12 Z. Grande

n'est pas résiduel, comme il ne coupe pas l'ensemble $R \times A$. Démontrons encore que la fonction f n'est monotone dans aucun ensemble ouvert, non vide de l'espace X. Soit $U \subset X$ un ensemble ouvert, non vide de l'espace X. Soit $(x_0, y_0) \in U$ un point tel que $x_0 \in C$. Remarquons que la coupe U_{x_0} de l'ensemble U est un ensemble ouvert dans R. La coupe $f_{x_0}(y) = f(x_0, y)$ n'est pas monotone dans l'ensemble ouvert U_{x_0} , il existe donc un nombre $z \in R$ tel que $(f_{x_0})^{-1}(z)$ n'est pas connexe. De plus, comme la fonction f_{x_0} est continue, l'ensemble $(f_{x_0})^{-1}(z)$ est fermé. Soit (α, β) une composante du complémentaire $U_{x_0} - (f_{x_0})^{-1}(z)$. L'ensemble $(f_x)^{-1}(z)$ étant non dense pour tout $x \in C$ et l'ensemble C étant dénombrable, l'ensemble $(f_x)^{-1}(z)$ est de première catégorie. Il en résulte que l'ensemble $((\alpha, \beta) \cap B) - \bigcup_{x \in C} (f_x)^{-1}(z)$ est non vide. Soit

$$y_1 \in ((\alpha, \beta) \cap B) - \bigcup_{x \in C} (f_x)^{-1}(z)$$
.

On a donc

$$U \cap f^{-1}(z) \cap \{(x, y) \in X : y = y_1\} = \emptyset$$

et par conséquent l'ensemble $U \cap f^{-1}(z)$ n'est pas connexe dans U, ce qui termine la démonstration.

Bibliographie

- K. M. Garg, Monotonicity, continuity and levels of Darboux functions, Coll. Math. 28 (1973), pp. 59-68.
- [2] Properties of connected functions in terms of their levels, Fund. Math. 97 (1977), pp. 17-36.
- [3] On nowhere monotone functions. I. Derivates at a residual set, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), pp. 173-177.
- [4] J. Oxtoby, Mesure et catégorie (russe), Moscou 1974,

Accepté par la Rédaction le 28. 6. 1976

The closure of the space of homeomorphisms on a manifold. The piecewise linear case

bх

William E. Haver (Princeton, N. J.)

Abstract. Let $\overline{H}(M)$ denote the space of all continuous functions on a compact p.1. manifold M which can be approximated by homeomorphisms and $\overline{PLH}(M)$ the space of all p.1. mappings which can be approximated by p.1. homeomorphisms. The pair $(\overline{H}(M), \overline{PLH}(M))$ is studied and it is shown that $\overline{PLH}(M)$ is an l_y^f -manifold for compact p.1. manifolds M of dim $\neq 4$, 5.

Let M be a compact piecewise linear manifold and PLH(M) denote the space of all piecewise linear homeomorphisms of M onto itself. We shall study the space, $\overline{PLH}(M)$, of all piecewise linear mappings which can be approximated arbitrarily closed by elements of PLH(M). All function spaces on compact manifolds will be assumed to have the supremum metric ϱ ; i.e., if X and Y are manifolds with d the metric on Y and f and g are mappings from X into Y, then

$$\varrho(f,g) = \sup_{x \in X} \{d(f(x),g(x))\}.$$

Note: Suppose $f_0, f_1 \in \overline{\operatorname{PLH}}(M)$. In this topology a homotopy from f_0 to f_1 is a map $F \colon M \times [0, 1] \to M$ such that $F_0 = f_0$, $F_1 = f_1$ and for each $t \in [0, 1]$, $F_t \in \overline{\operatorname{PLH}}(M)$. In particular, it is not required that F be a p.l. map from $M \times [0, 1]$ into M.

This paper is a sequel to [12] where the author studied $\overline{H}(M)$, the space of all continuous functions on M which can be approximated by homeomorphisms of M onto itself. In many cases $\overline{H}(M)$ has been identified by Siebenmann [18] with the space of cellular maps of M onto itself.

For some years now there has been considerable interest in the question of whether H(M), the space of homeomorphisms of M onto itself, is locally homeomorphic to l_2 , the Hilbert space of square summable sequences. See [9] for a summary of what is known about H(M) and the pair (H(M), PLH(M)). In the appendix of this note we make an observation of a new criterion for determining if $H(M^n)$ is an l_2 -manifold. The major portion of this note is devoted to proving the following:

THEOREM 1. Let M'' be a compact p.l. n-manifold, $n \neq 4$; if n = 5, $\partial M'' = \emptyset$. Then given an open cover $\mathscr U$ of $\overline{H}(M'')$, there exists a homeomorphism of $\overline{H}(M'')$ onto itself which is limited by $\mathscr U$ and carries PLH(M'') onto $\overline{PLH}(M'')$. Let l_2^f be the (dense, incomplete) linear subspace of l_2 consisting of those sequences having only finitely many nonzero entries. A space that is separable, metrizable and locally homeomorphic to l_2^f is called an l_2^f -manifold. Keesling and Wilson [14] have shown, using results of Geoghegan [8], Toruńczyk [19] and Haver [11] that

COROLLARY 1. $\overline{PLH}(M)$ is an l_2^f -manifold and hence an ANR.

COROLLARY 2. Given an open cover \mathcal{U} of $\overline{PLH}(M)$, there is a map $\phi_{\mathcal{U}} \colon \overline{PLH}(M) \to PLH(M)$ that is limited by \mathcal{U} ; i.e., piecewise linear cellular maps can be canonically approximated by piecewise linear homeomorphisms.

PLH(M) is an l_{2}^{f} -manifold. We therefore have the following corollary to our theorem.

We note that the statements in the topological category analogous to Corollaries 1 and 2 are unresolved. The statement corresponding to Corollary 1 is discussed in [12] and Corollary 2 in [8].

The author would like to thank H. Toruńczyk for reading an earlier version of this paper and making suggestions which resulted in a substantial shortening of the exposition. In addition to suggesting the general outline of the current version he suggested the use and proof of Lemma 6.

NOTATION. Let $A \subset X$; $X \setminus A$ will denote the complement of A in X; this complement will also be denoted \widetilde{A} when there is no possibility of confusion; 1_A will denote the inclusion of A in X.

If M is a manifold, ∂M will denote the boundary of M. π_i is the projection of $\prod_{i=1}^{n} X_i$ onto X_i , $i=1,\ldots,n$.

Let \mathcal{U} be a collection of open subsets of X and $f: X \to X$ a function; f is limited by \mathcal{U} if for each $x \in X$, f(x) = x or there exists $U \in \mathcal{U}$ with $\{x\} \cup \{f(x)\} \subset U$.

We start our proof of the theorem with two lemmas concerning properties of function spaces on manifolds. Throughout this paper we assume that M is a compact p.l. manifold of dimension $n \neq 4$ and if n = 5, then $\partial M = \emptyset$. Let $H^*(M)$ be the subset of H(M) consisting of those homeomorphisms which are isotopic to p.l. homeomorphisms. Let $\overline{H^*}(M)$ be the space of all continuous functions on M which can be approximated by elements of $H^*(M)$.

LEMMA 1. a) H(M) is uniformly locally contractible and hence $\overline{H}(M)$ is LC^{∞} ;

- b) each of PLH(M) and $\overline{PLH}(M)$ is the countable union of finite dimensional compacta;
 - c) PLH(M) is an l_2^f -manifold;
 - d) PLH(M) is dense in $H^*(M)$ and hence $\overline{PLH}(M)$ is dense in $\overline{H^*}(M)$.

Proof. a) In Edwards-Kirby [6] and Chernavskii [5] it is shown that H(M) is uniformly locally contractible. It then follows from Eilenberg and Wilder [7] that $\overline{H}(M)$ is LC^{∞} (see also [12]). b) Was shown by Geoghegan in [8]. c) Was proved in [14]. Part d) is proved in detail in [9]; for an indication of proof, see Remark 2 at the end of this paper. The dimension restrictions are necessary only for part d).

Consistent with our previous notation, let $H(\overline{H}(M))$ denote the space of all

homeomorphisms of $\overline{H}(M)$ onto itself, under the compact open topology. In [12] the author proved that $\overline{H}(M)$ is homogeneous. The following lemma is a parametrized version of that result and can easily be proved by the same methods with the following modifications:

1) In the proof of Lemma 2.5 of [12] we are given positive numbers b and c and $g \in \overline{H}(M)$ with $\varrho(g, 1_M) < b$. Then $h \in H(M)$ is chosen with $\varrho(h, g) < \min(b, c)$ and $\varrho(h, 1_M) < b$. Using Lemma 1a) it is possible to make the choice of h depend continuously on g. To be more precise: let b and c be positive numbers and D be a finite-dimensional compactum. Then if $g: D \to \overline{H}(M)$ is a mapping with $\varrho(g(d), 1_M) < b$ there exists a mapping $h: D \to H(M)$ with $\varrho(h(d), g(d)) < \min(b, c)$ and $\varrho(h(d), 1_M) < b$ for all $d \in D$.

2) In the proof of Lemma 2.4 of [12] let the map H depend continuously on h (see Lemma 2.2 of [12] and the paragraph preceding its statement).

Lemma 2 (parametrized homogeneity). Given $\varepsilon > 0$, there is a $\delta > 0$ such that if D is a finite-dimensional compacta and if $f \colon D \to \overline{H}(M)$ satisfies $\varrho(f(d), 1_M) < \delta$ for all $d \in D$, then there is a map $F \colon D \to H(\overline{H}(M))$ so that $F(d)(f(d)) = 1_M$ and for all $d \in D$, if $g \in \overline{H}(M)$ with $\varrho(g, 1_M) \geqslant \varepsilon$, then F(d)(g) = g. If $\varepsilon = \infty$, δ can be taken to be ∞ .

Remark. We will use only the case $\varepsilon = \infty$ in the following.

Lemma 3. Let E denote l_2 or l_2^f and Y be an E-stable space (i.e., $Y \approx Y \times E$) with D an arbitrary finite-dimensional compactum in Y. Then

- a) there is a homeomorphism $\mu: Y \rightarrow Y \times E$ with $\mu(D) \subset Y \times \{0\}$;
- b) given compacta $D_0 \subset D$ and $f: D \to Y$ there is a sequence $\{f_n: D \to Y\}_{n=1}^{\infty}$ such that f_n converges to f and for each n, $f_n | D_0 = f | D_0$, f_n is injective on $D \setminus D_0$ and $f_n(D \setminus D_0) \cap f_n(D_0) = \emptyset$.

Proof. a) Follows immediately from the special case where Y = E which is well known (cf. [1]); to obtain b), let μ : $Y \rightarrow Y \times E$ be a homeomorphism with $\mu(D) \subset Y \times \{0\}$ and let $\varphi: D \rightarrow \{t = (t_i) \in E | t_i = 1\}$ be an embedding. Then define $g_n: D \rightarrow Y \times E$ by

$$g_n(x) = \left(\pi_1 \mu f(x), \left(1/n\varrho(x, D_0)\right) \varphi(x)\right).$$

Then for each n, $f_n = \mu^{-1} g_n$ is the desired map.

The following is a special case of a theorem of Toruńczyk that is formulated in a manner convenient for our purposes. For a proof see Theorem 4.2 and Proposition 4.1 of Chapter IV of [3] (see also [20, 21]).

Lemma 4 (Toruńczyk). Let X be a complete metric space and $W = \bigcup_{n=1}^{\infty} W_n$ where each W_n is a finite-dimensional compactum in X. Suppose that given a finite-dimensional compactum $A \subset X$, $\varepsilon > 0$ and open $V \supset A$,

a) there exists a homeomorphism $F: X \to X$ such that $F/V = 1_V$, $\varrho(F, 1_M) < \epsilon$ and $F(A) \cap A = \emptyset$,

- icm[©]
- b) there is a $\delta > 0$ such that if $f: A \to X$ satisfies $\varrho(f, 1_A) < \delta$, there exists a homeomorphism $F: X \to X$ such that F/A = f, $\varrho(F, 1_M) < \varepsilon$ and $F/\tilde{V} = 1_{\tilde{V}}$, and
 - c) given an integer m there exists an embedding $f: A \rightarrow W$ such that

$$\varrho(f, 1_A) < \varepsilon$$
, $f/A \cap W_m = 1_{A \cap W_m}$.

Then if $\{A_n\}_{n=1}^{\infty}$ is any collection of finite-dimensional compacta, and \mathcal{U} is any open cover of X, there is a homeomorphism $F\colon X\to X$ such that $F(W)=W\cup\bigcup_{n=1}^{\infty}A_n$ and F is limited by \mathcal{U} .

The following lemma makes use of a technique for extending homeomorphisms due originally to Klee.

LEMMA 5. If $D \subset \overline{H}(M)$ is a finite-dimensional compactum, then there exists a homeomorphism $g \colon \overline{H}(M) \to \overline{H}(M) \times l_2$ with $g(D) \subset 1_M \times l_2$.

Proof. In [10] it was shown that $\overline{H}(M)$ is l_2 -stable. Therefore by Lemma 3a) there is a homeomorphism $\mu\colon \overline{H}(M)\to \overline{H}(M)\times l_2$ with $\mu(D)\subset \overline{H}(M)\times \{0\}$. Let $\alpha\colon \pi_1\mu(D)\to l_2$ be an embedding with $\alpha(\pi_1\mu(D))$ contained in a subset B of l_2 that is homeomorphic to a finite-dimensional cube. We shall construct homeomorphisms g_1 and g_2 of $\overline{H}(M)\times l_2$ such that $g_2g_1(\mu(D))\subset 1_M\times l_2$. Then $g=g_2g_1\mu$ will be the required homeomorphism.

Since l_2 is an AR we can choose a mapping $\beta \colon \overline{H}(M) \to l_2$ extending $\alpha \colon \pi_1 \mu(D) \to l_2$. Then define the homeomorphism $g_1 \colon \overline{H}(M) \times l_2 \to \overline{H}(M) \times l_2$ by $g_1(x,y) = (x,y+\beta(x))$.

Since $\alpha(\pi_1\mu(D))$ is contained in a finite-dimensional cube B and $\overline{H}(M)$ is uniformly LC^{∞} there exists a map $f : B \to \overline{H}(M)$ extending α^{-1} . Then by Lemma 2, there is a map $F : B \to H(\overline{H}(M))$ with $F(b)(f(b)) = 1_M$ for all $b \in B$. Let r be any retraction of I_2 onto B and define the homeomorphism $g_2 : \overline{H}(M) \times I_2 \to \overline{H}(M) \times I_2$ by $g_2(x,y) = \{F(r(y))(x), y\}$. We check that for $d \in D$, $g_2g_1\mu(d) \in 1_M \times I_2$:

$$g_{2}g_{1}\mu(d) = g_{2}g_{1}(\pi_{1}\mu(d), 0) = g_{2}(\pi_{1}\mu(d), \alpha\pi_{1}\mu(d))$$

$$= (F(\alpha\pi_{1}\mu(d))(\pi_{1}\mu(d)), \alpha\pi_{1}\mu(d))$$

$$= (F(\alpha\pi_{1}\mu(d))(f\alpha\pi_{1}\mu(d)), \alpha\pi_{1}\mu(d)) = (1_{M}, \alpha\pi_{1}\mu(d)) \in 1_{M} \times l_{2}.$$

In the following let $st^n(\mathcal{U})$ denote the *n*th star of \mathcal{U} (cf. [2]).

LEMMA 6. Let A be a finite-dimensional compactum and let $h = (h_t)$: $A \times I \rightarrow \overline{H}(M)$ be a homotopy such that each of h_0 and h_1 is an embedding and h is limited by a given open (in $\overline{H}(M)$) cover $\mathscr U$ of $h(A \times I)$. Then

- a) there is a homeomorphism $f \colon \overline{H}(M) \to \overline{H}(M)$ which is limited by $\operatorname{st}^8(\mathcal{U})$ and satisfies $fh_0 = h_1$, and
 - b) if $h|A \times (0, 1)$ is 1-1, then the f above can be chosen to be limited by $st^4(\mathcal{U})$. Proof. We shall first prove b). If $h|A \times (0, 1)$ is 1-1, then the dimension of

 $h(A \times I) = h_0(A) \cup h_1(A) \cup \bigcup_{n \in \mathbb{N}} h(A \times [1/n, 1-1/n])$ is bounded by $I + \dim A$ and

hence by Lemma 5 there is a homeomorphism $g: \overline{H}(M) \to \overline{H}(M) \times l_2$ with $gh(A \times I) \subset 1_M \times l_2$. Passing to a refinement if necessary, we may assume that $g(\mathcal{U})$ is of the form $\{N_{\epsilon}(1_M) \times U \mid U \in \mathcal{U}'\}$ where \mathcal{U}' is an open cover of $\pi_2 gh(A \times I)$ in l_2 and $N_{\epsilon}(1_M)$ is a ball in $\overline{H}(M)$ of a positive radius ϵ centered at 1_M .

By Theorem 4.2 of [2] there is an isotopy (f_t) : $l_2 \times I \to l_2$ which is limited by $\operatorname{st}^4(\mathcal{U}')$ and satisfies $f_0 \pi_2 g h_0 = \pi_2 g h_1$ and $f_t = 1_{l_2}$ for $t \ge \varepsilon$. We define $f' : \overline{H}(M) \times l_2 \to \overline{H}(M) \times l_2$ by $f'(x, y) = (x, f_{\varrho(x, 1_M)}(y))$. Then $f = g^{-1} f g : \overline{H}(M) \to \overline{H}(M)$ is the desired homeomorphism.

Proof of a). Since $\overline{H}(M)$ is l_2 -stable, it follows from Lemma 3b) that there exists a homotopy $h': A \times I \to \overline{H}(M)$ with h' = h on $A \times \{0, 1\}$, $h'/A \times (0, 1)$ is injective and h' is limited by $\operatorname{st}(\mathcal{U})$. Thus part a) follows from b) applied to h' and $\operatorname{st}(\mathcal{U})$.

LEMMA 7. Let $A \subset \overline{H^*}(M)$ be a finite-dimensional compactum, $A_0 \subset A$ be closed with $A_0 \subset PLH(M)$ and $\varepsilon > 0$ be given. Then there exists an embedding $f: A \to PLH(M)$ with $o(f, 1_A) < \varepsilon$ and $f/A_0 = 1_{A_0}$.

Proof. By Lemma 1 PLH(M) is a dense uniformly locally contractible subspace of $\overline{H^*}(M)$ and hence [7] there is a map f': $A \to \text{PLH}(M)$ with $\varrho(f', 1_A) < \frac{1}{2}\varepsilon$ and $f'/A_0 = 1_{A_0}$. Since PLH(M) is an l_2^f -manifold, by Lemma 3b) there is an embedding f: $A \to Y$ with $\varrho(f', f) < \frac{1}{2}\varepsilon$ and $f/A_0 = 1_{A_0}$. Then f has the required properties.

The proof of the main theorem now follows easily.

Proof of Theorem 1. Since $\overline{H^*}(M)$ is a separable metric space, we can apply Lemma 4, letting $W=\operatorname{PLH}(M)$. By Lemma 1b), $\operatorname{PLH}(M)$ is the union of finite-dimensional compacta. Condition a) is satisfied trivially since $\overline{H^*}(M)$ is I_2 -stable ([10]). Lemma 6 implies that condition b) is satisfied since two sufficiently close maps of a finite-dimensional compacta into a locally contractible space are homotopic. Finally, Lemma 7 shows that condition c) is satisfied. Since $\overline{\operatorname{PLH}}(M)$ contains $\operatorname{PLH}(M)$ and is the countable union of finite-dimensional compacta, given a cover $\mathscr{U}'=\{U\cap \overline{H^*}(M)|\ U\in\mathscr{U}\}$ of $\overline{H^*}(M)$ there is a homeomorphism $F':\overline{H^*}(M)\to\overline{H^*}(M)$ limited by \mathscr{U}' and taking $\operatorname{PLH}(M)$ onto $\overline{\operatorname{PLH}}(M)$. Finally, extend F' to a homeomorphism $F:\overline{H}(M)\to\overline{H}(M)$ by $F/\overline{H}(M) \setminus H^*(M) = 1_{\overline{H}(M)} \setminus \overline{H^*}(M)$

The proofs of Lemmas 2, 5 and 6 follow exactly the same if $\overline{H}(M)$ is replaced by H(M). In [9] it was shown that PLH(M) has the "finite-dimensional compact absorption property" in $H^*(M)$ and hence that $(H^*(M), PLH(M))$ is an (l_2, l_2^l) -manifold pair if and only if H(M) is an l_2 -manifold. The following corollary is a strengthening of the main result of [9]. It follows immediately from the suggested modifications of Lemma 6 and Lemma 7.

COROLLARY 3. Let $(A, A_0) \subset (H^*(M), PLH(M))$ be a pair of finite-dimensional compacta. Given $\varepsilon > 0$, there exists a homeomorphism $\varphi \colon H^*(M) \to H^*(M)$ with $\varphi(A) \subset PLH(M)$, $\varphi(A) = 1_{A_0}$ and $\varrho(\varphi(f), f) < \varepsilon$ for all $f \in H^*(M)$.

Appendix. One reason for studying $\overline{H}(M)$ and the pair $(\overline{H}(M), \overline{PLH}(M))$ is in order to gain insight into the question of whether H(M) is an ANR (and hence 2—Fundamenta Mathematicae CII

References

e-11 (-e F1)

by results of Toruńczyk and Geoghegan an l_2 -manifold (cf. [19])). In particular, it is easy to see that if $\overline{H}(M)$ is an ANR, then so is H(M) (cf. [12]). In this section we observe that for a given integer n, it suffices to study the most simple case: $H_{\partial}(B^n)$ (Here $H_{\partial}(B^n) = \{h \in H(B^n) \mid h \mid \partial B^n = 1_{\partial B^n}\}$ and $PLH_{\partial}(B^n) = H_{\partial}(B^n) \cap PLH(B^n)$. Also $N_{\partial}(1_M) = \{h \in H(M) \mid \varrho(h, 1_M) < \delta\}$.) Our proof makes use of the following fact which appears in the proof of Corollary 1.3 on p. 79 of [6].

Lemma 8 (Edwards-Kirby). Let $\{B_1, ..., B_p\}$ be an open cover of M^n with \overline{B}_1 a closed n-ball for each i. Then there exists a $\delta > 0$ and a map

$$\varphi \colon N_{\delta}(1_M) \to H_{\delta}(B_1) \times ... \times H_{\delta}(B_n)$$

such that for each homeomorphism $h \in N_{\delta}(1_M)$, $h = [\pi_p(\varphi(h))]' \circ \dots \circ [\pi_1(\varphi(h))]'$, where for each i, $[\pi_1(\varphi(h))]' : M \to M$ is the homeomorphism defined by

$$[\pi_i(\varphi(h))]'(x) = \begin{cases} \pi_i(\varphi(h))(x) & \text{for } x \in B_i, \\ x & \text{for } x \notin B_i. \end{cases}$$

THEOREM 2. Let n be a fixed positive integer. If $H_0(B^n)$ is an ANR, then $H(M^n)$ is an ANR for any compact n-manifold, M^n . Hence, if $\overline{H_0}(B^n)$ is an ANR, then $H(M^n)$ is an ANR for any compact n-manifold, M^n .

Proof. Let $\{B_1, \ldots, B_p\}$ be an open cover of M^n with \overline{B}_l a closed n-ball for each i. Then let $N_{\delta}(1_M) \subset H(M)$ and $\varphi \colon N_{\delta}(1_M) \to M_{\delta}(B_1) \times \ldots \times H_{\delta}(B_p)$ be as in Lemma 8. Define $\psi \colon H_{\delta}(B_1) \times \ldots \times H_{\delta}(B_p) \to H(M)$ by $\psi(f_1, \ldots, f_p) = f_p' \circ \ldots \circ f_1'$, where

$$f_i'(x) = \begin{cases} f_i(x) & \text{for } x \in B_i, \\ x & \text{for } x \notin B_i. \end{cases}$$

Then $\psi/\psi^{-1}(N_{\delta}(1_M))$: $\psi^{-1}(N_{\delta}(1_M)) \to N_{\delta}(1_M)$ is an r-map; i.e., there exists a map $\varphi \colon N_{\delta}(1_M) \to \psi^{-1}(N_{\delta}(1_M))$ such that $(\psi/\psi^{-1}(N_{\delta}(1_M))) \circ \varphi \colon N_{\delta}(1_M) \to N_{\delta}(1_M)$ is equal to $1_{N_{\delta}(1_M)}$. But $\psi^{-1}(N_{\delta}(1_M))$ is an open subset of $H_{\delta}(B) \times ... \times H_{\delta}(B_p)$ and hence, by assumption, is an ANR. Therefore, being the r-image of an ANR [4], $N_{\delta}(1_M) \subset H(M^n)$ is an ANR. But then since $H(M^n)$ is a topological group, each point has an open ANR neighborhood and hence $H(M^n)$ is an ANR.

Remarks. 1) In [16] Mason's theorem [17] that $H_{\theta}(B^2)$ is an ANR was used to prove that $H(M^2)$ is an ANR for every compact 2-manifold, M^2 . Theorem 2 thus provides an alternate path to this result.

- 2) In [15] it is shown that $PLH_{\vartheta}(B^n)$ is dense in $H_{\vartheta}(B^n)$ for $n \neq 4$. The reader can easily see that this fact, combined with Lemma 8 shows that $PLH(M^n)$ is dense in $H(M^n)$ with the proper dimensional restrictions (see [9] for details). Thus the methods of this paper provide an alternate proof of the results of [9] (see Corollary 3).
- 3) Theorem 2 suggests many possible methods for showing that $H(M^n)$ is an ANR. For example, since $\overline{\mathrm{PLH}_{\bar{\theta}}}(B^n)$ is an ANR, to show that for any n-manifold M^n , $n \neq 4$, $H(M^n)$ is an ANR it suffices to show that for a given open cover \mathscr{U} of $\overline{H_{\bar{\theta}}}(B^n)$ there exists a map $\varphi: \overline{H_{\bar{\theta}}}(B^n) \to \overline{\mathrm{PLH}_{\bar{\theta}}}(B^n)$ limited by \mathscr{U} .

- [1] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), pp. 771-792.
- [2] and J. D. Mc Charen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), pp. 283-289.
- [3] C. Bessaga and A. Pełczyński, Infinite Dimensional Topology, Warszawa 1975.
- [4] K. Borsuk, Theory of Retracts, Warszawa 1967.
- [5] A. V. Chernavskii, Local contractibility of the homeomorphism group of a manifold, Soviet Math. Dokl. 9 (1968), pp. 1171-1174.
- [6] R. D. Edwards and R. C. Kirby, Deformations of spaces of embeddings, Ann. of Math. 93 (1971), pp. 63-88.
- [7] S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), pp. 613-622.
- [8] R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions. (II) The piecewise linear case, Proc. London Math. Soc. 27 (3) (1973), pp. 463-483.
- [9] and W. E. Haver, On the space of piecewise linear homeomorphisms of a manifold, Proc. Amer. Math. Soc. 55 (1976), pp. 145-151.
- [10] and D. W. Henderson, Stable function spaces, Amer. J. Math. 95 (1973), pp. 461-470.
- [11] W. E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), pp. 280-284.
- [12] The closure of the space of homeomorphisms on a manifold, Trans. Amer. Math. Soc. 195 (1974), pp. 401-419.
- [13] Topological description of the space of homeomorphisms on closed 2-manifolds, III. J. Math. 19 (1975), pp. 632-635.
- [14] J. Keesling and D. Wilson, The group of PL-homeomorphisms of a compact Pl-manifold is an !!-manifold, Trans. Amer. Math. Soc. 193 (1974), pp. 249-256.
- [15] R. Kirby, Lectures on triangulations of manifolds, mimeographed notes, Univ. of California, Los Angeles 1969.
- [16] R. Luke and W. Mason, The space of homeomorphisms on a compact two-manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc. 164 (1972), pp. 273-285.
- [17] W. K. Mason, The space of all self-homeomorphisms of a 2-cell which fix the cell's boundary is an absolute retract, Trans. Amer. Math. Soc. 161 (1971), pp. 185-206.
- [18] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), pp. 271-294.
- [19] H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), pp. 53-67.
- [20] (G, K)-absorbing and skeletonized sets in metric spaces, Ph. D. thesis, Inst. of Math., Polish Acad. of Sciences, 1970.
- [21] J. E. West, The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces, Pacific J. Math. 34 (1970), pp. 257-268.

THE INSTITUTE FOR ADVANCED STUDY Princeton, New Jersey
THE UNIVERSITY OF TENNESSEE
Knoxylle, Tennessee

Accepté par la Rédaction le 28. 6. 1976