Table des matiéres du tome CII, fascicule 3

Puges

Vv N. Bhave, On the pseudoachromatic number of a graph . ... . .. ... .. 159-164
D.J. Lutzer and T. C. Przymusinski, Continuous extenders in normal and collec-

tionwise normal Spaces » . « + ¢ 0 s o .0 s oo . e .. 165-1T1
K. Kunen and F.D. Talj, Between Martin’s Axiom and Souslms Hypothesm ... 173-181
S. B. Nadler, Jr., The metric confluent images of half-lines and lines . . . . . . . 183~194
D. R. Busch, Capacxtabxhty and determinacy . « « « v 4 v e e v 0 e m e e s 195-202
M Ehrlich, A theorem of Borsuk-Ulam type for multlfunctlons P 203-208
D. Doitchinov, Uniform shape and uniform Cech homology and cohomology groups

for metric SPAces . .+ v 4 v . v e 0w e os ' ek e e e e e e 209-218
§. Roitman, Paracompact box products in forcing extensxons ......... 219-228
E K. van Douwen and T. C. Przymusifiski, First countable and countable spaces

all compactifications of which contain BN —==~. . . . . . ... 229-234

ies FUNDAMENTA MATHEMA11CAE publient, en langues des congrés
internationaux, des travaux consacrés a la Théorie des Ensembles, Topologie,
Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles,
Algébre Abstraite
Chaque volume parait en 3 fascicules

Adresse de labRédaction:
FUNDAMENTA MATHEMATICAE, S$niadeckich 8, 00-950 Warszawa (Pologne)

Adresse de PEchange: .
INSTITUT MATHEMATIQUE, ACADEMIE POLONAISE DES SCIENCES
$niadeckich, 8, 00-950 Warszawa (Pologne)

Tous les volumes sont & obtenir par l'intermédjaire de
ARS POLONA, Krakowskie Przedmiefcie 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and rﬂanuscripts should be addressed to:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
[NSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange.
$niadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at
ARS POLONA, Krakowskie Przedmieécie 7, 00-068 Warszawa (Poland)

© Copyright by Pafistwowe Wydawnictwo Naukowe, Warszawa 1979

ISBN 83-01-00126-7 ISSN 0016-2736

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

On the pseudoachromatic number of a graph
by

V. N. Bhave * (Kalamazoo, Mich.)

Abstract. The pseudoachromatic number ys(G) of a graph G is the maximum number of colors
which may be assigned to the points of G so that for every two colors, there exist adjacent points
assigned these colors (adjacent points may have the same color). We investigate (1) the effect on
the pseudoachromatic number by removing points or lines and (2) general bounds for the pseudo-
achromatic number. A graph G is pseudominimal if yp(G—x) < yG) for every line x in G. The
structure of pseudominimal graphs and a technique for constructing psendominimal graphs is
discussed.

By a graph we mean a finite undirected graph without multiple lines and loops.

For a graph G, let ¥(G) and X(G) denote respectively its point set and line set. In

general we follow the notations in [3].
A collection P = {V, VZ, «wes ¥} of nonempty subsets of a nonempty set V1s

a partition of V if () V = U Viand (i) Vin V; = @ for i #j.

Let P be a partition of V(G) of a graph G. The partition graph P(G) of G is the
graph with point set P where V; and ¥; are adjacent if and only if there exist v, e V;
and v; € V; such that v;v; is a line in G. A partition P of V(G) is complete if P(G) is
a complete graph. ;

A set S of points in G is independent if no two points of S are adjacent.

A homomorphism of a graph G onto a graph G’ is a function ¢ from V(G)
onto V(G') such that whenever uv is a line in G, ¢ ()¢ (v) is a line in G'; G is called
a homomorphic irmage of G.

If every set in a partition P of ¥(G) is independent, we say that P is an independent
partition of G. It is easy to see that a partition graph P(G) of G is a homomorphic
image if P is an independent partition. If P is-an independent partition and P(G)is
a homomorphic. image, we call P itself a homomorphism of G.

By a k- coloring of a graph G we mean a mapping f: V(G)-{1, 2, ...,
one or both of the following conditions:

C,: For every line wv in G, f() # f(v).

k} satisfying

* The author expresses his sincere thanks to Professor Stephen Hedetniemi'for his he!pful
suggestions. . '
Research partially supported by C. S LR, Indla
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C,: For every i,je{l,2,..,k}, i # j, there exists a line wv in G such that
S =iand f(v) =

The chromatic number x(G) of G is the smallest number # such that G has an
n-coloring satisfying C; and C,. The achromatic number (G) of G is the largest n
such G has an n-coloring satisfying C; and C,. The pseudodachromatic number (G)
of G is the largest n such that G has an n-coloring satisfying C,. The achromatic
number was introduced in [4] and further studied in [1]. The pseudoachromatic
number was introduced in [2].

Let pg denote the class of all partition graphs of G, and pg denote the class of
all partition graphs of G' which are homommplnc images of G. It is easy to see that

LemMA 1. For a graph G,

1) x(® = min{n: K,&pg}

2) ¥(G) = max{n: K,epg} and

3) Y(G) = max{n: K, e pg}.

THEOREM 1. For any graph G and a point ue V(G)

Proof. Let Y (G—u) = n. Then there exists a partition P’ = {Vy, V3, ... V’}
of V(G)—{u} such that P/(G—u) = K,. Now, since P = {Vju {u}, V3, ..., V},}
is a partition of ¥(G) such that P(G) = K, it follows that Y (G)=n = (G ~u).
To prove the other mequahty, suppose ¥ (G) = n. Then, there exists a partition P of
V(G) such that P(G) = K,. Let ueVy e P. Clearly the points of P—{V,} induce
K,_; in P(G) and hence

PG >n—1 = yG)—1.

In [1] Geller and Kronk have proved the following: If x is a line of a graph G
and ¥(G) the achromatic number of G, then

V() +12Y(G-x)2y (-1

The following theorem gives a corresponding result for (G).
THEOREM 2. For any graph G and a line x of G

V(D 2Y(G—x) 2y (G)-1.

Proof. Suppose ¥s(G) = n. Then there exists a partition P of ¥(G) with
- P(G) = K,,. If the line x joins a point of ¥; and a point of ¥, where ¥, V,eP,
i # j, then the partition P’ = (P—{V;, V;)) U {V;u V;} of V(G) will be such that
P(G—x) = K,_,. Therefore, Y(G~x)2n—1=y(G)~1. On the other hand,
if P is a partition of V(G) such that P(G~x) = K,,, where m = ¥ (G—x), then

for the same partition P, P(G) = K,, and hence y(G)=m = y(G—x).
‘We observe that for the cycle C, of length four, y,(C,) = 3 and Y(Cy) =2

and for any line x of C,, Y (C,—x)= 3 = w,bs(Cr—x) The following theorem shows
that this result is true in general,
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THEOREM 3. For any graph G with Y (G)>(G), there exists a line x such that

Y(G—x) = Y, (G).
Proof. Let y(G)>y/(G) and n = y(G). Then there is a partition P of V(G)
such that P(G) = K,. Clearly, the partition is not a homomorphism, for otherwise

/(G)>n. Hence there is a line joining points of the same set ¥; € P. This line x will

be such that P(G—x) = K. Thcrefore, Y (G—x)=n, but Yy(G—x)<n by Theorem 2.
Thus, Y(G—x) = n.

The converse of the above theorem is not true. For example the graph G in
Figure 1 has a line x such that Y (G—x) = Y«(G). But, ¥(G) = Y(G) = 4.

(@] O\
AN
G AN
. AN
o] b o] O \O o]
Fig. 1

THEOREM 4. For any graph G with p points

U(D<H(p+2(9).

Proof. Let x(G) = n. Then there exists a complete partition
P={V, V.., V} .

of V(G) where each V; is independent in G. Let r(G) = rand P’ = {W,, W, ..., W}
be a complete partition of V(G). It is clear that for i # j, W; U W; is not contained
inany ¥, foralli,je{1,2, ..., r} and 1 <k<n. Hence, at least r—» sets in P’ contain
points from different sets in P. Thus, o

r<i(p+n).

In particular if G is a spanning subgraph of K, with m<n then x(G) = 2,
p<2n and Y(G)<n+1. Therefore, 1 (G)<n+1, an upperbound obtained in'[1}

The graph G in Figure 2 has p = 6, x(G) = 2 and (G) = 4, and thus the
upper bound is attained. '

2(r—m<p—n ot

Fig. 2
1*
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As usual, let {r} denote the least integer not less than the real number r.
TueoREM 5. For a graph G with p points and maximum degree A4(G)>0.

n—1
p?n{ } where 1 =1,(G).
4(0)) .
-Proof. Let P = {V;, V,, ..., ¥,} be a partition of ¥(G) such that P(G) = K,
Then the degree of every V;eP in P(G) is n—1. Now,

n—1 = degpeyVi< ), deggus|Vi|4(G).
veVi
Hence, "<V, and as |V}l is an int
ence, ——<|V;| and as is an integer
A(G)\ i E g

n—1
<|V;| - for each V;eP.
{A(m} i

Hence

< V-

THEOREM 6. If G is a graph with g lines then ()<Y (G)<r, where r is the
maximum integer with (5)<q.

Proof. Let P(G) = K,, where n = (G). Then it is easy to see that G has
at least () lines, i.e. (3)<g. Hence the result follows.

If G = gK,, where g = () then ¥,(G) = r. This shows that the bound is
attained.

D:iFNITION. A graph H is partition realzzable from a graph G, 1f P(G)=H
for-some partition P of V(G).

Lemma 2. If G is a graph with q lines and no isolated points, then G is partition
realizable from qK,. a graph with q copies of K,.

Lemma 3. If H is a subgraph of G and gq, q, are the number of lznes in G and H
respectively, then G is partition realizable from H U rK,, where r = q—q;.

In Lemmas 2 and 3 in forming the partition graphs, we observe that no lines
of G are destroyed and hence the partitions are homomorphisms of G,

- THEOREM 7. If a and b (a>b>1) are any two integers, then there exists a graph G
with Y(G) = Y(G) = a and y(G) = b.

Proof. Let G = K, U rK, where r = (3)—(3). Then by Lemma 3 there exists
a partition P of V(G) with P(G) = K,. Hence (G)>a. Also as G has ta(a—1)
lines, Y (G)<a. Hence Y (G) = q. Since, P is a homomorphism of G we have
Y(G) = a. 2(G) = b follows, since K, is a component of G and every other com-
ponent of G is K,. This completes the proof.

DzRINITION. A graph G is n-pseudommzmal if Y(G—x)<y(G) =n for every
_line x in G.
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DreriNiTION. A graph G is n-achrominimal if (G—x)<y(G) = n for every
line x in G.

THEOREM 8. If G is n-achrominimal, then G has exactly (3) lines and conversely,
if Y(G) =n and G has (3) lines then G is n-achrominimal.

Proof. Let G be n-achrominimal. Let P(G) = K,,, where P = {V, V,, ..., V,}
is a homomorphism. Then each set V; is independent and there is only one line
joining ¥, and V; in G fori,je {1, 2, ..., n}, i 5 j. This implies that G has (3) lines.
Conversely if ¥(G) = n and G has (3}) lines, then for any line x in G we have,
Y (G—x)<n by Theorem 6. Hence G is achrominimal.

THEOREM 9. 4 graph G is n-achrominimal if and only if it is n-pseudominimal.

Proof. Let G be an n-pseudominimal graph. Then there exists a complete
partition P = {V,, V5, ..., ¥} of V(G). We claim that P is a homomorphism
of G. For, suppose V; € P is not independent and let x be a line of G with both end
points in ¥;. Then for some partition P of V(G), we get P(G—x) = K, . This implies
that (G —x) =n, which is a contradiction. Thus P is a homomorphism of G. Hence
V(G)=n, but by Lemma 1, ¥ (G)<n. Hence, (G) = n. Also for every line x of G,
Y (G—x)<Y(G—x)<Y(G) = ¥(G). This implies that G is n-achrominimal.

Conversely, suppose G is n-achrominimal. Then by Theorem 8, G has (3) lines.
Hence by Theorem 6, ¥(G)<n = ¥(G). But by Lemma 1, ¥(G)<{(G), hence
l// (G) = n. Again by Theorem 6, Y (G- x)<n for any line x. Hence, G is
n-pseudominimal.

DEFINITION. An n-minimal graph is one which is n-pseudominimal (and
hence 7-achrominimal).

Let H be a subgraph of G. Then we shall denote the subgraph of G obtained by
deleting all lines of H and the resulting isolated points in G by G— H. It is clear that.

LemMA 4. Let a graph H be partition realizable from G and H, be an induced
subgraph of H, then

(i) H, is partition realizable from an induced subgraph Gy of G and

(i) H—H, is partition realizable from G—Gy.

We observe that K,—K, ;= Ky .

COROLLARY 4.,1. If K, is partition realizable from G, then there exists an induced
subgraph G, of G such that

(D) K,... is partition realizable from G, and

(i) Ky, -y is partition realizable from G—G.

Lemma 4 suggests a method of constructing the set of all »-minimal graphs
from the set of all (#—1)-minimal graphs. We consider the graphs with no isolated
points. The method is as follows.

Let {G,} be the collection of all (n— 1)-minimal graphs and {H;} be the collection
of all graphs with m—1 lines, such that K, is partition realizable from Hj.

Since K,_; is partition realizable from G; and Kj,_, is partition realizable
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from H;, K, is partition realizable from each of the graphs formed below. Further,
each of the following graphs has (3) lines and hence each is #-minimal.

Consider a graph G;. Let P = {Vy, V3, .., V,—;} be a complete partition
of V(G)). It is easy to see that each H has at least n—1 points of degree one, say u,,
forr=1,2,...,n—1. A

Let G be a graph obtained from G; and H; by identifying some, all or none of
the points u, with the points of G; such that, no two points , are identified with the
points of the same set ¥; € P. We claim that any #-minimal graph is isomorphic
Fo a graph obtained above. For, let G be n-minimal and P(G) = K,. Then as K.,
is an induced subgraph of K,,, there exists an induced subgraph of G, of G such that
K,_, is partition realizable from Gj and K, is partition realizable from G~ Gj,
by Corollary 4.1, Therefore, G; has (";1) lines and hence it is (n—1)-minimal and

Gb— G} has n—1 lines. Therefore G is isomorphic to one of the graphs obtained
above.
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Continuous extenders in normal and
collectionwise normal spaces

by

David J. Lutzer (Pitfsburgh, Pa) and Teodor C. Przymusinski (Warszawa) * -

Abstract, For a Banach space B and a space Z denote by C*(Z, B) the space of continuous,
bounded mappings @: Z—B with the sup-norm topology and by P*(Z) (resp. P¥(Z)) the space of
continuous, bounded (resp. bounded and A-separable) pseudometrics g: ZxZ—R on Z with the
topology of the subspace of C*(Z xZ) = C*(ZxZ,R).

TuroreM 1. Let F be a closed subset of a A-collectionwise normal space X and B
a Banach space of weight <A. There exist continuous extenders:

_e: C*F,B)»C*X,B) and E: PHF)~P{(X) .

COROLLARY 1. Let F be a closed subset of a collectionwise normal space X and
Jet B be a Banach space. There exist continuous extenders:

e: CXF,B)~C*X,B) and E: P*E)-P*X) .

COROLLARY 2. Let F be a closed subset of anormal space X. There exist continuous
extenders: ‘

e: C¥(F)-C*(X)

The above extenders are homeomorphic (but, in general, neither linear nor isometric)
embeddings.

§ 1. Introduction. The symbol A will always denote infinite cardinal number
and R stands for the real line. A T;-space X is A-collectionwise normal if each discrete
collection of cardinality <A of subsets of X can be separated by disjoint open sets.
A space is normal if and only if it is w-collectionwise normal (cf. [E]; Theorem
2.1.14), : :

For a Banach space B and a topological space Z, C*Z, B) will denote the

Banach space of all continuous, bounded functions ¢: Z—B with the sup-norm

le] = sup (@]l If B = R, then we write C*(Z) instead of C*(Z, R). A pseudo-
zeZ )

and E: P¥(F)—Pl(X).

* This research was completed while the second author was visiting the University of Pittsburgh
as a Mellon Postdoctoral Fellow. '
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