Continua and their open subsets with connected complements
by

J. Krasinkiewicz and P. Minc (Warszawa)

Abstract. In this paper it is proved that some continua contain nowhere dense subcontinua
(or points) having arbitrarily small neighborhoods with connected complements.

1. Introduction. All spaces considered in this paper are metric. By a neighborhood
is always meant an open set. The term continuum stands for a nonvoid compact
connected space.

It is evident that not all continua contain nonvoid open and non-dense subsets
whose complements are connected. For example indecomposable continua do not
have this property and, in fact, this is the characteristic property of indecomposable
continua. Observe also that there are decomposable continua such that no proper
subcontinuum has arbitrarily small neighborhoods with connected complements.
Proper subcontinua of a continuum X having arbitrarily small neighborhoods with
connected complements will be called subcontinua of colocal connectedness of X.
For the concept of colocalizations of topological properties in general see the paper
of Borsuk [3] (comp. also [4, p. 227]). Precisely, let us agree to use the following
terminology. Let F # & be a subset of a space X and let C be another subset of X.

"Then the pair (X, F) is said to be colocally connected at C provided that for each
neighborhood U of C in X there is a neighborhood ¥'= U of C in X such that F\V"is
contained in a single component of X\V. In case F = X we will simply say that X’
is colocally connected at C instead of saying that (X, X) is colocally connected at C.
If C = {p}, then we say that (X, F') is colocally connected at p. In [6] it was proved
that every dendroid X contains some points at which it is colocally connected. In
this paper we generalize this result for all arcwise connected continua (see 3.7).
This fact is closely related to arcwise connectivity (see 3.11 and 3.12). However one
can prove an analogous result for a larger class of continua. Namely, we §ha11 show
that every continuum which cannot be mapped onto an indecomposable continuum
contains nowhere dense subcontinua at which it is colocally connected (see 3.6).
‘We will consider the following situation. Continua under consideration will be treated
as subsets of “nice” spaces. In such a case we shall show that the continuum always
contains subcontinua of colocal connectednes in its boundary. By a-“nice” space
we shall mean a topologically complete space M such that each point pe M has
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arbitrarily small neighborhoods U such that U\{p} is connected. Such spaces will
be called strongly locally connected. Observe that manifolds of dimension >2 and
the Hilbert cube belong to this class. Note also that each connected open subset
of a strongly locally connected space is arcwise connected.

Tt is convenient for us to use the notion of aposyndesis. A continuum X is said
to be aposyndetic at a set C < X with respect to a point p e X provided there exists
a continuum De X such that CeIntDeDaX\{p} (see (5.

Corollary 3.5 provides an affirmative answer to Question 5.14 and a hegative
answer to Question 5.16 from [2].

We thank Professor D. Bellamy for his remarks concerning this paper.

2. Auxiliary lemmas. In this section we establish several lemmas needed in the
sequal.

2.1. LemuA. Let X be a nondegenerate continuum lying in a strongly locally
connected space M. Then no point of Fry X is isolated in FryX.

Proof, Let p e Fry X and let U be avneighborhood of p in M. We can assume
that UN{p} is connected. Since UN\{p} meets both X and MN\X and U\{p} is con-
nected we conclude that (UN{p}) nFr wX # @, which completes the proof.

2.2. LEMMA. Let X be a continuum Iying in d strongly locally connecred space M.
If (X, Fry X) is colocally connected dat ¢ point p € X, then X is colocally connected
at p. '

Proof. Let U be an arbitrdry neighborhood of p in X. Tt suffices to show that
‘there is a neighborhood ¥ of p in X contained in U such that X\U is a subset of
a single component of X\V.

Let G be a neighborhood of p in M such that G n X< U and G\{p} is arcwise
connected. Let H be a neighborhood of p in X such that HeG, (FryX\H # &
and (Fry X)\H is contained in a component Co of X\H. Now we shall show that
only a finite number of components of X~H meets X\U. If not, then there is a se-
quence of points g1, g2, - from X\U converging to a point ¢ such that the el-
ements of this sequence all belong to different components of X\H. Since g & X\U
and Hec U there is an arcwise connected neighborhood W of g in M contained in
M~H. There are two different components Dy 3 g; and D, 3¢q; of X\H such that
g;, g;€ W. Assume Dy # C,. Let ¢;q; be an arc in W joining ¢; and g;. Cleatly,
¢:9;€ X. Let r be the first point on g,4; belonging to Fry X, Clearly, r & D, which
is a contradiction. '

Let Cy, Ci, Cy, s Cp be the component of X\H covering X\U. Since
C,nFryH # @ for 0<k<n and FryHcG, then for k>1 there is an arc
a,b,=G~{p} such that a;, e C; and bye Co. If @by X let ¢ = by I apb ¢ &
let ¢, be the first point on a;by belonging to Fry X. Let a,c, be the subarc of a,b,
between a;, and ¢,.

" \
Let Ve HN U @b, be a neighborhood of p in X such that (Fry, XNV is con-
k=1 ) :
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tained in a single component of X\ V. Obsery i i
N2 ¢ that X\U is conta i
component of X\V because ) fed in The same

n n
NUc kUOCchO VUG vagc)e XNV
= k=1 .

and each component of C, ukl;J](Ck U a,e,) meets Fry X. This completes the
proof. . |

The proof of the following lemma is similar to the proof of the Theorem in [1].

2.3. LEMMA. Ler X‘be a continuum Iying in a locally connected complete space M
and let C .be a subcontinuum of X such that (Fry X)\C # O. Assume that there is
no surjection from X onto an indecomposable continuum sending C to a single point.
Then there is a point p € (Fry X)\C such that X is aposyndetic at C with respect 1o p.

Proof. Suppose the lemma fails.

‘We are going to construct a sequence of functions f,: X—[0, 1] satisfying the
following conditions: ) ’

(1) C<lntyfy 1(0),
@) Fry X nIntg (1) # O,
3 fy=@ofirrs

where ¢: [0, 1]-[0, 1] is defined by

2t for 0<t<4,
o) = | :
2-2t for <1<l

“Let U C and ¥ be open subsets of X such that Un V=& and ¥ n Fry X # @.
Let f; be the Uryshon function sending U to 0 and Vto 1, and assume the functions
fi»> e[, have been constructed. It remains to construct f,, .

Let C* be the component of”i\Tntx S }(1) containing C. By our supposition
and (2) there is a point ¢ &€ C n XN\C*. Let G be a connected neighborhood of ¢
in M such that G n X<Tntyfy 1(0) (see (1)). Let d be a point from G n X\C*.
There is an arc dec G joining d and ¢. Clearly, ded-X. Let e be the first point on de
belonging to Fry, X. Since o ¢ C*, then e ¢ C*. There are two closed disjoint sets 4
and B such that XN\Intyfy (1) = 4w B, C*<4 and e e B. Now define

oy o [P0 for e g,
. [1—4f(x) for xeB.
The !"unC‘tiOgl Foas is well-defined continuous and satisfies (3). Observe that

CeTnte /; (ONB = Inty £35(0)
and
e e Inty S (ONA = Tnty fi2 (1),

which proves (1) and (2) because e € Fry X,
4 '
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This completes the construction. ’

Let K denote the limit of an inverse sequence {,, ¢,}, where I, = [0, 1] and
@, = ¢ for each nx1. It is well-known that K is homeomorphic to the Knaster
indecomposable continuum (see [8], p. 204, Ex. 1, comp. also [1]). But conditions (1),
(2) and (3) imply that the functions f, induce a map from X onto K sending C to the
point (0,0, ..) €K, contrary to our assumption, This completes the proof.

2.4, LEMMA. Let Cy, C,, ... be a strictly increasing sequence of continua in a con-
tinuum X, i.e. C,,<:IntC,,+1 for each n=1. Then X is colocally connected at each

component of XN\ U C,.

., Proof. Let K be a component of X\ U C, and let U be a neighborhood of X
in X. We have to construct a nelghbor.hood V of K contained in U such that X\V
o0
is connected. Let G be a neighborhood of K contained in U such that FrtG< () C,.

=1
Since FrG is compact there exists an mdex m such that FrG<=C,,. Let V = G\C,,.
Then X\V = C, U (X\G) is connected because every component of X\G meets
FrG«C,,. This proves the lemma.

The following lemma is not needed here in the general form in which it is stated;
however it will be used in this general form in a subsequent paper [7]. (For our
purposes herein, the set 4 could be omitted from the statement.)

2.5. LEMMA. Let X be a continuum lying in a strongly locally connected space M.
Let E be a subcontinuum of X such that (Fry X)\E # O, and let A be a nonvoid
countable subset of X. Assume that for every point a € A and for every continuum C< X
such that Ec C and (Fry X)\C # @ there is a point x € Fry X such that X is aposyn-
detic ar C L {a} with respect to x. Then there is a proper subset G of X such that

(i) G is connected and open in X,

(ii) 4 U EcG,

. (i) FryG is a continuum at which G is colocally connected,

(iv) FryGcFryX<G, .

(v) each subcontinuum of X meeting both G and FryG contains FryG.

2.6. Remark. The set FryG is nowhere dense in Fr, X.

In fact, suppose there is a point ¢ € FryG and a connected neighborhood U
of g in M such that U n Fryy X<FryG. Let p be a point from G n U. Let pg be
an arc in U joining p and g. Let r be the first point of pg belonging to FryG. Let pr be
the subarc of pg. Observe that pr n Frp X = {r}. Thus prc X. By (v) we infer that
FryG = {r}. Hence 2.6 follows from 2.1.

Proof of 2.5. Arrange A into a sequence a,, 4, ... Let H;, H,, ... be a se-
quence of open subsets of X such that diamH,,mO and the sets H, n Fry X are

nonvoid and form a base for open sets in Fr) X. Now we construct a sequence
Wo, W1, ... of open subsets of X and a sequence of continua E,, E,, ... such that
for each n>1 the following conditions are fulfilled:
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(D), Wy nFryX #£ G, :
@), Wy-1 0 E=@ and E,_, is the component of X—W,_, containing E,
3, dlamW <1/n, :
(4)11 -1 Y {a }CIl’lth",
(5 -En N H, # O,
(6), if there is apomt x € H, n Fry; X such that Xis aposyndetic at E,_; U {a,}
with respect to x, then W,cH,.
Let Wy = X\E and assume the sets Wy, ..., W,_, have been constructed. It
remains to construct the set W,. This will be done using just (1), and (2),.
First assume that there is a point x e H, n Fry X such that X is aposyndetic
at E,., U {a,} with respect to x. Hence there is a continuum B< X such that
E,-1 U {a,} =Inty B B X\{x}. In this case let W, be a neighborhood of x satisfy-
ing (3), such that W, H,\B. Clearly, all the appropriate conditions are fulfilled:
For the other case take a point x e Fry, X such that X is aposyndetic at
E,., v {a,} with respect to x. Let B&X be a continuum such that

E_ v {a,,}::IntXBchX\{x} .

Let W, be a neighborhood of x in X disjoint from B and satisfying (3),. It remains
to-prove (5),. We shall prove more: H, N Fry,XcE,. In fact, otherwise X is
aposyndetic at E,.; v {#,} (cIntyE,) . with respect to every point from
H, n Fry X\E,, and the. first case of the construction. applies, contrary to our

assumption.
This completes the construction.
Set
® .
G= U En
n=0

Clearly, by (4), the set G is connected and open, and by (2), and (4), condition (i)
holds. Now we prove that FryG is a continuum. Suppose, to the contrary, that there
is a separation FryG = P U Q into two closed disjoint nonvoid sets. Let U be
a neighborhood of £ in G and let ¥ be a neighborhood of @ in G such that
d(U, V)>0, where d(U, V) = inffo(u,v): ue UveV}. Since FrgUu FrgV is
a compact subset of G there is an index n such that E, contains this set. Let pe P
and g e Q be arbitrary points. Let D, be the component of U containing p and
let D, be the component of V containing g. Clearly, '

D, nFryU# @ # Dy FrgV

Hence D, N E, # & # D, N E,. Let m>n be an index such that 1/m<d(U, V).

Without ]oss of generahty one can assume that W, n U = @ (see (3),). It follows
that D, U E, is a continuum containing E and missing W,,. Heqce pekE, CG .
contrary to the choice of p. Thus FryG is a continuum.
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The continuum G is colocally connected at FryG by (4), and 2.4, which
proves (iii). '
Since diarriH,,mO and {H, n Fry X} is a base for Fry, X, by (5), we get

Fry X< G. To complete the proof of (iv) it remains to show that FryG<Fry X. We
shall prove this showing that if 7" is a component of Int,, X meeting G, then T<G.
In fact, there is an index n such that 7'~ E, # @. Let x be an arbitrary point of 7.

Since T'is arcwise connected there is an arc L< T joining x and E,. Let m>n be such
that diam W, <d(L, Fr X (see (3),). By (1), the set W, misses-L. It follows that

xelcL v E,cE,<C.

Since x is an arbitrary point of T we have T<G, and consequently FryGe<Fry X,

Finally we shall prove (v). Suppose there exist a continuum K< X meeting
. both G and FryG, and a point ¢ e (FryG)xK. Let n be an index such that
E, n K # @. There is an index m>n such that ¢ e H,,= X\(E, v K). Since ¢ ¢ E,,,
by (4),, we infer that X is aposyndetic at E,_, U {4,} with respect to ¢. Since
ce H, n FryGeH, n Fry X, by (6),, we have W, <H,. But this implies that
E, u K< E,, because E, is a component of X\W,, containing E and E is a subset
of the continuum E, U K< X\W,,. Hence K< E, =G contrary to the assumption
that K n FryG # @.

3. Main results. In this section we shall prove some results about the boundaries
of continua lying in strongly locally connected spaces. Since each continuum can be
treated as a nowhere dense subset of the Hilbert cube (which is strongly locally
connected) each of the results gives some properties of the continuum itself. These
are the “absolute” versions of the results. The “absolute” versions are given following
the proofs of the “relative” versions.

3.1. THEOREM. Let X be a nonidegenerate continuum lying in a strongly locally
connected space M and let E be either the empty set or a subcontinuum of X such
that (Fry X)NE # @. Assume. that there is no surjective map from X onto an in-

decomposable continuum sending E to a single point. Then there exists a conlinuum
K< X such that

D KnE=g,

(i) K is a nowhere dense subsct of Fry X,

(il) each continuum in X meeling both (FryX)NK and K contains K,

(iv) (X, Fry X) is colocally comnected at K, )

) Moreover, if E meets the closure of each arc-component of X, then K is a one-
point set. Consequently, X is colocally connected at K.

3.2. Remark. Any two diferent subcontinua of X satisfying the conditions (ii),
(iif) and (iv) are disjoint, .

For let K; and K, be such continua. Suppose ‘that K, n Kg # 0 and
KiN\K, # @. Let U be a neighborhood of K, in X such that K \U # @ and
(Fry X)\U is contained in ‘a component C of X\U. By (ii) C meets (Frp X)\NK;
which contradicts (iii). . . a o :
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Proof of 3.1. Without loss of generality by 2.1 we can assume that E % @.
Let 4 be a one-point set contained in E. By 2.3 the assumptions of 2.5 are fulfilled.
Hence there is an open set G< X satisfying the conclusion of 2.5. Setting K = FryG
we infer that all the conclusions of the theorem above are satisfied (see 2.6).

If E meets the closure of each arc-component of X, then G meets each arc-
component of X. Let ab be an arc in X such that be K and ab\{b}=G. By con-
dition (v) of 2.5 we infer that K = {b}. Finally, X is colocally connected at K by con-
dition (iv) of the above theorem and 2.2. ’

This completes the proof. ‘

3.3. Remark. Let M be the plane and let XM be the continuum pictured
below. Observe that in this situation there is no continuum K< Fry X such that X is
colocally connected at K. This shows that condition (iv) of 3.1 cannot be strengthened.

We say that a subset F of a continuum X is spanned by a class K of subcontinua
of F provided that every subcontinuum of X meeting each member of K contains F.

3.4, COROLLARY. Let X be a continuum lying in a strongly locally connected
space M. Assume that there is no surjection from X onto an indecomposable con-
tinuum. Then Fry X is spanned by the class of subcontinua of Fry X satisfying con-
ditions (i), (iii) and (v) of 3.1.

3.5. COROLLARY. Let E be cither the emply set or a proper subcontinuum of
a continuum X. Assume that there is no surjection from X onto an indecomposable
continuum sending E 1o a single point. Then there is a contimuum K< X such that

i) KNE=@, ‘

(i) IntK = &,

(iii) each subcontinuum of X meeting both K and X\K contains K,

(iv) X is colocally connected at K. »

Moreover, if E meets the closure of each arc component of X, then K is a one-
point sei. ]

3.6. COROLLARY. Let X be a continuum which can not be mapped onto an inde-
composable continuum. Then X is spamned by the class of subcontinua of X satisfying
conditions (ii), (ili) and (iv) of 3.5. .

3.7, THEOREM. Let X be an arcwise connected continuum lying in a strongly locally
comnected space M. Let C be the subset of Fry X consisting of all points at which X is
colocally connected. Then C spans Fry X.

Proof, Let £ be a subcontinuum of X containing C. Suppose (Fry X)\E # ©.
Since there is no surjection from X onto an indecomposable continuum, by 3.1 thz.:re
is a point p & (Fry X)\E at which X is colocally connected, contrary to the choice
of E.
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3.8, COROLLARY. If X is an arcwise connected continuum, then the -set of all

points at which X is colocally connected spans X,

3.9, Rcmark.”The above corollary fails for continua with two ar‘c-components,,‘

The well-known (sin 1/x)-curve is such an example.

3.10. COROLLARY. Let X be a continuum with two arc-components lying in
a strongly Ioéally connected space M. Then' there is a point p € Fry X at which X is
colocally connected.

Proof. Let 4 and B be the arc-components of X. There is a point x € 4 n B.
Let E = {x}. Clearly, Fr) X # @ (otherwise X would be a locally connected con-
tinuum). By 2.1 we have (Fr, X)\E # @. Since there is no surjection from X onto

an indecomposable continuum, by 3.1 we get a point in Fr, X with the desircdl

properties.

3.11. COROLLARY. Every continuum with two arc-components contains a point
at which it is colocally connected. .

3.12. Remark. The above corallary fails for cofitinua with three arc-compo-
nents. The continuum pictured below is such an example.

* In [7] some results similar to the above ones are ‘és‘tablished for contin}la with
countable number of arc-components. : '
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A hereditarily normal strongly zero-dimensional space
eontaining subspaces of arbitrarily large dimension

4 ‘ ' by

Elzbieta Pol and Roman Pol (Warszawa)

Abstract. We construct a hereditarily normal space X with dim X = 0 containing for every
n=1,2,.. a perfectly normal subspace X, such that dimX;, = Ind X, =z and locdim.X;, = 0.

There was an old problem raised by E. Cech [3] whether the covering dimension
dim is monotone in the class of hereditarily normal spaces; the analogous problem
for the large inductive dimension Ind was raised by C. H. Dowker [4] (see also
[1; Ch. VII] and [14; Problem 11-14]).

Under the assumption of an existence of Souslin’s continuum V. V. Filippov [10]
solved these problems in the negative exhibiting a_hereditarily normal space X
with dim X" = 0 containing forn = 1, 2, ... a subspace X, with dim X, = ndX, =n,
and later on the authors [18] constructed (using only the usual set theory) a heredi-
tarily normal space X with dimX = 0 containing a subspace ¥ with dim ¥
=IndY=1("). :

In this paper we improve our previous result [18] by a construction of a heredi~
tarily normal space X with dimX = 0 containing for n = 1,2, ... a subspace X,
with dim X, = Ind X, = n. This construction is in fact very similar to our former
construction [18; Sec. 3]. However, to obtain the stronger result we needed another
approach to the dimensional properties of this construction (exhibited in [17]) and
some special results on the structure of complete metrizable spaces (proved in [20])
to apply this idea. '

1. Terminology, notation and auxiliary results.

L1. Our terminology. follows [5). We shall denote by N the set of natural num-
bers, by [ the real unit interval [0, 1] and by I” the unit n-dimensional cube;
1" stands for the boundary of the cube I, i.e., the points in J” at least one of whose

(.1t is worth while to notice that compact hereditarily normal spaces missing the monotoni-
city of the dimensions dim and Ind were constructed, under some set-theoretical hypothesis stronger
than the continuum hypothesis, by V. V. Fedorduk [6], [7] and A. Ostaszewski [15], and, more
recently, under the continuum hypothesis, by V. V. Fedorduk [8] and E. Pol [16); these examples,
especially those in [6] and [15] have many further very interesting properties.
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