Between Martin’s Axiom and Souslin’s Hypothesis
by

Kenneth Kunen * (Madison) and Franklin D. Tall ** (Toronto)

Abstract. The consequences of Martin’s Axiom plus the negation of the continuum hypothesis
are analyzed. In particular the “Souslin type” and the “combinatorial” are distinguished. This analysis
leads to a study of various kinds of countable chain condition partial orders.

The consequences of Martin’s Axiom plus the negation of the continuum
hypothesis in practice seem to fall into two categories: those that straightforwardly
imply Souslin’s Hypothesis, and those that do not. Among the former is

H.: In a topological space in which every collection of disjoint open sets is countable,
every uncountable collection of open sets has an uncountable subcollection such that
each finite subset of it has non-empty intersection.

Among the latter are various combinatorial propositions concerning sets of
natural numbers. A, typical one is ‘

P: Let {A4,}e<o, be subsets of w such that each finite intersection of the A.s is
infinite. Then there is an infinite ASw such that for every o, A— A, is finite.

A number of mathematicians have wondered whether these combinatorial con-

sequences of Martin’s Axiom are equivalent to it. We shall show that they are not,

by establishing that they do not imply Souslin’s Hypothesis.

The combinatorial consequences of Martin’s Axiom plus 2™°> &, (when stated
in the “,” form rather than the “ <2%°” form) readily imply 2% > %, while the Souslin
type consequences do not. Jensen’s proof [DJ] of the consistency of Souslin’s Hy-
pothesis with the continuum hypothesis raised the hope of proving a similar result
for H. The conjunction of H with the continuum hypothesis has a number of attractive
consequences, e. g. that compact countable chain condition spaces of cardinality <2
are separable [T,]. Unfortunately, it also implies 0 = 1 (Theorem 6 below). This
answers a question apparently first raised at the U.C.L.A. set theory conference
in 1967, and later discussed at the Prague [A] and Keszthely [T,] topology con-
ferences. In fact, H implies 2> ,. We shall give three proofs, all quite elementary.
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‘We shall also consider various other propositions intermediate between Martin’s
Axiom plus 2%>x, and Souslin’s Hypothesis.

Before proceeding further we need a large number of definitions.

TororLoGICAL D:FINITIONS. A collection of sets is linked (cemtered) if each
pair (finite subcollection) has non-empty intersection. A topological space satisfies
the countable chain condition or is CCC if every collection of disjoint open sets is
countable. A space is CCC-productive if its product with every CCC space is CCC.
A space has property (K) (for Knaster [K]) (has precaliber 8,) (has caliber %) if
each uncountable collection of open sets includes an uncountable subcollection which
is linked (is centered) (has non-empty intersection). A, completely regular Hausdorff
space is absolute G, if it is a G; in some compactification.

Norte. It is easy to show that separable implies caliber 8, implies precaliber 8,
implies property (X) implies CCC-productive implies CCC. Every complete metric
space and every locally compact Hausdorff space is absolute G; (see e.g. [E].

PARTIAL ORDER DEFINITIONS. Let & = (P, <) be a partial order. p,qeP

_ are compatible if there is an r € P such that r<p and r<q. p, 4 € P are incompatible
if they are not compatible. SSP is compatible (incompatible) if it is pairwise com-
patible (incompatible). 2 is CCC if every incompatible collection is countable.
2 is CCC-productive if its product with every CCC partial order is CCC. 2 has
property (K) (has precaliber ,) if each uncountable S<P has an uncountable subset
which is compatible (such that for each collection of finitely many elements of it,
there is something below all of them). D <P is dense if for each peP, thereisade D
such that d<p. Let & be a collection of dense subsets of P. GcP is 9-generic if

1) if p>qeG, then peG,

2) if p, g€ G, there is an r e G such that r<p and r<q.

3) G meets each D e 3.

GCP is weakly @-generic if it satisfies 1) and 3) and for each finite subset §
of G, there is a p € P< all members of S, A, [MS]is the assertion that for each CCC
partial order 2 and for each collection @ of x dense subsets of P, there is a 9D -generic G.
Martin’s Axiom is (Vx<2%)4,,.

As foreshadowed by our choice of terminology, there are obvious connections
between the two sets of concepts, e.g.

THEOREM 1. 2) Consider the four properties: CCC, CCC-productive, property (K),
precaliber 8. The assertion that every topological space with one of the properties has
another of them, is equivalent to the corresponding statement for partial orders.

'b) Martin’s Axiom holds if and only if in every compact Hausdorff CCC space,
the intersection of fewer than 2™ dense open sets is dense.
Some other equivalents:

THEOREM 2. The following are equivalent: -
a) H (i.e. every CCC space has precaliber s,).
b) Every compact Hausdorff- CCC space has caliber 8.
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©) For every CCC partial order and collection 9 of N, dense sets, there is an
uncountable =9 and a weakly &-generic G. '

d) In every compact. Hausdorff CCC space, the intersection of a descending
collection of 8, dense open sets is dense.

THEOREM 3. The following are equivalent:

a) Every CCC absolute Gy space has caliber »,.

b) For every compact Hausdorff CCC space X and collections of dense open
sets D = {D}yew € = {E}ui<u,, there is an uncountable F<& such that
NFnD+S.

c) For every CCC partial order 2 and collections @ = {D,},<, and & = {E,},<a,
of dense sets, there is an uncountable F <& and a weakly (2 U F)-generic G.

There is a third set of equivalents involving boolean algebras which we omit.
There is an essentially uniform proof for Theorems1 and 2, consisting of chasing
through regular open algebras and Stone spaces. It can be dug out of [MS] and [Ju]
where 1b) is done. Portions of Theorem 2 are done a different way in [T,]. We shall
give a proof of Theorem 3, using these two ideas, just to illustrate the technique.
Let any of the equivalents in the theorem be symbolized by A. A is of interest top.o-
logically [T,] and because as we shall later show, A implies P. Before proceeding with
the proofs, we illustrate with the following diagram the relationships among the
propositions we have been considering.

TurorREM 4. Martin's Axiom plus 250>,

Reading from the top down, the non-trivial one can be gleaned from .[MS].
The implication to A is in [T,] or our Theorem 3. A—H is obvious. As ment{on-ed,
we shall prove A~P. We shall construct a model for P plus not SH, thv;f establishing
P+H or A, since H—-SH (e.g. [Tu] or [T,]). We shall prove H-2"°>x;, hence
SH+H, since by [DJ], SH is consistent with 28 = ;. The other relatt\‘iogs }.aetween SH
and 2% = §, can be found in [Je,], [Te], and [ST]. P—-2% = 2% js in [R]. The
non-converse is well-known. The missing arrows all represent interesting problems.
A recent addition to the picture is due to C. Herink who has proved that SH plus
2% = y,++Martin’s Axiom.

2 — Fundamenta Mathematicae t, CII
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‘Now for the proof of Theorem 3.

We first prove the equivalence of the two topological versions. Suppose first
that every CCC absolute G, space has caliber ;. Let X be a compact Hausdorff
CCC space, D = {D,}y<ws € = {E,}s<a,, collections of dense open subsets of X.
() 2 is dense in X by the Baire category theorem, and is thqrefore absolute. G;.
It is CCC since in general, ¥ is CCC if and only if Y is. For each a, E, n (| @ is
open in () £, so by hypothesis there is an uncountable # <& such that
NFnN 2 #3. Conversely, let ¥ be CCC and absolute G,. Let {I‘Jw},lml be
open in Y. Since ¥ is CCC, an open U can be found such that every open subset
of U intersects uncountably many (not necessarily distinct) U,’s. U is also CCC and

absolute Gy, and for each f, ¥, = (J U, is dense open in U. There is 2 compact
pSa<ay

Hausdorff CCC space X and dense open subsets {D,},<, of X, suchthat U= () D,

n<aw

and U = X, There are dense open Wy in X such that W; n U = V. By 3b) there
is an uncountable FEw, such that. (} D, n.[} W, # @, But then () Vy # O

n<eo BeF BeF
Since the V’s are decreasing, it follows that () V, % @, and so, finally, some
o<Wy

uncountable collection of U,’s must have non-empty intersection. . .

To ptove b) and c) equivalent, recall [Jes, p. 50] that for each partial order £ there
is a unique complete boolean algebra RO(2) and a homomorphism e such that e“P is
dense in RO(#) (i.e. in the partial order of non-zero elements) and p, g€ P are
compatible if and only if e(p) and e(q) are. Also recall that the sets Wy ={%:%is
an ultrafilter on RO(#) and b e %} form a clopen base for the compact Hausdorff
space St(RO(2)), and that RO(2) is isomorphic to the clopen algebra of St(RO(#)).
. Using these facts, it is easy to prove and is well-known that 2-is CCC if and only
if RO(Z) is, if and only if St(RO(%)) is. Furthermore, D is dense in & if and only
if e“D is dense in RO(#), if and only if {W,: be e”D} is dense in the inclusion
order on the non-empty open subsets of St(RO(#)). To go from b) to ¢) then,
if {D,},<c and {E,},<,, are dense in &, there is an uncountable FSw, and an

xe Dw(U {Wy: bee“D ) n ﬂF(U {Wy: bee“E}).

Then {p: e(p) e x} is the desired subset of P. Conversely, if {D,},<w, {Ey}e<o, are

dense open subsets of the compact Hausdorff CCC space X, let 2 be the inclusion
order on the non-empty open subsets of X, Let h(D,) = {UeP: U=D,}. Similarly
define h(E,). Then for all n and all «, #(D,) and h(E,) are denge in 2. Hence there
is an uncountable FEw; and a GSP which is weakly {r(DY}new U {h(ED}aer)-
generic. Then o
G#N{U:VeGls N D,n N E,.
. n<o ael .
We do not know whether the “weakly” can be removed from Theorems 2 or 3.
On the other hand, no strength is lost if in the statement of Martin’s Axiom, “generic”
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is replaced by “weakly generic”, or even if mere compatibility is required in addition
to 1) and 3). This can be verified by a standard density argument. -

‘We next prove

THEOREM 5. A—P.

First we need some results of Rothberger [R].
Consider the quasi-order E on subsets of o defined by a<bif a—b is finite. Say
a<b if a<xb and not b=a. E has an Q-limit if there exist {#.}s<w: in E such that

4 <A< << =<Ky,

and for any de E, if a,<d for all a<w,, and d=<a,,, then a,,<d.

LemMa [R]. P holds if and only if E has no Q-limits.

Rothberger further notes (p. 38) that if there is an £-limit, there exist {Z,},<n,
such that o< f implies Z,»Z, and if Z,3=Z for all «, then Z<0. Thus, to establish P,
we need only consider the special case of a descending collection. So let {A}r<w, be
infinite subsets of w such that « < 4,4 ,,.' The standard Martin’s Axiom proof [B]
of P uses the partial order 2 = (P, <) defined by

P={(h,Hy: hew, HSwy; b, H finite} .
H,H)<<h, Hy  if W'2h, H'2H and for each xeH, '-h<A,,

and the dense sets
D, = {<h, H): k has cardinality >n},

E, = {<h, H): ae H}.

Let G be weakly generic for all the D,’s and uncountably many E.’s. Then
U {h: for some H, <h, H> € G} is infinite, and < uncountably many 4,’s, hence < all
of them. '

Consider the reduced measure algebra 4 of Lebesgue measurable subsets of
the unit interval modulo sets of measure zero. Every measure algebra has prop-
erty (K) [HT] (i.e. the natural partial order on non-zero elements of the algebra
has property (K)). Thus, if Martin’s Axiom plus 2% i, holds, 4 has precaliber Ny,
On the other hand we shall prove that the continuum hypothesis implies # does
not have precaliber 8, and thus

THEOREM 6. H implies 2™>n,,

We give three proofs. The first is due to P. Erdds and is included with his kind
permission. It establishes that if every set of reals of power less than continuum has
measure zero, then there is a collection of 2™ elements of  such that no subcollection
of power 2™ has the property that every finite subset has non-zero meet. The second
gets an analogous collection of &, elements by using the existence of a family {fatn<a
of functions from @; to w such that for each uncountable subset X of w,, all but
finitely many f, map X onto all of w. This is a weak variant of Proposition Py of [S],
which is equivalent to the continuum hypothesis, and asserts the existence of a coun-

o%


Artur


178 K. Kunen and F.D. Tall

table family of real-valued functions of a real variable, such that for each uncoun-
table set X of reals, all but finitely many members of the family map X onto all the
reals. The kind of family we are considering can exist in models where 24> &,
e.g."a model obtained by adjoining 8, Cohen reals to a model of the continuum
hypothesis. In such a model there are non-measurable sets of power less than con-
tinuum, The third proof is more topological, involving St(%).

First proof. Let [0, 1] = {r,},<z2%. Let R, = {rs: f=a}. By hypothesis,
u#(R,) = 1. Therefore there is an F, of measure I included in R,, and hence an
increasing sequence of closed sets included in R,, with measures approaching 1. In
fact, for any r, 0<r<1, there is a closed set of measure r included in R,. To see this,
take a closed set F=R, such that u(F)>r, and consider the continuous function
on the unit interval defined by f(x) = ([0, x] N F). We can therefore define closed
sets F,S R, such that 0 # pu(F,) # u(Fp) for all a, f<2™. It follows that, letting [F.]
be the equivalence class of F, modulo null sets, that if « # $, [F,] # [F5]. Suppose
there were an A<2™ of power 2% such that for every finite Cc 4, 0 # /\ [F,]

aeC

(where /\ is the meetin ). Then 0 # u( () F,)andso @ # () F,,i.e. 4 is centered.
aeC

xeC

By compactness, () F, # @. Therefore () R, # @. But a<f implies R,2Ry,
acd aed

N R,# . Butcleartly (| R, =@.

a<2¥No a<2Mo
Second proof. For each n € w and each i, 1 <i<2"*2, let J(n, i) = the interval
[(=1)27"7%,i-27"72]. Let F, = [0, 11— U {J(n,/(®)): n € ®}, where J(m, ()
is interpreted as empty if f,(«) >2""2. Let.X be an uncountable subset of w,. Then
NF,=0,forif ye ﬂx F,, then (Vo e X)(Vn e w)(y ¢ J(n. f,()). But for n suf-

aeX

ficiently large, £, maps X onto w, so the J(n, f,(@))’s cover [0, 1], a contradiction.
To complete the proof, as before we need closed sets representing-distinct elements
of the measure algebra. Since each F, has measure >%, this can be done.

€.
and A is cofinal in 2%, so

Third proof. Consider St(#). It is not difficult to prove it is the union of <2
nowhere dense sets [We]. First category sets are nowhere dense [H], so, assuming
the continuum hypothesis, the version of H in Theorem 2d) is contradicted.

We have actually shown that under CH, there is a space with property (K) that
fails to have precaliber 8. After completion of the first version of this paper we
learned that R. Laver and F. Galvin had independently used CH to construct
a CCC space with non-CCC square. The first author has recently used CH to con-
struct a CCC-productive space which does not have property (K) [Wa].

It remains open whether 2% <2 can replace CH in any of these applications.
It would be interesting if H were consistent with 2%0<2%:.

TaeoREM 7. H plus 2%°<2™ implies every compact Hausdorff CCC hereditarily
normal space is hereditarily separable.

Proof. By [5,], assuming 2" <2, such a space is hereditarily CCC. By [T,],
. H then suffices to make the space hereditarily separable.

-
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At present, all that is known is the Martin’s Axiom plus 2%°> &, ensures that
every compact Hausdorff perfectly normal space is hereditarily separable [Ju].

As mentioned earlier, a number of people, e.g. [He], [M], [Ts], [vD], [vR],
have raised the question of whether various combinatorial consequences of Martin’s
Axiom are sufficient to yield the full strength of the axiom. The answer is no for all
of those we have checked, by the following reasoning. All of the partial orders used
for establishing these consequences — such as P — have property (K). The reader
may check for his favorite, that the usual proof that the partial order is CCC,
actually shows it has property (K). Tt is tedious but routine to check that in every
step of the consistency proof (see [ST] or [Je,]) of Martin’s Axiom plus 24>y,
“CCC” can be replaced by “property (K)”. The only non-trivial point is to check
that a property (K) partial order in the fimal model had property (K) when it
first appeared. This can be proved by an application of Theorem 11 bellow,
since the final model is a property (K) extension of the intermediate model.
Thus, letting “MAK” stand for “Martin’s Axiom restricted to partial orders with
property (K)”, we get

THEOREM 8. If # is a countable transitive model of ZFC+2™ = &,, there
is a generic extension (via a property (K) partial order) M [G] which satisfies 2™ = &,
and MAK.

On the other hand, we shall prove

THEOREM 9. Let I = (T, <) be a Souslin tree in M, a countable transitive
model of ZFC. Let 2 be a partial order with property (K)in #. Let G be P-generic
over M. Then I is a Souslin tree in M [G]. :

Thus, starting with a model in which there is a Souslin tree and 2™ = N5
e.g. L, and then iterating over partial orders with property (K), we get

COROLLARY 10, 2%° = &, is consistent with not SH (and hence not H) and MAK.

Theorem 9 will follow as an easy corollary to the next result, which we shall
state in greater generality than necessary.

THEOREM 11. Let M be a countable transitive model of ZFC. Let & be a partial
order with property (K) in M. Let G be P-generic over M. Let fe MG, Ae #,
i w>A. Let o, B, x,y) be downward absolute for iramsitive ¢-models. Suppose
MG F Vo, Bew) oo, 8,7 @,/ (B)). Then in M there is an uncountable
Scoy and {x.}yes, X, €A, such that Ve, f e S)p(x, B, x,, xp)-

Proof. Note that since 2 is CCC, w, = of'®. Let pe G,
P (Vaed)@x)(xedA f@) = x)A(Ve, Bed)o(x, B, ©@,[B))-

Then for every « €y, there is a p,<p and an x,e 4 such that p, IF f (&) = X,.
By property (K) there is an uncountable S<w; such that {p,},.s is compatible.
Let «, feS. Let g<p, and g<ps. Then gl ¢(&, B, X,, X;). By absoluteness,
o (x, B, x,, x5). Thus (Yo, f € S)o(ar; B, Xy, Xg).
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To prove Theorem 9, first observe that “7 is a tree” is absolute. Since cardinals
are preserved, || = &, in Z[G]. It therefore suffices to show J has no uncountable
chains or antichains in ##[G]. In the first case, apply the theorem to

“f@) e Ta f(B) e TA(x<f=(f@),/(B) e <)".

In the second case, to

F@eTafB eTAl#p>(f@.fB)¢<SAFBLF@)¢E<)

Theorem 11 has a number of curious applications in infinitary combinatorics
as well as in topology. Consider for example the question of whether w,—[w,]2,
(see e.g. [EH] for the definition). It is unknown whether this is consistent with ZFC,
but it fails if the continuum hypotheésis is assumed. Theorem 11 easily shows that
a counterexample to w,—[w,;]2, is preserved by a partial order with property (K),
so that MAK plus 2¥>x; plus a>1-|->[w1]“u is coansistent with ZFC. These same
remarks hold with “o;~[w;]2,” replaced everywhere by “there does not exist
a regular, first countable, hereditarily separable, non-Lindeldf space”.

A closer examination of the partial orders used to establish P and many other
combinatorial consequences shows that not only do they have property (K) and
indeed precaliber K, but even a stronger property — they are o-centered, i.e. they
are the union of countably many collections, each of which is finitely compatible.
The topological counterpart is having a o-centered topology. Call a space with such
a topology o-centered. Clearly separable implies o-centered implies precaliber Ny
It is easy to see that compact Hausdorff spaces are o-centered if and only if they are
separable. Thus there exist compact spaces with precaliber %, which are mot
o-centered, e. g. the product of 2™ copies of the 2-point discrete space. On the other
hand, Martin’s Axiom plus 2%¥°> x, implies that compact Hausdorff CCC spaces
with a m-base (a dense subset of the inclusion ordering on the non-empty open sets)
of cardinality <2%° are separable [HIJ]. It follows that CCC partial orders of
cardinality <2%° are o-centered.

The fact that o-centered compact Hausdorff spaces are separable ylelds that
Martin’s Axiom restricted to the class of compact separable' spaces implies, if
2%y, that 2™ = 2™, since it implies P. This is not so for compact hereditarily
separable spaces. By [§2] such spaces have countable n-bases. It can be shown that
‘Martin’s Axiom for the class of compact spaces with countable n-bases is equivalent
to the real line not being the union of fewer than 2% nowhere dense sets, which is
consistent with 8, <2™ <2,
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