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>, -cofinalities of J,
by

C.T. Chong (Singapore)

Abstract. We study another aspect of the fine structure of Gédel’s constructible universe L.
We concentrate, in particular, on the behavior of definable (over J ensen’s Jy) cofinalities and projecta
for a>0. It is shown that (1) for each n<w, the Z-cofinality of Jy is Zy-regular over Jx; (2) for
each n<w, if % is the Ay-projectum of Jy, then wx is either a limit of cardinals in J, or else is
X «regular over Jy; and (3) the number of possible values for Zy(J)-cofinalities cannot exceed twice .

that for dx(Jx)-projecta.

For every ordinal «, let L, and J, denote the ath-level of Godel’s and Jensen’s
hierarchies respectively. When attention is focused on those L,’s (hence J,’s) which
are admissible sets, a satisfactory transfinite recursion theory results (cf. Ann.
Math. Logic 4 (4) (1972)). The class of a-recursively enumerable sets has been
the center of study, and various new techniques were invented to tackle problems
related to this class. Apart from having to overcome the combinatorial problems
(as in ordinary recursion theory) that come up in the use of priority argument, the
non-Z,-admissibility, for n>1, of L, makes it very difficult to lift a theorem in
ordinary recursion theory to a-recursion theory for every admissible a.

Typical of the techniques being used in doing priority argument is the setting
up of a short indexing set of requirements. This is done by exploiting to good use
the relative positions of the Z,(L,)-cofinalities and Z,(L,)-projecta for n<3. Ex-
perience has shown that a deeper understanding of the fine structure of L provides
one with an invaluable tool to do generalized recursion theory. In particular, the
concept of definable cofinalities and projecta play a major role in a-recursion theory.
We were therefore led naturally to the study of their properties in a general setting.’
Thus we investigate the behavior of these ordinals from the viewpoint of Jensen’s J,
for a>0 (recall that J, = @). We prove in this paper that (1) the Z,(J,)-cofinalities
and the 4,(/,)-projecta are as regular as they should be (Theorems 1 and 2), and )
a close relationship exists between the set of %,(J,)-cofinalities and the set of
A,(J,)-projecta (Theorem 3). This set of definable projecta enjoys the distinctive
feature that each of its members is associated with a total, definable function of
the same logical complexity. It therefore comes in sharp contrast with the set of
Z,(7,)-projecta which are associated with partial functions. A further reason for
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considering this set is its naturalness with respect to Z,(J,)-cofinalities, in the sense
of Lemma 1. We mention in passing a somewhat related work of Marek and
Srebrny [3], in which for countable admissible sets L,, the Z,(L,)-cofinalities are
investigated in terms of the gaps of reals in the constructible universe.

Let >0 be an ordinal. ‘

DermvimioN. The  2,(J,)-cofinality (resp. 4,(J,)-projectum), written oncf(a)
(resp. Smp(w)), is the least ordinal y for which there exists a X,(J,)-function
mapping wy unboundedly into (resp. onto) wa.

One can generalize the definition above by saying that if wo<we, then the
Z,(J,)-cofinality of g is the least ordinal y<g for which there is a Z,(J,)~function
mapping oy unboundedly into we. If the least ordinal for which such functions
exist is g, then we say that ¢ is X,(J,)-regular.

We fix the following notations: For each n<w, f, is a Z,(J,)-function which
maps o-oncf(«) unboundedly into wwx, and d, is a Z,(J,)-function which maps
-np(e) onto we.

We assume that the reader is familiar with Jensen's work (cf, [2]), especially
the following three important properties of J, proved by him:

(1) For all n, every X,(J,)-relation is X,(J,)-uniformizable ;
(2) For all n, dnp(w) is the least ordinal y for which there exists A= wy with
Aed(J)—J,; and ’ ‘ :

(3) For all n, there exists a Z,(J,)-master code AnZ (@), Where onp(a) is
the Z,(J,)-projectum (cf. [2]). There is also a Z,(J)-injection g, from w« into
- aonp(a).
Lemma 1. For all‘n<co, oncf(a) < Snp(a).
The proof of Lemma 1 follows immediately from definition.

LemMA 2. For all n>m, if oncf(d) <amcf(c), then Snp (@) <omef (o) (1).
Proof. Define

Z(x,v) if and only if x<w-oncf(a) and v<w-omcf(@) and f,(x)<f,(v).

Z is clearly a A,(J,)-relation defined on - gmcf (@). Thus by (2), # e J, except
possibly when dnp(«) <omcf(w). If the conclusion were false, one would then have
a Aqo(J)-uniformizing function ¢ for %, so that Juot: w oncf(@)—»wa will be
a Z,(J,)-cofinality map, contradicting the fact that on of (@) <omel(a).

LemMA 3. Let n = m+1 and assume that om
ordinal y for which there is a X,
Then oncf() <y,.

ple)Somef(w). Let y, be the least
(J)-function mapping wy cofinally into w-omp (o).
Proof. We know that oncf(@)<onp(a) <omp(s). Let f be a Z,(J,)-function

(" A special case appeared as Lemma 1.3 of [11.
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mapping wy, cofinally into w-omp(o) and let g, be as given in (3). Define R(x,v)
if and only if x<wy, and v>f(x) and ve Range(y,,) and

(VE<W)(Yw, 2)(gu(W) = { & §u(2) = vow<2).

‘We note that for any g <@ -omp(a), (gmwo) N @ is, by the definition of mlalpl(laz),
an element of J,. Let K, = (gnoe) 0 @. Since omcf(0)>omp(a), the set ‘(g,,. YK,
is bounded below wa so that there must be a v satisfying %'(x, v): As g, is 4,072,
we see that % (x, v) is actually Z,(J,). Let ¢ be Z,(J,) and uniformize Z(x, v). Then

loti d maps wy, cofinally into wa.
Gm ©F 18 zn('/a) an P 0

" Levva 4. Let m>1 and n = m+1. Suppose that wy<wp<o-omcf(@). If
12 wy—of is a 2,(J,)—J Junction, then there is a Z,(J,)-function mapping oy cofinally
into wo. ' ‘

Proof. By induction, we may assume that for m>1, te.E,,(J,)——Z,,,(JQ (for

= 1, it is enough to assume f¢J,). Without loss of generality, let 1(x) = z be
defined by

(awl)(VWZ?WO(P(Wz’ X, 2),

where ¢ (w3, X, 2) is T,-1(J,). If the set 4 = {wyl (Ywozw) (w2, x"Z)}Bhail]l;;
bounded (in w«) subset B such that as x ranges over wy, an elemen?: w, in ; ca
found to satisfy (Vwy>w;) @ (s, X, 2), then already a E,,f]a)-coﬁnahty map from wy
into wa can be found by first defining R(x, {z,w,)) if and only if

(Vwazw) oWz, X, 2),

and then (as # is clearly Z,(J,)) taking a Z,(J,)-function » which uniformizes &.

is function u satisfies our requirement. ) K
e Suppose on the other hand that a bounded subset B of 4 as d.escrlbed ex1st§,
and let b be its bound. Then for all x<wy, z<a)ﬁ,.t(x) =z if and only if
(Vw2 b)p(wy, X, 2). So if m>1, t(x) # z if and only if

(Elwzzb)(Vw3>wz)l//(W3, X, Z) ’

where Y (195, X, 2) i8 Zpoa(J) (fm = 1, @ (W2, %, 7) would be 4o(J,), s0 that #(x) # z

is Zy(J)) . . _
1I(\l'ov?/ for each z<1(x), a w,>b exists giving (Ywazw (w:,‘ , X5 Z) (1f1 mif—fl,

a w, exists giving ~@(wz, X, 2)). For z<1(x), c)leﬁne 92,;1(2, w,) 1f( .?nd only dcﬁzz

‘ is Z,(J,) for each x<wy (ift m = 1,
all wyzw,, Y(ws, x, 2). Then Rz, wp) 18 Z,(J, ' ! define
i nly if Rz, w,) is dg(J,), hence 4,(Ju).

R (2, w,) if and only if ~ (W, x, z). Then #,(z, g '

hx‘<t(x)—)—>a)oc be %,(J,) and uniformize R, As t(x)<w[)'<ci)"0'mcf(oc), Klt(x) is

b)gunded in wu. Let o, denote the least ordinal greater than Ay¢(x). If, as x ranges

over wy, the a,'s reméin bounded in wo by a o*, jchen for all J.cf< wy, and z<¥(x),

we have (Vw,=a*)y(ws, X, 2), O that #(x) = z if and only i

@ws o™~y (w3, ¥,2) and (Vo<2)(Yws =M (ws, X, 1),
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implying that ¢ is ¥,,(J,), contradicting our assumption (if m = 1, a simple calculation,
shows that if o* exists, then .t is.in J;, which is also a contradiction).. Now defing.

% (x,w) if and only if x<wy and (Vz<1(x))(h.(z)<u). Notice that this is equiva-
lent to

x<awy and (Jzo)(Vz<ze)(Vw, 20) (0 (w2, X, 20) & h (D) <u). -
As h,'is total on #(x), it is 4,,(J,), so that R(x, u) is easily checked to be va(‘.]h)l
Finally, any Z,(J,)-function uniformizing % (x,u) maps wy cofinally into .
THEOREM 1. For all n<w, if oncf(e)< oo, then it is Z,(J,)-regular.

Proof, The proof for n = 0 is standard. One notes that if there is a .2o(J,)- func;

tion mapping an initial segment y of we unboundedly into oo, then there is a strictly.
increasing Zy(J,)-function mapping {<y unboundedly into eo. Next olcf(z)
= o0cf(x). The proof is just a relativization (to @:c0cf(x)) of the basic fact in
Kripke-Platek set theory:. X,-replacement implies Z,-replacement. Now if there
is a X;(J,)-function mapping a proper initial segment of w-clcf(s) unboundedly
into w-¢lcf(e), then as for the n = 0 case one can define a strictly increas‘i‘r'xg:
Z,(J)-function from a proper initial segment of w-olcf(s) unboundedly into we,
yielding a contradiction. Hence-o1cf(x) is Z,(J,)-regular. ;
Let m>1 and n=m+1. For the sake of contradiction, suppose that
ox<w-oncf(a) and ¢ is a Z,(J,)-function mapping wx cofinally into aranc!f'(oc),‘;
Case (i). omp(x)<omcf(a). Let y, be as in Lemma 3. Then ancf(m)Syo. ‘Let‘
AnSTompy be a Z,(J,)-master code given by (3). Define %(x, v) if and only if ‘

(Yz<c@)(/@<40),

where f, is as defined in the beginning of this paper. As {2, Wl Al <f,0)} 15
a f,,(]a)-subset of w-omp(a); it is actually 4,(pmpey, 4n). Thus 2 (x v) if ‘and
only if ’

x<wx and ec(x)<v and

x<ox and  c(¥)<v. and (Vz<c(x)@w)o(z,v,w),

where @(z, v, W) is 4o((Tymp(ey» ) and therefore 2.

For each x <wx, ¢(x)<w-ancf(6)<wy,y, so that by A6 empinys Amp)-Teplace-
ment on c(x), one has %#(x,v) if and only if

Aw(Yz<c)@w<u)o(z, v, W),

So R(x,v) i Z({Jompey> Amp) (notice that c(x)<v is Z(J,) and therefore
Z1(T smptay> Aw)), and we conclude that it is Z(J,)- Let t: wx—w-ancf(a) be Z)
! o,

and uniformize Z(x, v). Then f, o ¢ is £,(J,) and maps wx cofinally into we, Since
wx<w-oncf(e), we have a contradiction.

Case (ii). omcf())<omp(w). By the method of Lemma 2 we can get
a X,(J,)-map ¢ from w-oncf(s) into - omef(x) cofinally. Thus #(x) :
if @w)o(w, x, z), where o (w, x, 2) is AT amp(ays Amp)- I Ao(<,
ment holds for the formula ¢ on the initial segment w~ancf(oc),m

= z if and only
p(2)> Aump)-Teplace-
we can repeat the
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argument ‘of case (i) to obtain a contradiction. On the other hand, suppose that
wr <o oncf(e) is the least ordinal where such a replacement operation. fails. If
t|ov is an element of J,, it is actually in J,,,. because w-omp(x) is (obviously)
a cardinal of J, and tfwr is a bounded subset of w-omp(x). If this happens, then
Aw) e (w, x, 2) defined on wtxw omcf(e) would actually be A¢(Jampe), Which
immediately implies that 4g(Jomp)-replacement holds for ¢ (w, x, ) on the initial
segment w7 (for x<wr), since @ omp(«) is a cardinal in J, and hence admissible.
Thus t|wt is not in J;, and so by Lemma 5 there is a X,(/,)-function mapping
wr<w oncf(®) cofinally into ww. Again this is a contradiction.

COROLLARY 1, For all n<w, oncf()<énp(s) if dnp(e) is not Z,(J,)-regular.

Proof. By Lemma 1, oncf(x)<dnp(e). By Theorem 1, the conclusion follows.

Remark 1. The converse of Corollary 1 is false. For example, take @ = o+,
then 1 = olcf(@) <l = §1p (). \ ‘ ’

Remark 2. The method of proof of Theorem 1 can also be used to show that
for all n<ew, there is a strictly increasing Z,(J)-function mapping «-oncf(e)
cofinally into wa. s : : ) .

THEOREM 2. For all n<w, w-énp(e) is either a limit of cardinals in J, or is
Z,(J,)-regular. . » ‘ i ‘

Proof. Suppose for-the sake of cbﬁti‘adiction that B is the largest cardinal less
than w-np(«) and y <énp(«) is the least ordinal for which there exists a Z,(J,)-func-
tion f mapping wy cofinally into wdnp(a). Let g: fowy X B be a 4,(J,)-bijection.
Such a function exfsts since wy<f. Define #(x, w) if and only if

x<wy and for some o<w-npla), f(x)<g and u is a surjection of § onto o.

Since g < @ 6np(®), the maps u are Ao(Jompwy). Hence £ (x, u)isa 2,(J,)-relation
such that for all x<wy, #(x,u) 'holds for some u in Jomw (notice that if -
o+ 0np (&)< we, then it is a cardinal in J,, so that by the absoluteness of 4,-formulas,
a u in Jyp satisfying the relation can be found). We also note that as x ranges
through wy, the corresponding w’s will range through projections of f onto g, for
unboundedly many g’s in «-dnp(2). Let ¢ be a A,(J,)-uniformization for £. Let
g = Cx, b and let I'(v) = [2()](0. Then I': f+>-dnp(a) is a 4,(J,)-projection.
The composition map d,  I' then gives a 4,(J,)-projection of B onto wa, which is
1ot possible since f< w: dnp(a). Thus w:onp(o) is cither a limit of cardinals in J, or
is £,(/,)-regular.

Let % be the smallest positive integer for which there exist ordinals
0r< ... <07 <0 <o such that () for all 0<i<k, ¢ = omcf(e) for some m, and (i)
for all m< w, omef(s) = o, for some i, 0<i<k. Similarly, let ¢ be the least positive
integer obtained by changing omof(x) in (i) and (i) above to Sdmp(x). The next
theorem shows that these two numbers are closely related.

THEOREM 3. k< 2q, and, in particular, if 9> 1 and if whenever w< o Snplu)<wo
implies that w-Snp(s) is a successor cardinal in J, then k<gq.
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Proof. Divide g,<@y-1<.-<€: into pairs {921 93}9 {ch 95}: ey {Qk-‘ls Qh}
if k is odd, and into {o2, 3}, {04, @s}» s {Ck-2> Qi-1} if k is even. Let ¢ be the
number of pairs. By Lemma 2, there would be at least ¢ values taken on
by the set of definable projecta. But k = 2¢+1 if k is odd and k = 2¢+2if k
is even. Since whenever omcf(x) = @, then dmp(¢)>g;, we see that g>1+1.
Hence k<2q. ‘ o

~ Now suppose that for all n, if w<w npl)<oe then w-dnp(a) is a successor
cardinal of J,. By Theorem 2, it must also be z,(J)-regular. Let m<n. If
omcf(6)<np(0), then applying the method used in the proof of Lemma 2, there
is a X,(J,)-function mapping w-oncf(a) cofinally into o amef(o). Since w-dnp(a)
is £,(J)-regular (we assume here that it is less than wo), omcf(x) must be less than
bnp(a). On the other hand, the graph of the Z(J)-cofinality function is 4,(/,),
so that necessarily omef (@) = oncf(x). Thus for all m<n: (») if <@ dnp(x)<we,
then either omcf(x) = oncf(z) or dnp(«)<omcf(a).

Let i>1. If omcf(a) = o; and o(m+1)cf(a) = g4, then

o (m+1)cf(@) <5 (m+1)p(o) <omef(#) <Smp(a) .

From this one concludes immediately that k<g.

COROLLARY 2. Suppose that g>1 and that for all n<w, if w<w-dnpa)<wx
then w-dnp(c) is a successor cardinal inJ,. Then k = q if and only if for alln = m+1,
whenever Snp(a)<dmp(x), one also has dnp () <omcf(e).

Proof. By Theorem 3, we know that k<q. If dnp(«) less than dmp(a) implies
that Snp(o) <omcf(«), then one has in turn oncf(w)<dnp(a)<omef (), so that
q<k. ‘ ‘

Conversely, suppose that g<k. Let n = m+1 be the least number with
omcf(@)<Snp(@)<dmp(e). As dnp(d) is Z,(J)-regular, one obtains, as in the
proof of Theorem 3, either oncf(e) = omef(w) = dnp(a) or oncf(e) = omef(x)
<8np(a). Thus up to n, the set of definable projecta takes on one more value than
the set of definablé cofinalities. This difference of at least one value will persist, by
Lemma 2 and () of Theorem 3, as we go through the set of natural numbers. Thus
g=>k+1, which contradicts our assumption.

Remark 3. The inequality in Theorem 3 is the best possible. To see this, note
that for « = 8%, k = 2 and g = 1, yielding inequality in the theorem. On the other
hand, for & = o5 (Church~Kleene first non-recursive ordinal), k = ¢ = 2, yielding
strict equality in the theorem.
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