

Continua with countable number of arc-components

hv

J. Krasinkiewicz and P. Minc (Warszawa)

Abstract. In this paper it is proved that continua with countable number of arc-components contain either free arcs or points having arbitrarily small neighborhoods with connected complements.

1. Introduction. All spaces under considerations are metric. By a neighborhood we mean an open set. The term continuum stands for a nonvoid compact connected space. By a free arc of a space X we mean an open arc which is an open subset of X.

Let $F \neq \emptyset$ be a subset of a space X and let A be another subset of X. The pair (X, F) is said to be colocally connected at A provided that for each neighborhood U of A in X there is a neighborhood $V \subset U$ of A in X such that $F \setminus V$ is contained in a single component of $X \setminus V$. In case F = X we will simply say that X is colocally connected at A instead of saying that (X, X) is colocally connected at A. If $A = \{p\}$, then we say that (X, F) is colocally connected at P.

Recall that a continuum X is said to be semi-locally connected at a point p provided there are arbitrarily small neighborhoods V of p such that $X \setminus V$ has finitely many components (see [4, p. 19]). Clearly, colocal connectedness of X at a point p implies semi-local connectedness of X at p.

In this paper we prove that continua with countable number of arc-components contain either free arcs or points of colocal connectedness (see 3.3 and 3.6), hence such continua contain points of semi-local connectedness (see 3.8). If such a continuum X is a subset of a "nice" space, then we shall prove that there are points of semi-local connectedness (colocal connectedness in some cases) of X in the boundary of X (see 3.1, 3.5 and 3.7).

By a "nice" space we mean a topologically complete space M such that each point $p \in M$ has arbitrarily small neighborhoods U such that $U \setminus \{p\}$ is connected. Note that every open connected subset of M is arcwise connected.

2. Auxiliary lemmas.

2.1. Lemma. Let G be an open connected and locally connected subset of a continuum X and let C be a component of $\operatorname{Fr} G$. Then there is a subset P of G homeomorphic to the closed half line such that $\overline{P} \setminus P \subset C$. Consequently, if C_0 and C_1 are different

components of $F_{\Gamma}G$, then there is a subset R of G homeomorphic to the real line such that $\overline{R} \setminus R \subset C_0 \cup C_1$ and $C_0 \cap \overline{R} \neq \emptyset \neq C_1 \cap \overline{R}$.

Proof. Since G is locally compact, connected and locally connected metric space, it is arcwise connected. Hence it suffices to prove the first assertion of the lemma.

One can easily construct a sequence $H_1, H_2, ...$ of open subsets of X such that $G \setminus H_1 \neq \emptyset$, $\overline{H}_{n+1} \subset H_n$, $C \subset H_n \subset (1/n$ -ball around C) and $(\operatorname{Fr} H_n) \cap \operatorname{Fr} G = \emptyset$ for each $n \ge 1$. Since $G \cap \operatorname{Fr} H_n$ is a compact subset of G, there is a finite collection of locally connected continua $D_1^n, ..., D_{k_n}^n$ lying in G such that

$$G \cap \operatorname{Fr} H_n \subset D_1^n \cup ... \cup D_{k_n}^n$$

and

$$D_1^{n+1} \cup ... \cup D_{k_{n+1}}^{n+1} \subset H_n$$
.

Let $p \in G \setminus H_1$ and $q \in C$ be arbitrary points.

For each $n \ge 1$ let $q_n \in H_n \cap G$ be a point such that $\lim q_n = q$. Let pq_n be an arc in G joining p and q_n . If $1 \le m \le n$, then there exist an index $1 \le j \le k_m$ and a point $x \in pa \cap D^m$ such that $pa = px \cup xa$, and $xa \subset \overline{H}_m$. In such a situation we will say that i is determined by a, at the mth stage (in general there can be many such i's). There is a subsequence $q_1^{(1)}, q_2^{(1)}, \dots$ of the sequence q_1, q_2, \dots such that each arc $pq_k^{(1)}$ determines the same index, say i, at the first stage (by the definition of a subsequence we have: if $q_{r+1}^{(1)} = q_r$ and $q_{r+1}^{(1)} = q_l$, then k < l). Similarly, there is a subsequence $q_1^{(2)}, q_2^{(2)}, \dots$ of $q_1^{(1)}, q_2^{(1)}, \dots$ such that each arc $pq_k^{(2)}$ determines the same index, say i_2 , at the second stage. Repeating the procedure we can construct a sequence of sequences $\{q_k^{(1)}\}_{k=1}^{\infty}$, $\{q_k^{(2)}\}_{k=1}^{\infty}$, ... and a sequence of indices $j_1, j_2, \ldots, 1 \le j_r \le k_r$, such that $\{q_k^{(l+1)}\}_{k=1}^{\infty}$ is a subsequence of $\{q_k^{(l)}\}_{k=1}^{\infty}$ and each arc $pq_k^{(l)}$ determines j_l at the *l*th stage. Hence the sequence $q_1^{(1)}, q_2^{(2)}, q_3^{(3)}, \dots$ converges to q and for each $m \le n$ the arc $pq_n^{(n)}$ determines j_m at the mth stage. Without loss of generality we can assume that our original sequence $q_1, q_2, ...$ has the above properties; that is $\lim q_n = q$ and for each $m \le n$ the arc pq_n determines j_m at the mth stage. Let A_1 be any arc in Gjoining q_1 and q_2 . We shall show that for n>1 there exists an arc A_n in $H_{n-1}\cap G$ joining q_n and q_{n+1} . Observe that there are points $x \in pq_n \cap D_{i_n}^n$ and $y \in pq_{n+1} \cap D_{i_n}^n$ such that $xq_n \subset \overline{H}_n \cap G$ and $yq_{n+1} \subset \overline{H}_n \cap G$. To prove the existence of A_n it remains to note that $\overline{H}_n \subset H_{n-1}$ and $D_{j_n}^n$ is a locally connected continuum contained in $H_{n-1} \cap G$. Let $A = \bigcup A_n$. Clearly, $A \subset G$ and by a standard trick one can prove that A contains the required set P. This completes the proof.

2.2. LEMMA. Let X be a continuum with a countable number of arc-components. Assume that A is a subcontinuum of X irreducible between two points a_0 and a_1 , and let B be an indecomposable subcontinuum of A. If U is a nonvoid open subset of $\operatorname{Int}_A B$, then there exists a continuum $E \subset X$ joining a_0 and a_1 such that $U \setminus E \neq \emptyset$.

Proof. Let $U_1, U_2, ...$, be a sequence of open sets in X with diameters converging to zero such that the sets $U'_n = U_n \cap A$, n = 1, 2, ..., are nonvoid, con-

tained in U, and form a base for open subsets of U. Let $p_1, p_2, ...$, be a sequence of points of X such that each point of X can be joined by an arc with some point of that sequence. For each pair of natural numbers m and n such that $p_m \notin U_n$ denote by P_{mn} the component of $X \setminus U_n$ containing p_m .

We claim that

$$X = \bigcup_{m,n} P_{mn}$$
.

In fact, let $x \in X$. Then there is an arc L joining x with some point p_m . Since $U \setminus L \neq \emptyset$ (otherwise L would contain an uncountable collection of nondegenerate mutually disjoint continua), there is an index n such that $U_n \cap L = \emptyset$. It follows that $x \in L \subset P_{mn}$.

By the Baire theorem there exist two indices m_0 and n_0 such that $\operatorname{Int}_{\beta}(B \cap P_{m_0 n_0}) \neq \emptyset$. It follows that the continuum $P = P_{m_0 n_0}$ meets all composants of B. Besides we can assume that U_{n_0} misses both a_0 and a_1 . Let A_i , i = 0, 1, be the component of $A \setminus U_{n_0}$ containing a_i . Since $U_{n_0} \cap A = U'_{n_0}$, the set A_i meets $\operatorname{Fr}_A U'_{n_0} \subset \overline{U} \subset B$. It follows that A_i meets some composant C_i of B. Let $c_i \in A_i \cap C_i$. Since P meets C_i , there is a point $c'_i \in P \cap C_i$. Let D_i be a subcontinuum of C_i joining c_i and c'_i . It is easily seen that the continuum

$$E = A_0 \cup D_0 \cup P \cup D_1 \cup A_1$$

has the required properties. This concludes the proof.

2.3. LEMMA. Let X be a continuum with a countable number of arc-components lying in a strongly locally connected space M. Let U be an open subset of X meeting $\operatorname{Fr}_M X$ and containing no free arc of X. Then each two points of X can be joined by a subcontinuum of X missing a point of $U \cap \operatorname{Fr}_M X$.

Proof. Suppose the lemma fails. Then there are two points a_0 and a_1 in X such that

(1) each continuum in X joining a_0 and a_1 contains $U \cap \operatorname{Fr}_M X$.

First we shall prove that

(2) if A is a subcontinuum of X joining a_0 and a_1 and $(cd) \subset U$ is a free arc of A, then $(cd) \cap \operatorname{Fr}_M X = \emptyset$.

Suppose $r \in (cd) \cap \operatorname{Fr}_M X$. Since $U \cap \operatorname{Fr}_M X \subset A$ which follows from (1), there is a neighborhood W_1 of r in M such that $W_1 \cap \operatorname{Fr}_M X \subset (cd)$. By the assumption about M we can assume in addition that W_1 is arcwise connected. Since U does not contain any free arc of X, there is a point $p_1 \in W_1 \cap X \setminus (cd)$. Let $p_1 r$ be an arc in W_1 joining p_1 and r. Since p_1 must belong to $\operatorname{Int}_M X$ and $r \in \operatorname{Fr}_M X$, there is a point, say x_1 , which is the first point on the arc $p_1 r$ belonging to $\operatorname{Fr}_M X$. Observe that $x_1 \in (cd)$ and $p_1 x_1 \setminus \{x_1\} \subset \operatorname{Int}_M X$. There is a neighborhood $W_2 \subset W_1$ of x_1 in M such that $W_2 \setminus \{x_1\}$ is arcwise connected. Let $p_2 \in (p_1 x_1 \setminus \{x_1\}) \cap W_2$. By [2, 2.1] there is a point $p_1 \in W_2 \cap \operatorname{Fr}_M X \cap \{x_1\}$. Clearly, $p_2 \in (cd) \setminus \{x_1\}$ and the subarc $p_2 x_2$ of $p_2 y$ is a subset of $\operatorname{Int}_M X \cup \{x_2\}$.

Let $W_3 \subset W_2$ be a neighborhood of x_1 in M such that $W_3 \setminus \{x_1\}$ is arcwise connected and $W_3 \cap p_2 x_2 = \emptyset$. Again by [2, 2.1] there is a point $z \in (W_3 \setminus \{x_1\}) \cap \operatorname{Fr}_M X$. Let $p_3 \in (W_3 \setminus \{x_1\}) \cap p_1 x_1$ and let $p_3 z$ be an arc in $W_3 \setminus \{x_1\}$ between p_3 and z. Let x_3 be the first point on $p_3 z$ belonging to $\operatorname{Fr}_M X$. Clearly, $x_3 \in (cd)$. Let $p_3 x_3$ be the subarc of $p_3 z$ joining p_3 and x_3 . Clearly, $p_3 x_3 \subset \operatorname{Int}_M X \cup \{x_3\}$. The points x_1, x_2 and x_3 are different and lie on (cd). Let $L \subset p_1 x_1 \setminus \{x_1\}$ be an arc containing p_1, p_2 and p_3 . Let c_1 be the first and let d_1 be the last point on cd belonging to $p_1 x_1 \cup p_2 x_2 \cup p_3 x_3$. Let c_1 and $d_1 d$ denote the subarcs of cd and let $c_1 \in p_1 x_1$, $d_1 \in p_3 x_3$. The continuum $K = [A \setminus (cd)] \cup cc_1 \cup p_1 x_1 \cup L \cup p_1 x_2 \cup d_1 d \subset X$ joins a_0 and a_1 and misses the point $x_k \neq x_1, x_2$ contrary to our supposition. This proves (2).

Consider the class K of all subcoutinua K of X satisfying the conditions

- (3) K is a continuum irreducible between a_0 and a_1 ,
- (4) the intersection of K with a component of $\operatorname{Int}_M X$ is either void or homeomorphic to the closed half real line or homeomorphic to the line.

We shall show that

(5) $K \neq \emptyset$.

Let $G_1, G_2, ...$ be the sequence of all components of $\operatorname{Int}_M X$. We shall construct a sequence of continua $B_0, B_1, ...$ in X such that for each $n \ge 1$ we have

- (6) the points a_0 and a_1 belong to B_{n-1} ,
- (7) $B_n \subset B_{n-1}$,
- (8) $B_n \cap G_n$ is homeomorphic to a closed connected subset of the line,
- (9) each continuum in B_n joining a_0 and a_1 contains $B_n \cap G_n$,
- (10) $B_{n-1} \cap G_i$ is either void or equal to G_j for $j \ge n$.

Let $B_0=X$ and assume the sets B_0,\ldots,B_{n-1} have been constructed. In case where $B_{n-1}\cap G_n=\varnothing$ let $B_n=B_{n-1}$. Now assume $B_{n-1}\cap G_n\ne\varnothing$. Then by (10) we have $\overline{G}_n\subset B_{n-1}$. Let P_0 and P_1 denote the following sets. If $a_0\in G_n$, then $P_0=\varnothing$, if $a_0\notin G_n$, then P_0 is the component of $B_{n-1}\setminus G_n$ containing a_0 . The set P_1 is defined analogously. Observe that for j>n the set $P_0\cap G_j$ is either void or equal to G_j . The same holds for P_1 . Consider three cases:

- (i) $a_0, a_1 \in G_n$. Then let B_n be an arc in G_n joining a_0 and a_1 .
- (ii) $a_0 \in G_n$ and $a_1 \notin G_n$ (or $a_0 \notin G_n$ and $a_1 \in G_n$).

Let C be the component of $\operatorname{Fr}_M G_n = \operatorname{Fr}_X G_n$ meeting P_1 (or P_0). By 2.1 there is a set $P \subset G_n$ containing a_0 (or a_1) and homeomorphic to the closed half line such that $\overline{P} \setminus P \subset C$. Let $B_n = P \cup C \cup P_1$ (or $B_n = P \cup C \cup P_0$).

(iii) a_0 , $a_1 \notin G_n$. If $P_0 = P_1$, then let $B_n = P_0$. Otherwise, let C_0 and C_1 be the components of $\operatorname{Fr}_X G_n$ meeting P_0 and P_1 , respectively. Since $C_0 \neq C_1$, then by Lemma 2.1 there is a set $R \subset G_n$ homeomorphic to the real line such that $\overline{R} \setminus R \subset C_0 \cup C_1$ and $\overline{R} \cap C_0 \neq \emptyset \neq \overline{R} \cap C_1$. Then let $B_n = P_0 \cup R \cup P_1$. The properties (6), (7), (8), (9) and (10) are easily provable, which completes the construction of B_n 's.

Consider the set $B = \bigcap_{n} B_{n}$. By (6) and (7), B is a continuum in X containing a_{0} and a_{1} . Let K be a continuum in B irreducible between a_{0} and a_{1} . By (1), (8) and (9) continuum K satisfies (4), which proves (5).

Now we prove that

(11) each nondegenerate layer T of a continuum $K \in K$ is contained in $\operatorname{Fr}_M X$. Suppose $T \cap \operatorname{Int}_M X \neq \emptyset$. Then there is a component G of $\operatorname{Int}_M X$ such that $T \cap G \neq \emptyset$. Since T is nondegenerate by (4) there is a free arc L of K wholly contained in T. By [3, Th. 4, p. 216] the layer T is a union of a countable number of nowhere dense subcontinua of K and indecomposable continua. Since L is an open subset of K, there is an indecomposable subcontinuum of T meeting L. Then $L \cap T$ is an open nonvoid subset of an indecomposable continuum contained in an arc, which is impossible. Hence (11) follows.

Let us prove that

(12) if T is a layer of a continuum $K \in K$, then $Int_K(T \cap U) = \emptyset$.

By [3, Th. 4, p. 216] the layer T is a union of a countable number of nowhere dense subcontinua of K and indecomposable continua. Suppose $\operatorname{Int}_K(T \cap U) \neq \emptyset$.

Since it is an open nonvoid subset of K, by the Baire theorem there is an indecomposable subcontinuum D of T such that $\operatorname{Int}_K(D \cap U) \neq \emptyset$. By (3) and 2.2 it follows that there is a continuum $E \subset X$ joining a_0 and a_1 such that $\operatorname{Int}_K(D \cap U) \setminus E \neq \emptyset$. By (11) we have $D \subset T \subset \operatorname{Fr}_M X$. It follows that $U \cap \operatorname{Fr}_M X \setminus E \neq \emptyset$, contrary to (1). This proves (12).

For $K \in K$ let g_K : $K \to [0, 1]$ be the (continuous) map considered in [3, § 48, IV] such that for each $t \in [0, 1]$ the set $g_K^{-1}(t)$ is a layer of K.

Let us prove that

and $q_{\kappa}^{-1}(t_2)$.

(13) only a countable number of layers of a continuum $K \in K$ meets $U \cap \operatorname{Fr}_M X$. Suppose it is not. Then there are three numbers $t_0 < t_1 < t_2$ such that $g_K^{-1}(t_1)$ meets $U \cap \operatorname{Fr}_M X$, i = 0, 1, 2, and there is an arc-component of X meeting $g_K^{-1}(t_0)$

Let $L \subset X$ be an arc joining $g_K^{-1}(t_0)$ and $g_K^{-1}(t_2)$. By (1) the continuum

$$A = g_K^{-1}([0, t_0]) \cup L \cup g_K^{-1}([t_2, 1])$$

must contain $U \cap \operatorname{Fr}_M X$. This implies that

$$\emptyset \neq g_K^{-1}(t_1) \cap U \cap \operatorname{Fr}_M X \subset L \setminus (g_K^{-1}([0, t_0]) \cup g_K^{-1}([t_2, 1])).$$

Clearly, there is a free arc L_1 of A contained in U such that $L_1 \cap \operatorname{Fr}_M X \neq \emptyset$, contrary to (2). This completes the proof of (13).

Fix a continuum $K_0 \in K$ (see (5)). Let $T_1, T_2, ...$ be all the layers of K_0 each of which meets $U \cap \operatorname{Fr}_M X$ (see (13)). Let $F_n = T_n \cap U$ for $n \ge 1$. By (1) and (11) we have $\bigcup_n F_n = U \cap \operatorname{Fr}_M X$ and since $U \cap \operatorname{Fr}_M X$ satisfies the Baire theorem, there is an index m such that the interior of F_m in $U \cap \operatorname{Fr}_M X$ is nonvoid, hence

(14) there is an open set V in M such that $\emptyset \neq V \cap \operatorname{Fr}_M X \subset F_m = T_m \cap U$. By (14), (11) and [2, 2.1] it follows that

(15) T_m is a nondegenerate subcontinuum of $\operatorname{Fr}_M X$.

Let Y_i be a component of $K_0 - T_m$ containing the point a_i provided $a_i \notin T_m$; otherwise let $Y_i = \emptyset$. By (12) we infer that

(16) $T_{m} \cap U \subset \overline{Y}_{0} \cup \overline{Y}_{1}$.

Let us prove the following proposition

(17) If $\overline{Y}_i \cap V \cap T_m \neq \emptyset$ then there exist an arc $r_i s_i \subset \operatorname{Int}_M X \cup \{r_i\}$ and a continuum $D_i \subset Y_i$ such that $r_i \in T_m \cap V$ and $E_i = D_i \cup r_i s_i$ is a continuum irreducible between r_i and a_i satysfying (4) (where K is replaced by E_i).

Let $q \in \overline{Y}_i \cap V \cap T_m$. Let $V_1 \subset V$ be an arcwise connected neighborhood of q. There is a point $p \in Y_i \cap V_1$. Let pq be an arc in V_1 joining p and q. Observe that by (14) we have $p \in \operatorname{Int}_M X$ and by (11) and (15) we have $q \in \operatorname{Fr}_M X$. Let r_i be the first point on pq (going from p to q) belonging to $\operatorname{Fr}_M X$ and let pr_i be the subarc of pq. By (14) we have $r_i \in T_m \cap V$ and $pr_i \subset (\operatorname{Int}_M X) \cup \{r_i\}$. By [3, § 48, IV] there is a continuum $D \subset Y_i$ joining p and a_i . Let s_i be the first point on $r_i p$ (going from r_i to p) belonging to p. Let p0 be a subcontinuum of p1 irreducible between p1 and p2. One easily verifies that a continuum p3 is at satisfies (4), which proves (17).

In case where $\overline{Y}_i \cap V \cap T_m = \emptyset$ set $E_i = \overline{Y}_i$. By (16) it follows that $E_0 \cup T_m \cup E_1 \subset X$ is a continuum containing a_0 and a_1 . Let $K_1 \subset E_0 \cup T_m \cup E_1$ be a continuum irreducible between a_0 and a_1 . Observe that no component of $\operatorname{Int}_M X$ intersects both Y_0 and Y_1 , which implies that there is no such component intersecting both E_0 and E_1 . It follows from (17) that $K_1 \in K$.

Since $T_m \subset \operatorname{Fr}_M X$ (see (15)), by (1) we infer that $T_m \cap U \subset K_1$. Since $K_1 \subset E_0 \cup T_m \cup E_1$, we get

(18) $U \cap T_m \setminus (E_0 \cup E_1) = U \cap K_1 \setminus (E_0 \cup E_1)$.

By (14) we have $\emptyset \neq V \cap T_m \subset U \cap T_m$. By (17) the set $(V \cap T_m) \cap (E_0 \cup E_1)$ contains at most two points. Since by (15) the set T_m is a nondegenerate continuum (and V is open) we infer that $\emptyset \neq V \cap T_m \setminus (E_0 \cup E_1) \subset U \cap T_m \setminus (E_0 \cup E_1)$. Hence by (18) the set $H = U \cap K_1 \setminus (E_0 \cup E_1)$ is a nonvoid open subset of K_1 contained in $\operatorname{Fr}_M X$. By (13) it follows that H is contained in a union of countably many layers of K_1 . From the Baire theorem it follows that there is a layer T of K_1 such that $\operatorname{Int}_{K_1}(T \cap H) \neq \emptyset$. This implies that $\operatorname{Int}_{K_1}(T \cap U) \neq \emptyset$, contrary to (12). This completes the proof of the lemma.

- 3. Main results. This section contains our main results.
- 3.1. THEOREM. Let X be a continuum with a finite number of arc-components lying in a strongly locally connected space M. Denote by T the union of all free arcs of X. Let C_1 , C_2 , ..., C_n be a finite collection of subcontinua of X containing all points of $\operatorname{Fr}_M X$ at which X is colocally connected. Then

$$\operatorname{Fr}_{M} X \subset \overline{T} \cup C_{1} \cup ... \cup C_{n}$$
.

Proof. Suppose the theorem fails. Let A be a finite set meeting each arc-component of X. Let $U=X\setminus (A\cup \overline{T}\cup C_1\cup ...\cup C_n)$. Since X is nondegenerate, there is no point of $\operatorname{Fr}_M X$ isolated in $\operatorname{Fr}_M X$ (see [2, 2.1]). Hence by our supposition we have $U\cap \operatorname{Fr}_M X\neq\emptyset$. Using finitely many times Lemma 2.3 we can find a continuum $E\subset X$ such that $A\cup C_1\cup ...\cup C_n\subset E$ and $(\operatorname{Fr}_M X)\setminus E\neq\emptyset$. Note that E meets each arc-component of X. Since X can not be mapped onto any indecomposable continuum, by [2, Th. 3.1] there is a point $p\in (\operatorname{Fr}_M X)\setminus E$ at which X is colocally connected. This implies that $p\in (\operatorname{Fr}_M X)\setminus (C_1\cup ...\cup C_n)$, which is a contradiction. This completes the proof.

3.2. Remark. One easily sees that in the statement of 3.1 one could replace T by the union of free arcs of X which separate X.

Considering X as a nowhere dense subset of the Hilbert cube (which is strongly locally connected) we obtain from 3.1 the following.

3.3. COROLLARY. Let X be a continuum with a finite number of arc-components. Denote by T the union of all free arcs of X separating X. Let $C_1, ..., C_n$ be a finite collection of subcontinua of X containing all points of X at which X is colocally connected. Then

$$X = \overline{T} \cup C_1 \cup ... \cup C_n.$$

3.4. Remark. The above corollary fails for continua with a countable number of arc-components. Such an example can be obtained taking the union of the Cantor brush and an infinite sequence of (sin 1/x)-curves as indicated below (comp. [1, Ex. 4.7]).

3.5. Theorem. Let X be a continuum with a countable number of arc-components lying in a strongly locally connected space M. Let $C_1, C_2, ..., C_n$ be a finite collection of subcontinua of X such that $C_1 \cup ... \cup C_n$ contains the union of all free arcs of X and all points of X at which X is colocally connected. Then

$$\operatorname{Fr}_{M}X\subset C_{1}\cup...\cup C_{n}$$
.

Proof. Suppose the theorem fails. Using 2.3 finitely many times one can find a continuum E such that $C_1 \cup ... \cup C_n \subset E$ and $(\operatorname{Fr}_M X) \setminus E \neq \emptyset$. Let A be a countable subset of X meeting each arc-component of X.

Let a be an arbitrary point of A and let C be a subcontinuum of X containing E such that $(\operatorname{Fr}_M X) \setminus C \neq \emptyset$. Since X is nondegenerate, there is no point of $\operatorname{Fr}_M X$ isolated in $\operatorname{Fr}_M X$ (see [2, 2.1]); hence $(\operatorname{Fr}_M X) \setminus (C \cup \{a\}) \neq \emptyset$. By 2.3 there is a continuum $D \subset X$ containing $C \cup \{a\}$ such that $(\operatorname{Fr}_M X) \setminus D \neq \emptyset$. Since X can not be mapped onto any indecomposable continuum, by [2, 2.3] there is a point $p \in [\operatorname{Fr}_M X) \setminus D$ such that X is aposyndetic at D with respect to p. Hence X is aposyndetic at $C \cup \{a\}$ with respect to p.

Thus the assumptions of Lemma 2.5 in [2] are fulfilled. It follows from that lemma that there is a proper connected open subset G of X satisfying the following conditions:

- (1) $A \cup E \subset G$,
- (2) $\operatorname{Fr}_{\mathbf{x}} G \subset \operatorname{Fr}_{\mathbf{M}} X \subset \overline{G}$,
- (3) Fr_xG is a continuum at which \overline{G} is colocally connected,
- (4) each subcontinuum of X meeting both G and Fr_XG contains Fr_XG .

Let x be a point of $\operatorname{Fr}_X G$ and let $a \in A$ be a point belonging to the arc-component of X containing x. Let ax be an arc in X joining a and x. By (1) we have $a \in G$. Let y be the first point on ax belonging to $\operatorname{Fr}_X G$. Denote by ay the subarc of ax between a and y. Since $ay \subset X$, by (4) it follows that $\operatorname{Fr}_X G \subset ay \cap \operatorname{Fr}_X G = \{y\}$. Hence $\operatorname{Fr}_X G = \{y\}$. By (2) and (3) we infer that $(X, \operatorname{Fr}_M X)$ is colocally connected at y. By [2, 2.2] it follows that X is colocally connected at y. But by (1) and (2) we have $y \in (\operatorname{Fr}_M X) \setminus E \subset (\operatorname{Fr}_M X) \setminus (C_1 \cup \ldots \cup C_n)$, which is a contradiction completing the proof.

Considering X as a nowhere dense subset of the Hilbert cube we obtain by 3.5 the following.

3.6. COROLLARY. Let X be a continuum with a countable number of arc-components. Let $C_1, ..., C_n$ be a finite number of subcontinua of X such that $C_1 \cup ... \cup C_n$ contains both the union of all free arcs of X and all the points of X at which X is colocally connected. Then

$$X = C_1 \cup ... \cup C_n.$$

Since every point on a free arc of X is a point of semi-local connectedness of X we obtain from 3.5 and 3.6 two following corollaries.

3.7. COROLLARY. Let X be a continuum with a countable number of arc-components lying in a strongly locally connected space M. Let $C_1, ..., C_n$ be a finite number of subcontinua of X such that all points of semi-local connectedness of X lying in $\operatorname{Fr}_M X$ belong to $C_1 \cup ... \cup C_n$. Then

$$\operatorname{Fr}_{M} X \subset C_{1} \cup ... \cup C_{n}$$
.

3.8. COROLLARY. Let X be a continuum with a countable number of arc-components and let $C_1, ..., C_n$ be a finite collection of subcontinua of X such that all points of semilocal connectedness of X belong to $C_1 \cup ... \cup C_n$. Then

$$X = C_1 \cup ... \cup C_n.$$

3.9. Remark. Clearly, the above corollary fails for all continua. There exists even an example of a snake-like hereditarily decomposable continuum having no points of semi-local connectedness (see [3, p. 191, Ex. 4]).

References

- [1] J. Krasinkiewicz and P. Minc, Dendroids and their endpoints, Fund. Math. 99 (1978) pp. 227-244.
- [2] Continua and their open subsets with connected complements, Fund. Math. (this volume), pp. 129-136.
- [3] K. Kuratowski, Topology, vol. II, New York-London-Warszawa 1968.
- [4] G. T. Whyburn, Analytic Topology, Providence 1942.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES and WARSAW UNIVERSITY

Accepté par la Rédaction le 16. 8. 1976