and : B—Y such that e ~ identity on Y.

By results of Barratt and Dowker there is a metric complex P homotopically
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equivalent to B, [14, p. 131]. Let ¢: B—P be a homotopy equivalence and t: P—B
a homotopy inverse to .

Letf: X— Y be a map. By (1.10) there is a finite dimensional simplical complex Q
and maps 7: X— Q and g: Q—P such that gr is homotopic to opf. By the cellular
approximation theorem, there is a cellular map 4: O~ B such that h~zg. Since B is
of finite type and Q is finite dimensional, / is bounded. Hence yhn: X— Y is bounded
and homotopic to /. Let F: fX—Y be the extension of Wim then f*[F] = [f].

§3

(3.1) A space will be called “rice” if there is a CW-complex B which dominates
it and B is the classifying space [3, [7.2)] of some topological group G and G is
a CW-complex of finite type.

(3.2) LeMMA. A “nice” space has the homotopy type of a CW-complex of finite )

type and finite fundamental group.

Proof. Let G be a group of finite type and o: E— B a universal G-bundle.
Then B is a classifying space for G. From the homotopy sequence of the fibration 0,
71(B) = mo(G) which is finite and =,(B) = m,_((G), which is finitely generated
for n>1.

Now suppose Y is a space dominated by B then the identity on m,(Y) factors
through ,(B) for all n >0 and so =,(B) is finjte and ,(B) is finitely generated. Because
it is dominated by a CW-complex, ¥ must have the homotopy type of one [14, p. 137]
and so by [23] Y must have the homotopy type of a CW-complex of finite type.

(3.3) In [2] the following lemma is proved.

LemMa. Let p: E—B be a principle G-bundle with G a topological group of finite .-

type and B a compact space. Then for any finite dimensional CW- complex X and
map f: X—E there is a bounded map y: X—E such that pg = pf.

(3.5) TrEOREM. If X is a finite dimensional normal space and Y is a “nice” space
then ket f* = (§%)71{0} = {0}. -

In otherwords, a map f: fX— Y is null homotopic if and only if it is uniformly
trivial.

Proof. Let ¥ be dominated by the CW-complex B and let B be the classifying .

space of a group G of finite type. We may assume that B is a metric complex since B
is certainly homotopic to one and any space homotopic to B dominates ¥ and
classifies G. . ‘
Let p: E— B be a universal G-bundle. Lét ¢: Y—B and Vi B—Y be maps such

that y¢@: Y—Y is homotopic to the identity on ¥

) Let [f]ekerp*. Then ff: X— Y is bounded, and null homotopid and hence
s0 i1s ¢ff: X—B. By (1.10) there is a finite dimensional simplicial complex Q and
maps n: X—Q and ¢g: Q—B such that

(A) g5 pfB

and g is null homotopic and bounded.

?
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So g lifts to E and so by (3.4) there is a bounded map §: Q—E such that pj = ¢.
Now ¢n is bounded and so can be extended .to a map A: BX—E. But

phf = pge = grn

and hence ph is the extension of gn to fX. So ph~df by (A). Thus since E is con-
tractable [3, (7.2)],

*mafph~ppf~r.

(3.6) COROLLARY. If' X is « finite dimensional normal space and Y is a compact
“nice” space then a map from X to Y is uniformly trivial if and only if it is null homo-
topic. :

(3.7) 1t follows from (2.3), (3.2) and (3.5) that if X is a finite dimensional normal
space, Y is a “nice” space and f*: [fX, ¥]—[X, ¥] is a homomorphism in some
sense then f* is a bijection. In particular this will be the case if Y'is also an H-space
because then [—, ¥7 is a function from the category of pointed space to that of
groups, [I1, p. 2].

Another situation where f* is a homomorphism is when, for some n>1,
dim X<2n (and hence dim X <2n, [24]) and Y is n-connected [20]. The dimension
condition on X is unnatural to homotopy considerations and can be replaced by the
condition that X be (24 1)-coconnected (the Cech cohomology groups HU(X)
of X vanish for ¢22n+1) since then as we shall see in (4.3), fX is also 2n+1)-co-
connected and one can use the standard methods of obstruction theory to define
Borsuk—Spanier group structures on [fX, Y] and [X, Y] making A* a homo-
morphism.

(3.8) THEOREM. If" X is a finite dimensional normal space, Y a compact “nice”
space and either (a) Y is an H-space of (b) X is (2n+1)-coconnected and 'Y is
n-connected for some n>1, then a pair of maps f, g: X— Y are homotopic if and only
if they are uniformly homotopic.

§4

(4.1) Tf 7 is a finitely generated abelian group then an Eilenberg-Maclane space
K(m,n) of type (n,n) is a “nice” space for n>1 and if = is a finite group K(n, n)
is “nice” for all n. This is because, for n finitely generated abelian finite K(r, n)
has finite type for n>1, K(r,0) = n with the discrete topology and K(xn, n) is the
classifying space of K(m,n—1).

The nth Cech cohomology functor H"(—; n) based on numerable cover and with
coefficients group = is homotopy represented by K(r, ) for all topological spaces
[4, p. 366), i.e. H"(X:m) = [X, K(r,n)] and so from (3.7) and [2] we have the
following.

(4.2) THEOREM. [f X is a finite dimensional hormal space and 7 a finitely generated
abelian group then i1 X—BX induces an isomorphism

B H'(BX; m)—H"(X; n) Ifor n>1
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and
B*: HY(BX; m)/D~H'(X; n)

where D is a divisible subgroup of H*(BX; ),
If = is a finite group (not necessarily abelian) then

p*: H'(BX; m)y—~H"(X; )
is an isomorphism for all n.

(4.3) COROLLARY. A finite dimensional normal space X is n-coconnected (n>1)
if and only if BX is n-coconnected,

(4.4) To obtain other examples of nice spaces we consider the following.

Lemma. If Z is a connected CW-complex of finite type then SZ, the suspension
of Z, is a “nice” space. ‘ .

Proof. It can be deduced from the proof of Theorem 1 in [10] that the free
(Greav) group FZ, on Z is a space of finite type.
 Let u: Zx FZ—Z be the restriction of the multiplication in FZ (Z is a subspace
of FZ). Let E be the adjunction space

E=CZxFZu, FZ

[
where CZ is the cone on Z. Then p: E—SZ given by p{{z, 1, y> = <z, £ for all
ZeZ,telandye FZ, is a principle FZ-bundle [13]. Here ¢ > denotes “equivalence
classes of” under the appropriate identifications.
I claim that p is a universal FZ-bundle. To see this let F* denote the free monoid
(reduced product) on Z [12]. Then the natural inclusion i: F*—FZ is a homotopy
equivalence [15]. Let :

E* = CZxF* U, F*,

then p*: E*—SZ given by p* Lz, 8, 9> = (z,1> is a quasifibration with E*
contractable [13]. Now 7 and the identity on CZ induce an embedding j: E*-E.
Applying “Five lemma” to the ladder of homotopy sequences given by p, p*, i, J

and the identity on SZ shows that =,(E) = 0 for all n. Hence p is a universal
FZ-bundle [4, (7.5)].

(4.5) COROLLARY. If Y is dominated by a suspension of a connected CW-complex
of finite type then Y is a “nice” space.

Note. If ¥'is dominated by the suspension of a space then Y is an H'-space
(co-H-space),

(4.6) THEOREM (cf. [1]). For n>1, any map from a finite dimensional normal Space
into the n-sphere is uniformly trivial if and only if it is null homotopic.

Proof. By (3.6) and (4.5).

icm
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§5
The condition that X by finite dimensional is essential in both (2.3) and (3.5)

“and hence for all the results of this paper, as the following examples show.

(5.1) BExaMPLE. Let X = Y = K(Z,2). Then Y is nice. Let Iy denote the

/identity on X. Suppose f*: [fX, Y]-[X, ¥]is onto. Then there is a mapf: pX—Y

such that /B = Iy.
Since X is of finite type fB(X) is contained in X™ the m-skeleton of X for
some m. Let i: X"—X be the inclusion map. Now [if8] = [Iyx] and so

HY(X)S H(X™ S H96 305 H9(X)
is an isomorphism for all ¢. ‘
.. Now HY(X™) = 0 for g>m, but HY(K(Z, 2)) # 0 for all even ¢ [19, p. 84].
This is a contradiction so #* is not onto.

(5.2) ExampLE. Let F be the Free (Greav) group on the (n—1)-sphere, n> 1.
Let p: X—S" be the universal F-bundle constructed as in (4.4). Then X is con-

stractable and so [X, S"] = 0, but I claim that the extension f: fX—S™ of p is not

null homotopic.
.Suppose that f~*, then there exist a lift g: fX—X such that pg = f and so

pyB = fB = p. Now ;‘ﬁ(ﬁ is compact and gA(p~'{x}cp~*{x} for all xeS"
Consider F as p~*{x} and the ladder of fiber homotopy sequences induced by the
diagram

-2 x

o)

o — S"

B W.Since'X is contractable gB| F: F—F is a weak homotopy equivalence (by “Five

lemma” and hence a homotopy equivalence by Whitehead’s Theorem. Let h: F>F
be a homotopy inverse to ¢f|F. Now gf(F) is contained in F™ the m-skeleton .
of F for some m. Then

H‘l(l;') .,‘:.;HII(FM 'E[.I_):H‘J(F)

‘is an isomorphism for all ¢ and so HY(F) = 0 for g>m. But by the Wang ;equence

for p [22]

HYF) 0 for all g =0 mod(n-1).

This is a contradiction, so f is not null homotopic.

Hence if X is not finite dimensional, kerf* need not be zero even for Y
a compact “nice” space. .

'(5.3) It was shown in (3.2) that “nice” spaces have finite fundamental group.
Assuming the Burnside conjecture for finitely presented.groups (“Every.infinite

5
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finitely presented group contains an element of infinite order”) the next lemma
shows that this requirement is essential to the problem.

LemMa. If X is non-pseudocompact and 7;i(Y) contains an element of infinite
order then ker(f*: [BX, Y]—-1X, Y]) # 0.

Proof. By [8, p. 68] there is a bijection between the homotopy classes of maps
in ker(B*: [BX, S']-[X, S*]) and the quotient group of the additive group of real
valued functions on X modulo the bounded ones. So unless X is pseudocompact
(i.e. unless this group is 0) there exists a map v: X—S ! which is null homotopic
but not uniformly trivial.

Let w: fX—S* be the extension of v. Then w is essential and so induces an
essential map w*: H' t(ls1y— H4(fX), Bruschlinsky’s Theorem or [4, p. 366]. But
then the map w,: H,(BX)—~H,(S"') induced by w must be essential.

Let wy: n,(ﬁX)—-»nl(Sl) be the map induced by w and let ¢: nl(ﬂX)AHI(ﬁX)
be the quotient map obtained by considering Hy as the abelianisation of ;. Then
w4 = w,q and since ¢ is an epimorphism, w4 # 0.

Let u: S Y represent a element of infinite order in n;(Y) then uy: m,(S 1y
—7,(¥) is a monomorphism and so w4 w4 # 0. Hence uw: fX— Y is an essential
map.

(5.5) Remark. Throughout this paper the space X can be replaced by a pointed

- normal pair (X, 4) (X a normal space, 4 a closed subspace of X and * e 4) by
virtue of the fact that [(X, 4), (¥, *)] = [X/4, Y] and B(X/A) is homeomorphic
to BX/BA.
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