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Sentences with three quantifiers
are decidable in set theory

by

Daniel Gogol (New York, N.Y.)

Abstract. We use a theorem of Ehrenfeucht, relating games to model theory, to prove that all
closed prenex formulas with three quantifiers are decidable in set theory, with the predicates “=
and “¢” and the axioms of choice and regularity.

In this paper, we use a theorem of Ehrenfeucht (cf. [1]) to prove that in Zermelo—
Fraenkel set theory, with the symbols “€” and “=", and with the axiom of choice
and the axiom of regularity (i.e. the axiom that all elements have ranks), all prenex
sentences with three quantifiers are decidable. Our argument can be formahzed in
Zermelo-Fraenkel set theory with the axiom of choice.

We first present Ehrenfeucht’s theorem. We speak of the following “N-game™
played by two players with structures 4 and B for a language L. For each of
the N moves, player 1 may pick an element-from whichever of 4 and B he chooses,
and player 2 must pick an element from the other structure. Note that neither player
necessarily makes all his picks from the same structure. At the end of the game,
ay, ay, ..., dy have been picked, in that order, from A4, and by, b,, ..., by from B.
Player 1 is the winner if and only if there is some quantifier-free formula
F(xy, X3, ..., xy) in L such that 4 F F(ay, a,, ..., ay) and B F ~F(by, by, ..., by).
Otherwise, player 2 is the winner.

TreorEM 1 (Ehrenfeucht). If there is a closed prenex formula in L with N quanti-
fiers which is satisfied by structure 4 and not structure B, then player 1 has a winning
strategy in an N-game. .

Proof. If the hypothesis is satisfied, there is some N-quantifier prenex formula
whose left-hand quantifier is 3 which is satisfied in one structure but not the other.
Call the formula E@x)(Q,%3) ... (Onxy)F(xy, X2s0.0., Xxy) where each @; is
either 3 or V. For his first move, player 1 can pick an element e in whichever struc-
ture satisfies the formula, such that (Q,%,)(Q3x3) ... (Qnxn)F(e, x5, X3, ..., Xy) i
satisfied in that structure. But player 2 must pick e’ in the other structure such that
~(Q2%)(Q3x3) . (Onxm) F(€, X3, X3, ..., Xy) is satisfied in it. If a constant ¢ is
added to L and is assigned to e and e’ to create structures 4’ and B‘, then
1 — Fundamenta Mathematicae CII
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(Q2%)(Qax3) ... (Oyxy)F(c, x5, x5, ..., Xy) is satisfied in one structure but not the
other. Thus player 1 still has a prenex formula whose left-hand quantifier is existential
which is satisfied in 1 structure and not the other, and has eliminated a quantifier.

By using the same technique as in his first move for each succeeding move, player 1
" can insure that at the end of N moves, a,, dy, ..., ay and by, b,, ..., by will have
been picked from 4 and B respectively and exactly one of A+ F(ay, dy, ..., ay)
and BF F(by, b,, ..., by) will be true, so player 1 has a winning strategy. Q.E.D.

Before turning to our application of Ehrenfeucht’s theorem, we prove a theorem
of our own on the same subject.

THEOREM 2. If A and B are structures for a finite language L which has no function
symbols (but possibly constants), and A and B satisfy the same formulas with N variables,
then player 2 has a winning strategy in an “N-game”.

Proof. First we define formulas V. If S is a finite set of variables, let A4(S)
be the set of all atomic formulas that can be constructed with the constants and
relation symbols in L and the variables in S. If X is a finite set of formulas, let V(X)
be the set of all conjunctions whose conjuncts include either F or ~ F, but not both,
for each Fe X. Then V{4(S)) is a set of quantifier-frec formulas. Let 3, V(4(S))
be the set of all formulas of the form (x,)F where Fe V(4(S)). Let

Vy= V(31 V(4 {x1})) »
Vo= V(@ VA VA {x:, %)),
Vs = V({3 VAV @V (A {x1, x5, D)) -

We hope this is enough to make the pattern for V) clear. In each set Vy, A sat-
isfies exactly one formula and B satisfies only the same one, since it satisfies the same
formulas with N variables.

LemmA. If A and B are arbitrary structures which satisfy the same formula in
each Vy for K<N, then player 2 has a winning strategy in an N-game.

Proof. We assume that in a 1-game player 1 picks his first element to be a;
from A, and there is no loss of generality in assuming so. Then A satisfies one for-
mula P(a,) in V(4{a,}) and it satisfies the corresponding formula (Ix,)P(x,) in
3,V(4{x;}), and so does B, so player 2 can choose b, in B so that B satisfies
the formula in V(4 {b,}) similar to the one that A satisfies in ¥ (4 {«,}). So player 2
has a winning strategy in a 1-game.

In order to use induction, we assume that for some K less than W, player 2 has
a winning strategy in a K-game. Then since 4 and B satisfy the same formula
in Vg.q, if a (K+1)-game is played, suppose player 1 picks a from 4 on his first
move. Exactly one of the conjuncts in the formula in V., that 4 satisfies is of the
form @xg.4)P(xy,..., Xg+y) and has the property that P(xy, x;, ..., Xg, @) is
satisfied in 4. (To see this, note that in the expansion 4’ of 4, in which the constant « is
assigned to the element a, P(x;, X, ..., Xx, @) is the one true formula in ¥y).

Then player 2 can pick b in B such that P(x,, x,, ..., x) is satisfied in B. Now
if the constant ¢ is added to L to form L" and it refers to @ in 4 and b in B, then 4
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and- B become structures' 4’ and B’ for L' which satisfy the same formula
P(x1, Xz, o5 Xg, €) in Vg, So the last K moves of the (K+1)-game amount to
a K-game played with the two new structures 4’ and B’ for L', so the induction is
complete. This proves the lemma and thereby Theorem 2.

The following strengthening of Theorem 2 is false: If 4 and B are structures
for a finite language L with no function symbols or constants, which satisfy the

same N-quantifier formulas, then player 2 has a winning strategy in an

N-game. . ,

To see this, consider the language L containing only the relation symbol R,
Let A have {1, 2} as its universe and let the universe of B be {1, 2, 3}. Define R by
R(x,y)ex<y. Then it can be easily verified that 4 and B satisfy the same
2-quantifier formulas, but player 1 has a winning strategy in a 2-game, in which his
first move is to pick the element 2 in B. i

Before turning to our main theorem we stipulate that by “set theory” we mean
the usual axioms but not the axiom of choice and the continuum hypothesis. The
axioms of substitution and well-foundedness are included, however.

Our example of an application of Ehrenfeucht’s theorem to prove a decidability
result is:

TueoREM 3. Al 3-quantifier closed premex formulas in set theory, wiih
both € and =, are decidable in set theory with the axioms of choice and regularity.

We will prove Theorem 3 by showing that in a 3-game played with any 2 models
for set theory, player 2 has a winning strategy.

We first make some preliminary remarks. Since the axiom of choice is inde-
pendent from set theory and can be expressed by an 8-quantifier formula (%), there
is an obvious limit on possible extensions of Theorem 3. We conjecture that all
7-quantifier closed formulas in set theory are decidable. But it would be hopeless
to try to use the game-theory technique even for the case of 5-quantifier formulas
as the following example shows.

ExaMmpLE 1. If 4 is a model for set theory which satisfies the axiom of choice
and B is a model which does not, then player 1 has a winning strategy in a 5-game
played with 4 and B. ‘

Proof of Example 1. Player 1’s first move is to choose a set b; from B whose
members are disjoint and for which there is no choice set in B. Then player 2 must
choose a set a; which is non-empty and whose elements are disjoint, or else he will
lose before his Sth move. Because if he chooses the empty set he will lose on the
next move and if 2 different clements @, and a; of a; are not disjoint, then
player 1 can choose these elements on his next two moves, while player 2 will have
to counter by choosing two different elements of b;. And then when player 1 chooses
an clement from a, N as, player 2 will lose on his next move.
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For his second move, player 1 chooses @, in 4, the image of the choice function
of a;. Player 2 must choose a set b, from B such that either (1) b, contains more
than 1 element from some element b of b; or (2) b, fails to contain any elements
from some element &' of b,. This is because there is 1;0 choice set for b,.

If (1) is true, player 1 can choose b on his 3rd move and then choose 2 different
elements from b, N b on his 4th and Sth moves, which will make him win. If @) is
true, player 1 can choose b’ on this 3rd move, tforcing player 2 to choose an
element a3 of a,. Then player 1 can win on his 4th move by choosing an
element of a; N a,. Q.E.D.

We conjecture that player 2 does have a winning strategy in a 4-game but will
not attempt to prove this as it seems too difficult. But to get an idea of the variety
©of 3-quantifier formulas in set theory, consider that with variables x ¥, z and re-
. lation symbols “€” and “=" we could construct 18 atomic formulas,’ 21’8 different
valuations for the 18 formulas and (2)*'* different truth tables. So there are (2)*'*
nonequivalent quantifier-free compound statements containing 3 variables.

We note that the axiom of extensionality has 3 quantifiers, the axiom of the
empty set has 2, and the axioms of infinity, regularity and the power set have 4,

Proof of Theorem 3. We note that if player 1 has a winning strategy in
a 3-game, then he has a winning strategy in which he does not pick elements on
the 2nd or 3rd move which have already been picked by either player. Because if
player 1 picks an element that was already picked, then player 2 can pick the other
€lement that was picked on the same move, so that player 1’s move is wasted. If, for
example, there is some formula F(x,, x,, x;) such that A F Flay, ay, a3) ’and
and Bt ~F(by, by, bs), then there is a formula F'(x,, X,) such that /’i FZ}W(sa a3)
and B ~F'(by, b;), and of course F'(x,, x,) is usable in a 3-game. e

) So we need only to show that if player 1 is required to pick new elements each
tmne, player 2 has a winning strategy. As a preliminary, we chart the 9 ways that
if ¢ and b are unequal elements of a model for set theory, a third unequal element c"
may be related to a and b (see Table 1).

Table 1
ceb? bec? cea? aec?
1 No No No No
2 No No No Yes
3 No No Yes No
4 No Yes No No
5 No Yes No Yes
6 No Yes Yes No
7 Yes No No No
8 Yes No No Yes
9 Yes No Yes No
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DEFINITION. Py (a, b) is the subset of {1,2,3,4,5,6,7,8, 9} which contains
the numbers of the lines in Table 1 which can be satisfied by « and b and some
element ¢ in the model M.

DEFINITION. P, (b) is the ordered triple (Py1(8), Par,2(b); Par,a(B)) such
that Py ,(b) is the set containing each set Py(a, b) such that @ e b, Py ,(b) contains
each set Py (a, b) such that b € a, and Py, 5(b) contains each element Pyla, b) such
that a¢b, bé¢a and a # b.

Now suppose that a 3-game is to be played with a model r for Zermelo—
Fraenkel set theory minus the axiom of choice, but with the axiom of regularity and
a model ¢ for Zermelo—Fraenkel set theory minus the axiom of choice and the axiom
of regularity. We will show that no matter what element ry is chosen in r by player 1,
player 2 can choose s, in s such that P(r,) = Pys,). This will prove Theorem 3,
since player 2 can then win a 3-game no matter what player 1 does on his 2nd and
3rd moves. Tt is tedious but involves no difficulty to verify that if r, is { } or {{ }}
or {a} where a # { }, then if player 2 chooses s; to be { } or {{ }} or {«'}, where
a # { }, respectively, then P(r,) = P(s;). So we need only consider the case in
which r; contains at least 2 elements. For such a case we present a method of con-
structing s, such that s, will have at least 2 elements, which insures that
P, 5(ry) = P;(s;). We leave this for the reader to verify. We note that P, ;(r;) con-

. tains only members of the form {1, 2,4, 5} U S, where S is some subset of {3,7,8,9},

so for each of the 16 possible members of P, (ry), the reader must verify that our
method of construction insures that it is a member of P, 4(r,) if and only if it is a mem-
ber of P, (s;). We also note that if r,e eery and ry # 1y, then P,(r,, ry) is of the
form {1,2, 4, 5,8} U S where § is some subset of {3, 7, 9}. Butif 5; has 2 or more
members and player 1 picks r, or 5, on his 2nd move so that ry ¢y and ry ¢r;
and ry # 1, and there is no e such that r, eeery, or sy ¢ 5, and 5, ¢ 5; and §;#5;
and there is no e such that s, € e € 5, then player 2 can pick s, or r, from the other
model such that P.(ry, ;) = P,(s;, ;). So we are only concerned with those el-
ements of P, 3(r,) of the form {1,2,4,5, 8} U S where § is some subset of {3,7,9},
and the reader can verify that each of 8 possible members of P, 5(r;) of this type is
in P,3(ry) if and only if it is in Pya(sy).

To aid the reader, we mention that each different element of P, (r() corresponds
to a different set of answers to the four questions about .some member @ of ry:

1. Does anry={ }?

2. Does a—ry = { }?

3. Is a a member of a member of r,?

4. Ts there some b in r, such that b % a, bé¢a, and a¢h?

By thoroughly mastering the method of construction of s; the reader can see
that any set of answers to questions 1, 2, 3 and 4 corresponds to some member a of 7
if and only if there is some member &' in §; with the corresponding properties
(i.e. 1-4 with « replaced by «' and r; by sy).
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Sin'ailarly, each element of P,,(r;) with which we are concerned corresponds
to a different set of answers to the three questions about some member @ of
a member of r; such that a is not a member of r;:

1. Does arvry = { }?
2. Does a—ry = { }?
3. Is there some b in r, such that b £ a, bé¢a and a¢b?

The remark made about 1-4 with respect to members ¢’ of s, is true for 1-3 as
well, with respect to members ¢’ of members of s, such that ¢’ is not a member of 5.
We will speak of an “s,-list” that player 2 begins making after player 1 chooscs :
. The idea behind the construction of the s,-list is to consider each possible com-
b%nation of answers that could be given to 1-4 by a member a of r; and each cmﬁ-
bmatim? of answers that could be given to 1’-3’ by a member « of a member of r, such
that @ is not'a member of #,, and for each combination of answers to a(Iid an
element a’ of s or an element with a member a’, respectively, to the s,-list and make
such notations as insure that s5; will have a member «’, or a member @' of a member
such that a' is not a member, such that @’ and s, give the corresponding combinatim;
of answers to 1-4 of 1’-3'. Also, this must be done in a such a way that s, does not
have any members which give combinations of answers to 1-4 that do not olccur inr
afld that s, does not have any non-members which are members of members whicjh,
give combinations of answers to 1’-3’ that do not occur in r;.

The s,-list may be infinite but is constructed in such a way that a finite formula
cou?d be constructed to correspond to the open sentence “x is a member of-the
§y-list” and such that there is an element s, in s which contains precisely those el-
ements in 5 which satisfy the formula, and such that P(s,) = P,(r,).

The method by which the s,-list is constructed is described ind‘rubiively by using

the fact that all elements in » have ranks, and 1
. , the fact th ) = is Prove
inductively. at (1) = P(s;) is proved

The first stage in constructing the s;-list is as follows. If the element of smallest

rgnk in r, has no members, then we put the element in s which has no members on
the s;-list. If the element or elements of smallest rank in r, do have members, then
:ﬁetset olf a.i I such elements can be divided into “types” according to the list of answers

at each element gives to questions 1-4 and the set of li i

. 1 ists of answers that it Oy
give to questions 1'-3'. ‘ o members
. .m]I)EFINITION. An elefncnt of r or s is said to have finite raik if therc are only

1111 ‘y.many elements in » or s, respectively, with smaller rank, and infinite rank
otherwise. Note that an element of r or s could be an integer with respect to the
model r or s, respectively, but be of infinite rank. . ‘

. ) . . - )

" fL;/Ml\f-A l.d Th'e ﬁf&jt stage of the s,-list, consisting of elements of s together with
ollowing designations for certain members and members of members of the list;
(a) sometimes contained in members of the s,-list,
b ] . . .
(b) mever contained in members of the s,-list,
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(c) sometimes not contained in members of the sy-list to be added in later stages,

(d) always contained in members of the s;-list to be added in later stages,

can be constructed such that if all members added to the s-list in later stages
have greater rank than those added in the first stage and all designations for elements
and members of elements added in the first stage are fulfilled, then each type of element
which appears o times with the smallest rank B of elements in r, appears the minimum
of o and 10 times in the first stage of the s;-list and has the finite rank B if B is finite
and has some infinite rank if B is infinize.

We omit the proof because it is just a straight-forward verification for all the
possible types that might appear with smallest rank in ry.

In order to complete an induction started by Lemma 1, we need the following:

LeMMA 2. If after N stages, the set Sy of elements on the sy-list logezher"Wh
designations of the type in Lemma 1 for certain members and members of members of
the list, has the properties that:

(a) there is an element in s such that precisely the elements which are in Sy are
members of it,

(b) for each of the 4 designations mentioned in Lemma 1, there is an element
in ¢ such that precisely the elements and members of elements which are on the sy-list
and have that designation are members of it,

(c) there is an element Dy which.is an ordinal in r such that if all the designations
of elements and members of elements thus far on the sy-list are fulfilled and only
elements of greater rank are later added to the s,-list, then if o is the number or
cardinality of the set of elements of any type which have rank less than @Dy in vy, then
at leust min{e, 10} elements of that type will be in Sy, '

(d) there is a set Ay of members and members of members of ry and a1 to 1 map~
ping from Ay onto the set of those elements and members of elements thus far on the
§y-list which have designations of the rype mentioned in (a) or (c) of Lemma 1 such
that each member m of Ay is contained by a member of r, with rank equal or greater
than Dy if its,image has designation (a), and there is « member of with rank equal
or greater than @y which does not contain'm if its image has designation (c),

(€) if the set of ranks of elements of ry which are elements of elements of ry is
co-final with @y, then there is a set of elements on the s,-list which are designated
“gometimes contained in members of the s,~list” such that the set of the ranks of the
elements in the set is co-final with the set of ranks of all elements thus far on the
§y-list, )

(£) if @y is finite, then the least ordinal with greater rank than the set of el-
ements thus far on the sy-list is the same number, and if Dy is infinite, it is infinite,

then, in the (N+1)-st stage, @ set of elements and designations can be added
to the s,-list such that there is an ordinal @y, in v such that Dy 1> Dy and proper-
ties (a)-(F) still hold with respect to N-+1 instead of N, and with respect to the enlarged
s (-list, and either (1) at least one element of some type that appeared fewer than 10 times
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with rank less than @y appears with rank equal or greater than Dy but less than Dy ..,
or (2)Dy . is the smallest ordinal in r which is greater than the rank of any element
of ry.

(Note. We need the specification in (c) that the s, -list has at least min {«, 10}
elements of each type, rather than at least min{e, 1}, to insure that it possesses
enough variety to create all the type of elements out of it that we may have to
match what appears in ry with some rank f such that 2y <f<Zy.,. And we need
the specification (e) to insure that there are subsets of the set of those elements
of the s;-list which appear in the first N stages which have greater rank than
any element in the first N stages and which can be added to the s-list in
accordance with prior designations.) ;

Proof. Let « be the smallest ordinal in r such that o> 2y and there is at least
one element of a type which appears fewer than 10 times in r, with rank less than @
and which appears with rank o, if there is such an ordinal. Then Dy, = a+1.
If there is no such ordinal, then let Py, be the first ordinal in r such that all
elements of r; have ranks less than PDy.,. In either case, we can add a set of
elements and designations to the s;-list which may be finite or denumerable but
which is definable by a formula with finitely many constants in s and therefore
is such that properties (a) and (b) still hold with respect to N+1 instead of N,
and with respect to the enlarged s;-list, as well as properties (c)-(f). This can be
verified by considering all the possible cases, but is quite clear if considered
carefully. So we omit what would be a very long verification. Q.E.D.
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Les ensembles de niveau et la monotonie d’une fonction

par

. Zbigniew Grande (Elblag)

Résumé. Soient X un espace topologique et R I'espace des nombres réels. Ftant donnée une:
fonction f: X— R, désignons par Y. I'ensemble{y ¢ R: f~*(y) est connexe}, par S 'ensemble f~(Ye)
et par S¢ la fermeture de 'ensemble Sc. Dans cette note je démontre:

TrEorREME 1. Supposons que X soit un espace topologique de Hausdorff connexe et lacalfmenr
connexe. Si une fonction f: X—R est connexe et relativement propre, la fonction partielle f[S. est
faiblefhent monotone; et

TrforiME 2. Il existe un espace métrigue, séparable, connexe et localement connexe et une
fonction fi X—R qui est continue, n'est monotone dans aucun ensemble ouvert et non vide de
Pespace X et telle que I'ensemble {x « X: x est un point limite de I"ensemble f~1(f (x)) le long de tout
arc simple dans X d’extrémité x} nest pas résiduel dans Pespace X.

Le Théordme 1 donne une réponse partielle au Probléme 3.11 de [2] et le Théoréme 2 donne:
la réponse au Probléeme 5.10 de [2]. ‘

Soient X un espace topologique et R Pespace des nombres réels. Etant donnée:
une fonction f: X—R, désignons par Y, I'ensemble {yeR: f7H(y) est connexe}-
et par S, l'ensemble f~*(¥,).

DirNrrioN. Une fonction fi X—R est dite

(a) comnexe lorsque f(4) est un ensemble connexe pour tout ensemble con-
nexe Ac X, )

(b) monotone lorsque f~(4) est connexe pour tout ensemble connexe AcR,

(c) fuiblement monotone lorsque f “1(y) ‘est un ensemble connexe pour tout
point Y€ R,

(d) relativement propre lorsque f ~1(4) est un ensemble relativement compact
pour tout ensemble compact A<R.

Remarque 1 ([2], Prop. 3.7). Soit f: X—R une fonction connexe définie sur
un espace topologique de Hausdorff qui est connexe et localement connexe. Pour
que la fonction f soit monotone, il faut et il suffit qu'elle soit faiblement monotone.

Dans le travail [2] Garg a posé les deux questions suivantes:

ProsrLiME 1 ([2], Probl. 3.11). Une fonction connexe j: R—R est monotone
au sens ordinaire par rapport & la fermeture S, de Iensemble S, ([1], Th. 2). Une:
fonction connexe f: X— R est-clle monotone ou faiblement monotone par rappor
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