The metric confluent images
of half-lines and lines
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Abstract. The metric spaces which are confluent images of [0, 4+ o0) and (—o0, + c0) are
completely -delineated. Thus, the first time, the confluent images of specific non-compact spaces
have been determined.

1. Introduction. Let X and Y be metric spaces. A mapping (= continuous

function) f* X ¥ ¥ is said to be confluent provided that if K is any closed connected
subset of ¥ and C is any component of £~ [K], then f [C] = K (cf., [1]). The first
paper on confluent mappings is [1], where confluent mappings between continua
(= compact connected metric spaces) were studied. A weaker type of confluence for
general spaces was introduced and studied in [4].

Though some classes of spaces are known to be invariants of confluence (see,
for example, [2, Theorem 13, p. 33]), the confluent images of specific spaces are,
by and large, not precisely known even for continua. It is known that the confluent
image of an arc is an arc or peint [2, Corollary 20, p. 32] and, in [7], the confluent.
images of the sinusoidal curve are determined.

The simplest connected metric spaces which are not continua are half-lines
(i.e., homeomorphs of [0, +0)) and lines (i.e., homeomorphs of (—co, -+ 0)).
The purpose of this paper is to determine precisely all the metric confluent images
of half-lines and of lines. This is done in three basic steps. First, I determine all locally
compact metric spaces which are confluent images of half-lines or lines (Section 3).
Then I determine all the metric confluent images of a half-line (Section 5). Third,
I determine all the metric confluent images of a line (Section 6).

The results in Sections 2 and 4 are used to obtain the main results. However,
many of them are of interest in themselves. For example, some results (resp.,
Section 4) reveal a good bit of information about the behavior of confluent mappings
on half-lines and lines. Other results give more details about structure than is in the
main results.

* This paper was written while the author was on a visiting position at the University of
Delaware.
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One of the main tools which is employed in this paper is one-to-one mappings
of half-lines and lines. Use of such mappings is made possible by Lemma 2.2. In
fact, it is the structure of locally compact one-to-one continuous images of half-lines
and lines, contained in [8] and [10], which is the basic ingredient in the proofs of (3.1)
and (3.2). The following aspect of the results in Section 3 seems iqteresting. For
continua, confluent mappings are a generalization of open mappings [12, (7.5),
p. 148]. However, in general there is no direct relationship between open mappings
and confluent mappings. For example, it is easy to find open (resp., confluent)
mappings of [0, +00) onto an arc which are not confluent (resp., open). Despite
these facts, it ends up (see (3.1) and (3.2) below and see [11, p. 39]) that the locally
compact metric spaces which are confluent images of [0, + c0) (resp., of (—o0, +00))
are precisely the open images of [0, +o0) (resp., of (—o0, +co))!

Throughout this paper, the word nondegenerate means consisting of more than
one point. A simple triod is a continuum which is homeomorphic to a figure “T7.
The symbol S* will denote the unit circle in the plane. By a circle we mean any
homeomorph of S*. The symbol “cl” denotes closure and the slash “\” denotes
complementation for sets.

2. Some preliminary lemmas. A metric space Y is said to be a-triodic in the
generalized sense, or simply a-triodic, provided ¥ does not contain three closed
connected subsets 4;, 4,, and 4, such that

A, nd,ndys #9
and such that if {i,j, k} = {1, 2,3}, then
A4, 0 4]
The following lemma, though not stated in the literature, seems to be known

at least for continua (see the paragraph immediately following Problem 5 of
[5, p. 94]). We include a proof of it for completeness.

(2.1) LeMMA. If X is an a-triodic metric space and if f is a confluent mapping
of X onto a metric space Y, then Y is a-triodic.

Proof. Let f: X ¥ Y be a confluent mappings. Assume Y contains three
closed connected subsets 4,, 4,, and 45 such that
And,nd; # O
and such that, if {i,, k} = {1, 2, 3}, then
’ A4 U A).

Lét p e [4; N A, N 4;]. Let B be a component of f~*(p). For each ne{1,2, 3},
let B, be the component of f~*[4,] containing B. Since f is confluent,

fIB] = 4, for each ne{l,2,3}.

The. metric confluent images of half-lines and lines 185

Hence, it follows that if {i,j, k} = {1,2,3},

B;¢[B;u B,].
Since B< B, for each ne {1, 2, 3},

BinB,NnB;#.

It now follows that X is not a-triodic.
The following lemma indicates how a-triodicity will be used.

(2.2) LeMMA. If an arcwise connected metric space Y is a confluent image of an
a-triodic metric space X, then Y is a one-to-one continuous image of a connected subset
of (—, +c0).

Proof. By (2.1), ¥ does not contain a simple triod. In [6, (3.2)] I proved that
an arcwise connected metric space which contains no simple triod is a one-to-one
continuous image of a connected subset of (—o0, + 0).

Next, I give two technical lemmas concerning . certain one-to-one images.
(2.3) LemmA. If a locally compact metric space Y is a one-to-one continuous
image of [0, + o), then one (and- only one) of the following holds:
(2.3.1)

(2.3.2)

Y is a half-line or a circle;
Y contains a simple triod or a subcontinuum which is not arcwise connected:

Proof. If Yis not compact, then Y is a half-line by Theorem 7.1 of [10, p. 69].
So, for the purpose of proof, assume Y is compact. Then, by the Structure Theorem
in [8, p. 128], Y contains an arcwise connected circle-like continuum X. Assume X is
not a circle. Then, by Theorem 6 of [9, pp. 230-231], X contains a (chainable)
continuum which is not arcwise connected. Next assume X is a circle. Then, if X # Y,
it follows from the arcwise connectivity of Y that Y contains a simple triod.

(2.4) LemmA. If a locally compact metric space Y is a one-to-one continuous
image of (—co, 4+ 0), then one (and only one) of the following holds:

(24.1) Y is a line;

(2.4.2) Y contains a triod or a closed connected subset which is not arcwise con-
nected. , : o

Proof. First assume Y is compact. Then, by part (1) of the Structure Theorem
for Real Curves [10, p. 9], it follows easily that ¥ contains a triod. Next assume ¥ is
not compact and not a line. Then, using Remark 7.1 of [10, p. 72], it follows easily
that: o ’

(1) If Yis as in (1) of Remark 7.1, then Y contains a closed connected subset
which is not arcwise connected.

(2) If Yis as in (2) of Remark 7.1, then " contains a triod.
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(2.5) LeMMA. If a metric space Y is a confluent image of a connected subset L of
(— o0, + ), then each closed connected subset of Y is arcwise comnected.

Proof. Since any connected subset of L is arcwise connected, the lemma is
a simple consequence of the definition of confluence.

The final lemma of this section gives a simple fact about the behavior of con-
fluent maps of [0, + 00). An especially interesting application of it occurs in the
proof of (4.6).

(2.6) LemMA. If f is a confluent mapping of [0, +o0) onto a metric space Y,
then f(0) is mot a cut point of any arc.in Y.

Proof. Assume f(0) = p is d’cut point of an arc 4 in Y. Let K, be the com-
ponent of f~*(p) containing zero, and let 5, = Lub.[K,], i.e., Ko = [0, o). Let e;
and e, denote the two noncut points of 4. For each i€ {l,2}, let 4; denote the
subarc of 4 with noncut points p and e;. By the continuity of f, there exists 6>0
such that e, ¢ f ([So, 5 +6]) = £ ([0, o +8]) for any ie {1,2}. From the definition
of s, it follows that there exists #o such that s,<fo<so+6 and f(fo) # p. Now,
choose an 4; such that 7 (f,) ¢ 4;, and denote such a choice by 4;. Let M, be the
component of £~ [4;] containing 5,. Clearly, M, = [0, s4] for some s, <t,. There-
fore, since e; € [4,\/ ([0, 5,1)], we have that f[M,] # 4;. Hence, f is not confluent.

3. The locally compact confluent images of a half-line and a line. The two
theorems below are the first main results of this paper.

(3.1) THEOREM. A locally compact metric space Y is a confluent image of
[0, +00) if and only if Y is a one-point space, an arc, or a half-line.

Proof. Assume Y is a confluent image of [0, + o). Then, by (2.2), Y is a one-
to-one continuous image of a connected subset L of (— o, +00). For the purpose
of proof, assume L is not a compact interval. Then Y satisfies the hypotheses of (2.3)
or (2.4), depending on whether L is a half-open interval or an open interval. Also,
by (2.1) and (2.5), neither (2.3.2) nor (2.4.2) holds. Therefore, (2.3.1) or (2.4.1) holds.
By (2.6), Y is not a circle and (2.4.1) does not hold. Hence, Y is a half-line (the other
possibility in (2.3.1)). This proves the first half of (3.1). The converse is easy since

onto

£:10, + ) s [—1, +1] given by f (#) = cos[7] is an example of a confluent mapping
onto an arc.

(3.2) TaeoreM. A locally compact metric space Y is a confluent image of
(—o0, + ) if and only if Y is a one-point space, an arc, a half-line, a line, or
a circle. ‘

Proof. Assume Yis a confluent image of (— o0, + o0). Using (2.1) through (2.5)
as in the proof of (3.1), we see that ¥ is a one-point space or an arc (if L is a compact
interval), or that (2.3.1) or (2.4.1) holds. Hence, ¥ must be one of the five spaces
in the statement of (3.2). Conversely, it is easy to see that each of the five spaces is
a confluent image of (— oo, +o0). For example: The function

g: (=0, +00) B [~1, +1]
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given by g(f) = sin[f] is a confluent mapping onto an arc, the absolute-value
function defined on (— o0, + o) is a confluent mapping onto a half-line, and the

function k: (— 00, + o) st given by k(¥) = (cos[t], sin[7]) is a confluent mapping
onto a circle.

4. More preliminary lemmas. This section is devoted to giving information

. which will be used to obtain the characterization in Section 5 of all the confluent

images of [0, + o). For this purpose and throughout this section let Z denote any
metric space for which there is a confluent mapping, denoted by f, of [0, + ) onto Z.

Also, let

Z.() = ) AL7 ([, +eo)]

It is simple to prove, using an argument involving sequences, that

(4.0) Z,(f) is always a closed subset of Z, and if Z is compact, then Z.(f) is
connected.

Now, I determine some other facts about Z. . (f).

(4.1) LeMMA. If there exist s, <5, such that s, € f " [Z ()l and s; ¢~ [Z (O],
then Z is an arc. ‘ .

Proof. Assume that s;<s, such that s; e 1 [Z,(/)] and s, ¢ HUZ(N).
Then, f~*[f(s,)] has an upper bound. Let #, be an upper bound for f “f (D]
such that 7o éf [ f(s,)]. Let

(@8 M = cl[f([to, +00))] or equivalently,
®) M =f(lto, +0)) W Z+(f)

It is easy to see by (a) that M is a closed connected subset of Z and, by (b), that’
s, €f*[M]. Let C denote the component of f~*[M] such that s; & C. By con-
fluence of f we have f[C] = M. From the way #, was defined and from (b) it follows
that s, ¢/ "1 [M]. Hence, s, ¢ C. Thus, since s,<s, and s;€C, we have that
Cc<|[0, 5,]. Therefore,

M = fIC1=/ (10, 52])

which implies that
Z<f([0, 1)) .

This proves that Z = £([0, 1,]). Hence, Z is a compact confluent image of [0, + o0).
Furthermore, since f~1[Z.,.(f)] # [0, +c0) (recall that s, /™ *[Z4(/), Z is not
a one-point space. Therefore, by (3.1) Z is an arc. '

(4.2) COROLLARY. There exists a closed connected subset A of [0, +o0) such
that f1d] = Z,.(f). Furthermore, if Z is not compact, Z,(f) = 3 or fHZ(N]
= [ry, - 00) for some ry €0, + o0). '
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Proof. First, assume Z is compact. Then, by (4.0), Z, () is a compact connected
subset of Z. Thus, letting A be any component of f “1[Z ()], we see using the
confluence of f that 4 satisfies the conditions in (4.2), Second, assume Z is not
compact. If Z,(f) = @, then 4 # @ satisfies the conditions in (4.2). So, for the
purpose of proof, assume Z,(f) # 9. Let

Yo = glb(f—l [Z+(f)]) ‘

Since Z,(f) is a closed subset of Z [see (4.0)], we have that ro €~ *[Z,.(f)]. Thus
since Z is not compact, we have by (4.1) that f~*[Z,(f)]>[re, +0). Hence,
FYZL ()] = [ro» +0] by definition of ry. Therefore, taking A = [ry, +00),
we see that A satisfies the conditions in (4.2).

(4.3) COROLLARY. The set Z.(f) is a closed arcwise connected subset of Z.

‘Proof. By (4.0), Z,(f) is a closed subset of Z. It follows from (4.2) that Z..(f")
is arcwise connected. : ‘

The next lemma determines Z when Z,(f) is degenerate. The first statement
in the lemma is valid without f being confluent, and confluence is not used in the
proof of it. )

4.4y LemMA. If Z .(f) = O, then Z is a half-line. If Z . (f) is a one-point space,
then Z is a one-point Space or an arc.

Proof. First assume Z,(f) = @. Let p e Z and let U be an open subset of Z such
that pe U. Since Z,(f) = &, £~ (p) is bounded. By continuity of f, there is
a bounded open subset W of [0, + o) such that f~*(p)c W and f[W]<= U. Suppose
that £ {W] is not a neighborhood of p in Z. Then, there exist points p, € (Z\f[W]),
n=1,2,.., such that p,~p as n—co. For each n= 1,2, .., let ,&[0, +00)
such that f(z,) = p,. Since p,¢f[W] for any n=1,2,..., t,¢ W for any
n=1,2,.. Also, since p¢ Z,(f) and f(t,)—~p as n—>oo, the sequence {t,}r=; is
bounded. Thus, {z,},=; has a convergent subsequence {t,(z}izy., and {f,n}i=;
converges to a point 7, ¢ W. Hence, it follows from continuity that f(#,) = p. This
contradicts the fact that £~!(p)<= W. Hence, f [W] is a neighborhood of p in Z.
Therefore, since W is bounded, f[cl(W)] is a compact neighborhood of p in Z.
‘We have now proved Z is locally compact. Since Z.(f) = @, Z is not compact.
Hence, by (3.1), Z is a half-line. This proves the first part of the lemma. Next, assume
Z,(f) = {zo}. Let |

sy = gLb.[f " (zo)] -

If there exists 5,>s, such that s, ¢f ~Yzp), then Z is an arc by (4.1). Hence, we
assume f~'(zo) = [s;, +00). Then, Z'= f([0,s,]) and, hence, Z is compact.
Therefore, by (3.1), Z is a one-point space or an arc.

Recall that a space X is said to be indecomposable if and only if X is connected
and X is not the union of two closed connected proper subsets [3, p. 204].

(4.5) LemMA. If Z is not locally compact, then Z,(f) is indecomposable and
nondegenerate.
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Proof. Assume Z is not locally compact. To prove Z..(f) is indecomposable
first note that, by (4.3), Z . (f) is connected. Suppose there exist two closed connected
proper subsets B; and B, of Z, () such that By U B, = Z,(f). Foreachie {1, 2},
let C, be a component of £~ *[B,]. Since Z,(f) is a closed subset of Z (see (4.0)),
B, and B, are each closed (and connected) subsets of Z. Hence, by confluence of £,
we have that £[C;] = B, for each ie {l,2}. Suppose that C; and C, were each
unbounded. Then one of them, say C;, would be contained in the other, C,. Hence,
B, c B, which implies B, = Z,(f), a contradiction. Therefore, C; or.C, is bounded,
say C,. Suppose C, were also bounded. Note that Z. (f) # @, otherwise B, and B,
would not exist. Thus, since Z is not compact, we have by (4.2) that

@  fTHZ(O] = [ro, + ) for some rq e [0, + o).
Also we have: ‘

(b) ;v C, is bounded;

©  fIC1v G)l=Z.(f).

Hence, by (a) and (c),

@ J1C, 0 Gl = F(Iro, +00)).

It now follows easily from (b) and (d) that Z is the image under f of a closed and
bounded interval. This proves Z is compact, a contradiction. Therefore, C, is un-
bounded. For some s, € [0, +.00), C, = [5o, + ). Since B, ¢ B, and f is confluent,
no component of f “*[B,] is contained in C,. Also, since B, ¢ B, and f'is confluent,
no component of f~*[B;] contains C,. It now follows that f ~1[B,1=[0, m] for
some m e [0, +c0). Therefore, since By =Z.(f), it follows from the definition of
Z.(f), that B, is nowhere dense in Z.(f), a contradiction (because By\B, is
a nonempty open subset of Z,(f)). We have now proved that Z,(f) is indecom-
posable. Since Z is not locally compact, (4.4) implies that Z .(f) is nondegenerate.
This completes the proof of (4.5).

(4.6) LEMMA. If Z is not locally compact, then Z .(f') is a one-to-one continuous
image of [0, +co0).

Proof. By (2.1) and (4.3), Z.(f) is an arcwise connected metric space which
contains no simple triod. Hence, by (3.2) of [6], there is a one-to-one continuous
function g from a connected subset L of (—o0, +00) onto Z,(f). Since g is one-
to-one and continuous, it follows using (4.5) that L is not compact. By the second
part of (4.2), : :

LTHZA()) = [re, +00)
Clearly, then,

for some rq € [0, -+ 00) .

£(00, 7o]) 2 Zo(f) = {F (o)} -
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Now, suppose that L is an open interval. Let ¢, € L such that g(t,) = f (ro). Choose
£>0 such that [¢,—¢, f,+¢&] =L; such an ¢ exists since L is an open interval. Suppose
ro # 0. Then,

f([O: ro]) v g([l‘o—-—E, to+3})

contains a simple triod, which is a contradiction to (2.1). Hence, r, = 0 and we
have g’

Z=2Z.(f)=glL].

This proves that Z is a one-to-one continuous image of an open interval. Thus,
each point of Z is a cut point of an arc in Z. This contradicts (2.6), Therefore, L is
not an open interval. The lemma now follows.. .

(4.7) LemMa. If Z is not locally compact, then each nondegenerate closed con-
nected proper subset of Z ., (f) is an arc. .

Proof. Let K be a nondegenerate closed connected proper subset of Z,(f).
By (4.0), K is a closed connected subset of Z. Let C be a component of £~ [K].
Then, by confluence of f, f[C] = K. By (4.2) we have that

FTHZH{] = [ros +0)

Now, suppose that C is unbounded. Then, since C is a closed subset of [0, + o0)
and since Z,(f) # K<Z (f), it follows that C = [sy, +00) for some s5,>r,.
Let A = f([rg, %)). Then,

AOK = AUSIC] = f(Iro, +0)) = Z,(f).

Therefore, by (4.5) and the fact that 4 is a locally connected continuum (hence,
decomposable or a one-point set), we have that K = Z_(f). This is a contradiction.
Therefore, C is a closed and bounded interval. Hence, since f[C] = K, Kis a locally
connected continuum. By (2.1), K does not contain a siniple triod. Hence, K is an
arc or a circle. Suppose K is a circle. Then, since K # Z and Z is arcwise con-
nected, it would follow that there is a simple triod in Z, a contradiction to (2.1).
Therefore, K is an arc.

Using (2.3), (2.4), (3.1) and (3.2) it is easy to see that no one-to-one continuous
function from [0, + 0), or from (— <0, + ), onto a compact metric space can be
confluent. At the other end of the spectrum are the indecomposable metric spaces
which are one-to-one continuous images of [0, +c0) or of (— 0, ~+00). For many
of these, as well as certain decomposable spaces, the next result will be used to
show (see the proofs of the converse parts of (5.1) and (6.1)) such one-to-one con-
tinuous functions must be confluent.

(4.8) LEMMA. Let Y be a metric space such that

(a) Y is not a circle;

(b) Y contains no simple triod;

for some ry€[0, +00).

(c) each closed connected proper subset of Y is arcwise connected.
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If g is a one-to-one continuous function from a connected subset L of (— 0, + c0)
onto Y, then g is confluent.

Proof. Let K be a closed connected subset of Y. Since g is onto, it suffices to
prove that g™ *[K] is connected. Suppose g~![K] is mot conmected. Then, there
exist ro<s$y <ty in L such that

(*) [ro,to]ng'i[K]={r0,t0}.
Since g~*[K] is not connected, K # Y. Hence, by (c), there is an arc 4 in K such
that 4 has noncut points g(ro) and g(s) (note that, since g is one-to-one,

g(ro) # g(to)). Let B = g([ry, %]). Since g is a homeomorphism on [ry, #,], B is
an arc with noncut points g (r,) and g (f,). Since 4 =K, it follows easily from () that

A B={g(ro), g(to)} -

It now follows that A U B is a circle. Thus, by (a), 4 U B # Y. Therefore, since Y'is
arcwise connected (because g[L] = Y), it follows that ¥ contains a simple triod.
This contradicts (b) and completes the proof of (4.8).

5. All the confluent images of a half-line. In (3.1) I determined all the locally
compact metric spaces which are confluent images of [0, 4+ c0). In the theorem
below; I extend (3.1) to determine all metric confluent images of [0, + o0). -

(5.1) THEOREM. A metric space Y is a confluent image of [0, +oo) if and only
if Y is one of the following:

(1) a one-point space;

(2) an arc;

(3) a half-line;

(4) an indecomposable metric space, which is a one-to-one continuous image
of [0, +o0), such that each nondegenerate closed connected proper subset is an arc;

5) a hwetric space which is a one-to-one continuous image of [0, + o0) under
amapping g such that there exists to>0 such that g ([to, + o0)) is as in (4) and is a closed
proper subset of Y.

Proof. Assume f: [0, =4 c0) % ¥is a confluent mapping onto a metric space Y.
If ¥ is locally compact, then Y is as in (1), (2), or (3) by (3.1). So, assume Y is not
locally compact, Then, by (4.5) through (4.7), .

(%) Y.4(f) has all the propesties in (4).

Hence, if Y..(f) = Y, then Y is as in (4). So, assume Yi.(f) # Y. Then, since Y'is
not compact, we have by (4.2) that

FHY ()] = [ro, +o0)  for some ro>0.

@

Now, ([0, "o])b& is a nondegenerate (because Y.(f) # ¥) local.ly connected 'coln-
tinuum which, by (2.1), contains no simple triod, Hence, £([0, ro]) is an arc or a circle,
3 — Fundamenta Mathematicae t. CII .
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Since 7 ([0,7o]) # ¥ and Y is arcwise connected and contains no simple triod
(by (2.1)), ([0, 7]) must be an arc. By (4.6), there is a one-to-one continuous func-

onto

tion k: [1, + o) = Y.(f). Since Y does not contain a simple triod [by (2.1)] and
since f([0, r,]) is an arc such that

(#) f([O: "o]) nY(f)= {f(”o)} )

it follows that

(x%) k(1) = 1 (ro)

and

) flro) is a noncut point of £([0, rol) . |

onto

Let h: [0,1] - £ ([0, o)) be a homeomorphxsm such that [see (s+) and (##x)]
€= h(1) = f(ro) = k(1).
" Define g: [0, +oo)°3§°Y be

C(h@ for te[0,1],
(t)_{k(t) for te[l, +w).

Since h(l) =k(1),gisa function. Since k and k are each continuous, g is continuous.
Since & and k are each one-to-one, it follows using (3t) and (F4t) that g is one-to-~
one. Therefore, by (*) and the fact that

g([l, +0)) = Yo () # ¥,

it follows that g has all the properties in (5) with #, = 1. Thus, Y is as in (5). This
proves half of (5.1).

To prove the converse let Y be as in (4) or (5) (see (3.1)). Then, it is easy to
see that (a), (b), and (c) of (4.8) each holds for Y. Hence, letting g be a one-to-one
continuous function from [0, + o) onto ¥, we see by (4.8) that g is confluent. This
completes the proof of (5.1). i

6. All the confluent images of a line. I have determined all locally compact
metric confluent images of (—co, -+ 00) (see (3.2)) and all metric confluent images
of [0, + o0) (see (5.1)). In this section I complete the study of the structure of metric
confluent images of half-lines and lines. The following result, combined with (5.1),
delineates all metric confluent images of (— o0, + o).

(6.1) THEOREM. A metric space Y is a confluent image of (— 0, +00) if and
only if Y is arcwise connected and each closed connected proper subset of Y is a confluent
image of [0, + o).

to N
«  Proof. Assume f: (—o0, +oo)°:> Y is a confluent mapping onto a metric

space Y. Clearly, Y is arcwise connected. Let K be a closed connected.proper subset

of Y. Let C be a component of f~! ~[K]. Since C is a closed subset of (— 0, + 0),
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(@) C = [a, b], some a,be(—o0, +00) or
(i) C = (—,s] or C =[5, +00), some s&(—c0, +c0).
_ Since f is confluent,

ric) =

Let fo: C %K denote the restriction of fto C. Itis easy to see that f¢ is confluent.
Assume C is as in (i). Then, since the confluent image of an arc is an arc [2, Corol-
lary 20, p. 32] and f¢[C] = K, we have that K is an arc. Hence, by (3.1), X is a con-
fluent image of [0, + o). Next, assume C is as in (ii). Then, since f¢ is confluent,
K is a confluent image of {0, + c0). This proves half of (6.1). Conversely, assume Y is
an arcwise connected metric space such that each closed connected proper subset
of Y is a confluent image of [0, +co). Then, clearly,

(*) each closed connected proper subset of Y is arcwise connected
and, by (2.1),
(#¥) Y contains no simple triod.

By the arcwise connectivity of ¥, (%), and (3.2) of [6], there exists a one-to-one
continuous function g from a connected subset L of (—o0, + o) onto Y. Since
a circle is a confluent image of (— o0, +o0) by (3.2), we assume for the purpose of
proof that

(x4x) Y is not a circle.

Hence, by (*) through (), (a) through (c) of (4.8) hold. So, by (4.8), g is confluent.
Therefore, since L is a confluent image of (— o0, +00) (see (3.2)) and since the com-
position of confluent mappings is confluent, it now follows that ¥ is a confluent
image of (— oo, +00). This completes the proof of (6.1).

The following result shows how two closed connected subsets of a confluent
image of (— o0, +c0) must intersect. A proof of it can be based on (2.1), (5.1),
and (6.1); we omit the details.

(6.2) THEOREM. If a metric space Y is a confluent image of (—co0, + o0) and
if A and B are each closed connected subsets of Y such that A¢B, B&A, and
AN B# O, then A B satisfies one of the following:

(1) 4 n B consists of only one point;

(2) A~ B is an arc;

(3) A n B consists of exactly two points, in which case Y must be a circle.

7. Concluding comments.

(1) Observe that by (2.2) every metric confluent image of a half-line, or of
a line, is one-dimensional, hence embeddable in 3-space. Some are not embeddable
in the plane. For example, let A denote a composant of the dyadic solenoid. As is
well-known, A is an arcwise connected metric space such that each closed connected
3


Artur


194 S.B. Nadler, Jr.

proper subset of A is an arc. Hence, by (6.1), 4 is a confluent image of (— 0, +00).
However, as is known, 4 is not embeddable in the plane. It would be interesting to
know exactly which confluent images of a half-line, or of a line, are embeddable
in the plane. However, this is not known for one-to-one images of [0, + c0) as in (4)
of (5.1).

(2) By (4) of (5.1), each nondegenerate closed connected proper subset of an
indecomposable confluent image of [0, +c0) is an arc. The corresponding state-
ment, for confluent images of (— co, + ), is false. For example, let I' denote the
composant “you see” of the continuum in Example 1 of [3, pp. 204-205]. Then,
I satisfies (4) of (5.1). Now, delete the origin from I" and denote the new space by I'g,

Iy =I\{(0,0}.

Then, it can be seen that each closed connec*ed proper subset of I'y is an arc
or a half-line. Hence, since I'y is arcwise connec'ed, I'y is a confluent image of
(=00, +00) by (6.1). Also, Iy has a closed subset which is a half-line.
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Capacitability and determinacy -
.

Douglas R. Busch * (North Ryde, N.S.W.)

Abstract. We establish a conjecture of Mycielski and show that the Axiom of Determinacy
implies that every set in three-dimensional Euclidean space is capacitable. The capacitability of

_projective sets follows from projective determinacy, but the case of X1 sets requires no determinacy

at all, but only some such weaker assumption as the existence of a measurable cardinal.

Introduction. This paper explores the analogy between (Newtonian) capacity
and Lebesgue measure. Mycielski and Swierczkowski proved that the Axiom of
Determinacy (AD) implies that every set of real numbers is Lebesgue measur-
able [11] (Y). Of course this has to be in the absence of the Axiom of Choice (AC),
in view of the classical derivation due to Vitali of a non-measurable set from AC.
Also, Solovay showed that even without AD, it is at least consistent that every set
of reals be Lebesgue measurable [17]. The model that he obtains by forcing which
satisfies this property, also satisfies the principle of Dependent Choice (DC):

(Vae X)@AP) e, By e 4 = ANV @), f(n+1))ed.

Now the notion of (Newtonian) capacitability (of sets in three-dimensional
Euclidean space R*) has certain analogies with Lebesgue measurability. For example,
Choquet [1] showed that analytic sets are capacitable. Accordingly, Mycielski
conjectured that in Solovay’s model, all sets in R* might be capacitable ([17], p. 2,
Remark 5), and also indicated how this might be proved, via the proposition BC @)
(for “Borel Choice™):

Let X and T be complete separable metric spaces, u a non-negative, non-atomic
Borel measure on X. If Us X' x T, then there is a Borel set B< X and a Borel measur-

* The author wishes to express his gratitude to Professors J. Mycielski, R. M. Solovay, M. Kac
and D. A. Martin for their stimulus and help in the preparation of this paper.

(*) We have not given a statement of AD in the paper, since we do not use it directly. [3] is
a recent comprehensive survey article.

(%) This formulation of BC was conveyed to the author privately by Professor Mycielski.
The version stated in [17] occurs as Proposition 5(a) of Theorem 1 on page 1. This is the special
case for X = T = the real numbers, and # = Lebesgue measure. However, as Mycielski has pointed
out, this case and the general case are both equivalent to the special case when X is the Baire space,
in view of the reduction mentioned just before Theorem 1 in this paper.
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