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Continua with countable number of arc-components
by

J. Krasinkiewicz and P. Minc (Warszawa)

) Abstract. In this paper it is proved that continua with countable number of arc-components
contain either free arcs or points having arbitrarily small neigborhoods with connected complements.

- 1. Introduction. All spaces wnder considerations are metric. By a neighb(;rhood
we mean an open set. The term continuum stands for a nonvoid compact connected
space. By a free arc of a space X we mean an open arc which is an open subset of X.-

Let F # @ be a subset of a space X and let A be another subset of X. The pair
(X, F) is said to be colocally connected at A provided that for each neighborhood
U of A in X there is a neighborhood VU of 4 in X such that F\V is contained ‘in
a-single component, of X\V. In case F = X we will simply. say that X is colocally
conmected at A instead of saying that (X, X) is colocally connected at 4. A= {p}
then we say that (X, F) is colocally connected at p. o

Recall that a continuum X is said to be semi-locally connected at a point p
provided. there are arbitrarily sthall neighborhoods ¥ of p such that X\V has finitely
many components (see [4, p. 197). Clearly, colocal connectedness of X at a point p.-
implies semi-local connectedness of X at p. . o

Tn this paper we prove that continua with countable number of arc-components
contain either free arcs or points of colocal connectedness ‘(see 3.3 and 3.6), hence
<uch continua contain points of semi-local connectedness (see 3.8). If such a con-
tinuum X is a subset of a “nice” space, then we shall prove that there are points ‘of
semi-local connectedness (colocal connectedness in some. cases) of X in the
boundary of X (see 3.1, 3.5 and EN)R N : ‘ .

By a “nice” space we mean a topdlogically complete space M such that each
point p € M has arbitrarily small neighborhoods U’ such that U\{p} is connected.
Note that every open connected subset of M is arcwise connected.

2. Auxiliary lemmas.
\ 2.1. LemMa. Let G be an open connected and locally connected subset of a con-
tinuum X and let C be a cormponent of FrG. Then there is a subset P of .G homeomorphic
o the closed half line such that PNP<=C. Conseguently, if Co and C, are different
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components of FrG, then there is a subset R of G_homeamorphic to the real line such
that R\RcCyu C;y and ConR# @ # Cy N R.

Proof. Since G is locally compact, connected and locally connected metric
space, it is arcwise connected. Hence it suffices to prove the first assertion of the
lemma.

One can easily construct a sequence H,, H,, .. of open subsets of X such
that G\H; # @, H,,,;=H,, CcH,c(1/n-ball around C) and (FrH,) n FrG = &
for each n>1. Since G N FrH, is a compact subset of G, there is a finite collection
of locally connected continua Dj, ..., Di, lying in G such that
GnFrH,cDiu..u D;,
and e :

Dy u D cH,.
Let pe G\H;. and g e C be arbitrary points.
" For each n>1let g, € H,n G be a point such that limg, = g. Let P4, be an

arc in G joining p and g,. If 1 <m<(n, then there exist an 1ndex 1<€j<k,, and a point
x€ pg, o DT such that pg, = px U xg, and xq,cH,: In such a situation we will
say that j is determined by q, at'the mth stage (in general there can be many.such j°s).

There is a subsequence g,7¢5", ... of the sequence ¢y, g5, ... such that each:arc pg*
determines the same index, say j;, at the first stage (by the definition of a subsequence
we have: if ¢ =g, 'and g%, =, then &k <7). Similarily, there is a subséquence
g®, ¢, ... of g, ¢5", ... such that each arc pgi® determines the ‘samé index,
say j,, at the second stage. Repeating the procedure we can:construct a sequence.
of sequences {g{"'}2 1, {g}.y, .. and a sequence of indices jy,Jjy, inr:1 <Fi<ky,

such that {g§*"}¢2, is a subsequence of {g{"}i,. and each arc g determines j at:

the Ith stage. Hence the sequence i, g§”, ¢, ... converges to ¢ and for each
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m<n the arc pg™ determines j,, at the mth stage.. Wlthout loss of generality we can-

assume that our original sequence gy, 4,, ... has the above properties; that is lim g,= ¢
n

and for each m<n the arc pg, determines j,, at the mth stage. Let 4, be any arcin G
joining ¢; and g,. We shall show that for n>1 there exists an arc 4, in H,_, n G
joining g, and g, ;. Observe that there are points x € pg, n D}, and y € pg, s, N D},
such that xg, < H, n G and yg,.,, = H, n G. To prove the existence of 4, it remains
to note that H,=H,_, and Dj, is a locally connected contimnuum contained in
H, . NG Let 4= U A,. Clearly, AcG and by a standard trick one can prove

n=
that A contains the reqmred set P. This completes the _proof.
2.2. LemMa. Let. X be a contimuum with a countable mmber of arc~componem‘s.
Assume that A is a subcontinuum of X irreducible between two points aq and a,, and
let B be an indecomposable subcontinuum of A. If U is a nonvoid open subset of Init, B,
then there exists a .continum Ec X joining a, and a, such that UNE # @,
Proof. Let Uy, U, ...,
verging to zero such that the sets Uy = U, n 4, n=1,2, ...;

5§
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be a sequence of open sets in X with diameters con-.
are nonvoid, ‘con-:
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tained in U, and form a base for open subsets of U. Let P1sP2, -, bE A sequence
of points of X such that each point of X can be joined by an arc w1th some point
of that sequence. For each pair of natural numbers m and n such that Om & U
denote by P,, the component of X\U contammg Do~

We claim that

X = U

In f’lCt let x & X. Then- thete is an arc L joining x with some pomt Pn- Since
UN\L # @ (otherwise L would contain an uncountable collection of nondegeuerate
mutually disjoint continua), there is an index # such that U, nL = @. 1t follows
that xe L<P,,. : . B

By the Baire theorem there - exist .two 1nd1ccs my - and n, such ‘that
Intg(B N Ppono) # B. Tt follows that the continuum P = P, meets all composants
of .B. Besides we can assume that U,, misse$ both a; and a,. Let 4;, i = 0, 1, be the
component of A\U,, containing a;,. Since U,,n 4 = Uy,» the set A; meets
Fr,U,,cUcB. It follows that 4; meets some composant C;of B.Let c;€ 4; n C;.
Since P meets Ci, there is a point ¢;e P n C;. Let D, be a subcontinuum of C;
joining ¢ and ¢;. Tt is easily seen that thé continuum

E=AyUDyuPUD U4,

has the required properties. This concludes the proof. )

2.3. Lemma. Let X be a continuum with a countable number of arc-components
lying in a strongly locally connected, space M. Let U be an open subset of X meeting
Frp X and containing no, free arc of X. Then each two poznts of X can be joined by
a subcontinuum of X mrssmg a point of Un FrMX B

Proof. Suppose the lemma fails., Then there are two pomts a, and a4 in X such
that ‘

(1) each continuum in X joining ao and a; contains U n Fry X.

First we shall prove that s

(2) if 4 is a subcontinuum of X joining a, and &, and (cd)cU is a free arc
of 4, then (¢d) N FryX = @. :

Suppose r e (¢d) n Fry X. Since U N Fry, X< A which follows from (1), there
is a neighborhood W, of r in M such that W, n Fry X< (cd). By the assumptions
about M we can assume in addition that W, is arcwise connected. Since U does not
contain any free arc of X, there is a point p, € W, n X\(cd). Let p,r be an arc in Wy
joining p, and r. Since p; must belong to Inty X and re Fr, X, there is a point,
say x,, which is the first point on the arc p,r belonging to Fr, X. Observe that
x; € (ed) and p,x,\{x,}=Inty X. There is a neighborhood W,cW, of x, in M
such that W,\{x} is arcwise connected. Let p, € (p; x;\{x1}) n W,. By [2, 2.1]
there is a point y € (W, N Fry X)\{x,}. Clearly, y e (cd). Let p,y be an arc in
WoN\{x,} joining p, and y, and let x, be the first point of p,y belonging to Frj X.
Clearly, x, € (cd)\{x,} and the subarc p,x, of p,y is a subset of Inty X U {x,}.
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Let W, W, be a neighborhood of x; in M such that W3\{x1} is arcwise connected
and Wi 0 pyx, = @. Again by [2,2.1] there is 2 point ze (WaN\{x1}) N Fry X.
Let ps € (Wsn{x;}) 0 p1 %, and let p;z be an arc in Wa\{x,} between p; and z.
Let x; be the first point on p3z belonging to Fry X. Clearly, x; & (cd). Le't Pax; be
- the subarc of psz joining p; and x;. Cleatly, p3 X3 clInty X U {x3}, The p.01’n‘ts Xq, Xy
and x, are different and lie on (cd). Let L= prxN{x;} be an are containing p;, p
and p;. Let ¢; be the first and let d, be the last point on cd belonging to
P1X; U PyXy U paXy. Let ccy and dyd denote the subarcs of ¢d an‘d let €1 € PixXiy
d, € pyx;. The continuum K = [AN(ed)] v ceq U pyx; O LV % vd, d.C:X_]OlnS ay
and @ and misses the point x, # x;y x; contrary to our supposition. This Qr})ves 2).

Consider the class K of all subcoutinua K of X satisfying the conditions

(3) K is a continuum irreducible between o and a4, -

(4) the intersection of K with a cbn}ponent of Inty X is eithe'l.' void or homeo-
‘morphic to the closed half real line or homeomorphic to the line,

‘We shall show that e s

3) K # O. ‘

Let Gl,. G, ... be the sequence of all components of Int,, X. We shall construct
a sequence of continua By, By, ... in X such that for each nz1 we have

(6) the points a, and-a, belong to B,_;,

() B,=Byos, | |

(8) B, n G, is homeomorphic to. a closed connected subset of the linv.a,

(9) each continuum in B, joining @, and ay contains B, n G,,

(10) B,_; 0 G; is either void or’ equal to G for j>n. ’

Let B, = X and assume the sets Bo, ..., B, have been constructed\. In case
where B,_; ~ G, = @ let B, = B,_,. Now assume B, ; 0 G, # @. Then by (10) we
have G, B,_,. Let Py and P, denote the following sets. If 4 € G,, then Py = ©,
if ag ¢ G,, then Py is the component of B, ;\G,, containing a,. The set P, is defined
analogously. Observe that for j>n the set Po N Gy is either void or equal to G;.
"The same holds for P,. Consider three cases: ‘

(i) @, @y € G, Then let B, be an arc in G, joining a, and ay.

(iil) a,€ G, and a, ¢ G, (or ag ¢ G, and a; € G,).
Let C be the component of Fry G, = FrxG, meeting P (or Pp). By 2.1 there is
a set PG, containing @, (or @,) and homeomorphic to the closed half line such
" that P\P<=C. Let B,=P U CUP; (or B,=Pu CuU Py).

(i) ao, a; ¢ G,. If Py = Py, then let B, = P,. Otherwise, let Co and C; be the
components of FryG, meeting Py and Py, respectively. Since C, # Cj, then by
TLemma 2.1 there is a set RcG, homeomorphic to the real line such that
R\RcCou C; and RN Cy# B+ Rn C;. Then let B, =Py U R UP,. The

properties (6), (7), (8),.(9) and (10) are easily provable, which completes the con-

struction of B,s. - - . ‘ ‘
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Consider the set B = () B,. By (6) and (7), Bis a continuum in X containing a,

and a,. Let K be a continuum in B irreducible between a, and ay. By (1), (8) and (9)
continvum K satisfies (4), which proves (5).
Now we prove that

(11) each nondegenerate layer T of a continuum K e K is contained. in Fry X.

Suppose T' N Inty X # @. Then there is a component G of Int, X such that
T n G # @. Since I'is nondegenerate by (4) there is a free arc L of X wholly con-
tained in 7. By [3, Th. 4, p. 216] the layer T is a union of a countable number of
nowhere dense subcontinua of K and indecomposable continua. Since L is an open
subset of K, there is an indecomposable subcontinuum of 7" meeting L. Then L n T
is an open nonvoid subset of an indecomposable continuum contained in an arc,
which is impossible. Hence (11) follows.

Let us prove that

(12) if T is a layer of a continuum Ke K, then Inty (T n U) = @.

By [3, Th. 4, p. 216] the layer T is a union of a countable number of nowhere
dense subcontinua of K and indecomposable continua. Suppose Intx(T'n U) # @.

Since it is an open nonvoid subset of K, by the Baire theorem there is an
indecomposable subcontinuum D of T such that Intg(D n U) % @. By (3) and 2.2 it
follows that there is 2 continuum E < Xjoining a, and a; such that Intg(D ~ UNE # @.
By (11) we have D=T<Fry X, It follows that U n Fr,, X\E # @, contrary to (1).
This proves (12).

For Ke Klet gt K~[0, 1] be the (continuous) map considered in [3, § 48, IV]
such .that for each 7€ [0, 1] the set gz '(r) is a layer of XK. ~

Let us prove that )

(13) only a countable number of layers of a continuum K e K meets U n Fry X.

Suppose it is not. Then there are three numbers 7, <?; <?, such that gz *(z;)
meets U N Fry X, i = 0,1, 2, and there is an arc-component of X meeting gx *(Z,)
and gg'(r,).

Let Lo X be an arc joining gx l(to)ﬂ and gg !(t,). By (1) the continuum

A =g5" (0, 0) v LU g ([t2, 1D

must contain U n Fry X, This implies that
@ # gx'(1;) 0 U Fry X=IN(g ([0, 1o]) U g5 *([125 1D) .

Clearly, there is a free arc L, of 4 contained in U such that L; n Fr wX # @, con-
trary to (2). This completes the proof of (13). o

Fix a continwim K, € K (see (5)). Let Ty, T,, ... be all the layers of X, each of
which meets U n Fry, X (see (13)). Let F, = T, n U for n=1. By (1) and (11) we
have |J F, = U Fry X and since U N Fry, X satisfies the Baire theorem, there is

n

an index m such that the interior of F, in U n Fry X is nonvoid, hence
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((14) there is an open set ¥ in M such that & # V' n FryX<F, =T, n U
By (14), (11) and [2, 2.1] it follows that
(15) T, is a nondegenerate subcontinuum of Fry X.

Let ¥; be a component of K,—T, containing the point «; provided ai¢ Tos
otherwise let ¥; = @. By (12) we infer that

16) T,, Uc:)_’0 v Y.

Let us prove the following proposition:

(UNX Y,AVNT,#@ then there exist an arc rlsic:IntMX v {r} and
a continuum D;c ¥; such that r,eT, n ¥ and E; = D;urs; is a continuum
irreducible between r; and a, satysfying (4) (where K is replaced by E)).

Letge Y, AV T,. Let V;cV be-an arcwise connected neighborhood of g.
There is a point p e ¥; N ¥;. Let.pg be an arc in ¥ joining p and g. Observe that
by (14) we have p e Int, X and by (11) and (15) we have g € Fr, X. Let r; be the
first point on pg (going from p to g) belonging to Fry X and let pr; be the subarc
of pq. By (14) we have r, e T,, 0 ¥ and pr;=(Inty X) U {r;}. By [3,§ 48, IV] there is
a continuum D < Y, joining p and ;. Let s; be the first point on r;p (going from r,
to p) belonging to D: Let D; be a subcontinuum of D irreducible between s; and «;.
One easily verifies that a continuum E; = D; U r;s; satisfies (4), which'proves (17).

In case where G,n VN T,=@ set E/=7Y,. By (16) it follows that
E,u T, vEcXis a continuum containing a, and a,. Let K;cE, v T, U E;
be a continuum irreducible between oy and a,. Observe that no component of Tnt, X
intersects both Y, and Y;, which implies that there is no such component inter~
secting both E, and E;. It follows from (17) that K € K. ‘

y Since T,=FryX (see (15)), by (1) we mfer that T, n U=K,. Since
"KycEyuT,uE, we get

(18) Un T,\(Eo U Ey) = U0 K\(E, U E,y).

By (14) we have @ # V' n T,,cU n T,,. By (17) the set (Vﬂ T,) A CEy U Ey)
contains at most two points. Since by (15) the set T}, is a nondegenerate continuum'
(and V is open) we infer that & % V'r T,\(E, U E))EU n T, \(E, L E;). Hence
by (18) the set H = U n K;\(E, U E,) is a nonvoid open subset of K, contained
in Fr,, X. By (13) it follows that H is contained in a union of countably many layers
of K. From the Baire theorem it follows that there is a layer T" of X, such that
Intg (T'n H) # @. This implies that Inty,(T'n U) # @, contrary to (12). This
completes the proof of the lemma.

3. Main results. This section contains our main results.

3.1. THEOREM. Let X be a continuum with a finite number of arc-components
lying in a strongly locally connected space M. Denote by T the union of all free arcs
of X. Let Cy, C,, ..., C, be a finire collection of subcontinua of X containing all points
of Fry X at which X is colocally connecred. Then

FryXcTuCyu..uC,.
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Proof. Suppose the theorem fails. Let 4 be a finite set meeting each arc-com-
ponent of X. Let U= X\(AUTuUC;u..UC,). Since X is nondegenerate,
there is no point of Fr,, X isolated in Fry X (see [2, 2.1]). Hence by our supposition
we have Un Fry X # @. Using finitely many times Lemma 2.3 we can find 2 con-
tinuum E< X such that 4 U C; U .. U C,cF and (Fry, X)\E # &. Note that E
meets each arc- component of X. Smce X can not be mapped onto any indecompo-
sable continuum, by [2, Th. 3.1] there is a point pe(FrMX)\E at which X is
colocally connected. This implies that p € (Fr), X)\(C; U ... U C,), which is a con-
tradiction. This completes the proof.

' 3.2. Remark. One easily sees that in the statement of 3.1 one could replace T by
the union of free arcs of X which separate X.

Considering X as a nowhere dense subset of the Hilbert cube (which is strongly
locally connected) we obtain from 3,1 the following.

3.3. COROLLARY. Let X be a continuum with a finite number of arc-components.
Denote by T the union of all free arcs of X separating X: Let Cy, ..., C, be a finite

collegtion of subcontinua of X containing all points of X at whick X is colocally con-
nected. Then

X=TuC,u..uC,.

3.4, Remark. The above corollary fails for continua with a countable number
of arc-components. Such an example can be obtained taking the union of the Cantor

brush and an infinite sequence of (sin 1/x)-curves as indicated below (comp.
[1, Ex. 4.7]). .

.

3.5, Taeorum. Let X be a continuum with a countable number of arc-components
lying in a strongly locally connected space M. Let C,, C,, ..., C, be a finite collection
of subcontinua of X such that Cy U ... v C, contains the union of all free arcs of X
and all points of X at which X is colocally connected. Then

FryXeCiu. v C,.

Proof. Suppose the theorem fails. Using 2.3 finitely many times one can find
a continuum E such that C; u ... U C,cE and (Fry X)\E # @. Let 4 be a coun-

table subset of X meeting each arc-component of X.
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Let @ be an arbltrary point of 4 and let C be a subcontinuum of X containing E
such that (Fry X)\C s @. Since X is nondegernerate, there is no point of Fry X
isolated in Fr, X -(see [2, 2.1]); hence (Fry X)N(C L {a}) # ©. By 2.3 there is
a continuum Dc X containing C L {a} such that (Fry X)\D # . Since X can
not be mapped onto- any indecomposable continuum, by [2, 2.3] there is a point
p € [Fry; X)N\D such that X is aposyndetic at D with respect to p. Hence X'is aposyn-
detic at C U {a} with respect to p. '

Thus the assumptions of Lemma 2.5 in [2] are fulfilled. It follows from that
lemma that there is a proper connected open subset G of X satisfying the following
conditions:

(1) AU E<=G,

(2) FryGcFry X<G,

(3) FryG is a continuum at which G is colocally connected,

(4) each subcontinuum of X ‘meeting both G and FryG contains FryG.

" Let x be a point of Fry G and let @ € 4 be a point belonging to the arc-component

of X containing x. Let ax be an arc in X joining'a and x. By (1) we have a € G.
Let p be the first point on ax belonging to FryG. Denote by ay the subarc of ax
between a and y. Since ayc X, by (4) it follows that FryGeay n FryG = {y}.
Hence Fry G = {y}. By (2) and (3) we infer that (X, Fry X) is colocally connected
at y..By [2, 2.2]-it follows that X is colocally connected at y. But by (1) and (2) we
have y € (Fry X)NE< (Fry, X)N(C; U ... U C,), which is a contradiction completing
the proof.

Considering X as a nowhere dense subiset of the Hilbert cube we obtain by 3.5
the following.

3.6. COROLLARY. Let X be a continuum with a counmble number of arc-com-
ponents. Let Cy, ..., C, be a finite number of subcontinua of X such that C; U ... U C,
contains both the union of all free arcs of X and all the points of X at which X is coloca//y
connected. Then

X=C1u ..uC,,.

Since every point on a free arc of X is a point of semi-local connectedness of X

~ we obtain from 3.5 and 3.6 two following corollaries.

3.7. COROLLARY. Let X be a continuum with a countable number of arc-com-
ponents lying in a strongly locally connected space M. Let Cy, ..., C, be a finite number
of subcontinua of X such that all points of semi- -local connecredness of X Iymg in
Fry X belong to C; u...u C,. Then

FryX<eCiu..uC(C,.

3.8. COROLLARY. Let X be a continuum with a countable number of arc-components
and let Cy , ..., C, be a finite collection of subcontinua of X such that all points of semi-
local connectedness of X belong to C, U ..U C,. Then

X=C,u..uC,.
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3.9. Remark. Clearly, the above corollary fails for all continua. There exists.
even an example of a snake-like hereditarily decomposable continuum having no
points of semi-local connectedness (see [3, p. 191, Ex. 4]). !

'
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