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n’est pas résiduel, comme il ne coupe pas l’ensemble Rx 4. Démontrons encore
que la fonction f n’est monotone dans aucun ensemble ouvert, non vide de I’espace X.
Soit U< X un ensemble ouvert, non vide de ’espace X. Soit (x,, ¥,) € U un point tel
que xq € C. Remarquons que la coupe U,, de I'ensemble U est un ensemble ouvert

dans R. La coupe f,(») = f (xo, y) nest pas monotone dans I'ensemble ouvert U,,,-

il existe donc un nombre z € R tel que (f,,)”*(2) n’est pas connexe, De plus, comme
la fonction f;, est continue, ’ensemble ( f,)”*(2) est fermé. Soit («, B) une composante
du complémentaire U, —(fy,) *(z). L’ensemble (f,)~*(z) étant non dense pour

tout x e C et Pensemble C étant dénombrable, 'ensemble |J ()~ *(2) est de premiére
xeC ‘

catégorie. Il en résulte que ensemble ((, B) n B)— U (£,)”*(2) est non vide. Soit

xeC

v €((, B) N B)— Uc(fx)“l(Z)'
On a donc N
UnfT@ o {(x.0)eX: y =y} =0

et par conséquent I’ensemble U n f~1(z) n’est pas connexe dans U, ce qui termine
la démonstration.
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The closure of the space of homeomorphisms on a manifold.
The piecewise linear case

by

William E. Haver (Princeton, N. J.)

Abstract. Let H(M) denote the space of all continuous functions on a compact p.l. mani~
fold M which can be approximated by homeomorphisms and PLH (M) the space of all p.1. map-
pings which can be approximated by p.1. homeomorphisms. The pair (H(), PLH (M) is studied
and it is shown that PLH(M) is an l{ -manifold for compact p.l. manifolds M of dim # 4, 5.

Let M be a compact piecewise linear manifold and PLH (M) denote the space
of all piecewise linear homeomorphisms of M onto itself. We shall study the space,
PLH(M), of all piecewise linear mappings which can be approximated arbitrarily
closed by elements of PLH(AM). All function spaces on compact manifolds will
be assumed to have the supremum metric ¢; i.e., if X and. ¥ are manifolds with d the
metric on ¥ and f and g are mappings from X into ¥, then

o(f,9) = Sug{d(f(X), g@(x)} .

Note: Suppose fy,f; € PLH(M). In this topology a homotopy from fo to fy is
a map F:+Mx[0,1]-M such that Fo =fo, Fy =f; and for each re[0,1],
F,e PLH(M). In particular, it is not required that F be a p.1. map from Mx [0, 1]
into M. .

" This paper is a sequel to [12] where the author studied H(M), the space of all
continuous functions on M which can be approximated by homeomorphisms of M
onto itself. Tn many cases H(M) has been identified by Siebenmann [18] with the
space of cellular maps of M onto itself.

For some years now there has been considerable interest in the question of
whether H(M), the space of homeomorphisms of M onto itself, is locally homeo-
morphic to /,, the Hilbert space of square summable sequences. See [9] for a summary
of what is known about H(M) and the pair (H(M), PLH(M)). In the appendix
of this note we make an observation of a new criterion for determining if H(M™)
is an I,-manifold. The major portion of this note is devoted to proving the following:

TueoreM 1. Let M" be a compact p.l. n-manifold, n # 4; if n = 5, 0M" = J.
Then given an open cover U of H(M"), there exists a homeomorphism of H(M") onto
itself which is limited by % and carries PLYL(M") ento PLH (M™.
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Let I3 be the (dense, incomplete) linear subspace of [, consisting of those se-
quences having only finitely many nonzero entries. A space thatis separable, metrizable
and locally homeomorphic to 4 is called an /{-manifold. Keesling and Wilson [14]
have shown, using results of Geoghegan [8], Torudczyk [19] and Haver [11] that
PLH(M)isan 1$-manifold. We therefore have the following corollary to our theorem.

COROLLARY 1. PLH (M) is an l5-manifold and hence an ANR.

COROLLARY 2. Given an open cover 4 of PLH (M), there is d map ¢q: PLH (M)
—PLH (M) that is limited by % i.e., piecewise linear cellular maps can be canonically
approximated by piecewise linear homeomorphisms.

We note that the statements in the topological category analogous to Corol-
lapies 1 and 2 are unresolved. The statement corresponding to Corollary 1 is discussed

“in [12] and Corollary 2 in [8]. .

The author would like to thank H. Toruhczyk for reading an earlier version
of this paper and making suggestions which resulted in a substantial shortening of
the exposition. In addition to suggesting the general outline of the current version
he suggested the use and proof of Lemma 6. :

NOTATION. Let A<= X; X\4 will denote the complement of 4 in X; this com-
_plement will also be denoted 4 when there is no possibility of confusion; 1, will
denote the inclusion of 4 in X. .

If M is a manifold, dM will denote the boundary of M. =; is the projection

"
of [TX; onto X;, i=1,...,n
i=1

Let % be a collection of open subsets of X and f: X—X a function; fis limited
by % if for each x e X, f(x) = x or there exists Ue# with {x} u {f(x)}=U.

We start our proof of the theorem with two lemmas concerning properties of
function spaces on manifolds. Throughout this paper we assume that M is a com-
pact p.1. manifold of dimension n # 4 and if n = 5, then M = @.-Let H*(M)
be the subset of H(M) consisting of those homeomorphisms which are isotopic
to p.1. homeomorphisms. Let H* (M) be the space of all continuous functions on M
which can be approximated by elements of H*(M).

LeMMA 1. a) H(M) is uniformly locally contractible and hence H(M) is LC™;

b) each of PLH(M) and PLH (M) is the countable union of finite dimensional
compacta; '

¢) PLH(M) is an B-manifold,

d) PLH(M) is dense in H*(M) and hence PLE (M) is dense in H*(M).

Proof. a) In Edwards-Kirby [6] and Chernavskii [5] it is shown that H(M) is
uniformly locally contractible. It then follows from Eilenberg and Wilder [7] that
H(M) is LC™ (see also [12]). b) Was shown by Geoghegan in [8]. ¢) Was proved
in [14]. Part d) is proved in detail in [9]; for an indication of proof, see Remark 2 at
the end of this paper. The dimension restrictions are necessary only for part d),

Consistent with our previous notation, let H(H(M)) denote the space of all
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homeomorphisms of H(M) onto itself, under the compact open topology. In [12] the
author proved that H(M) is homogeneous. The following lemma is a parametrized
version of that result and can easily be proved by the same methods with the following,
modifications: ’

1) In the proof of Lemma 2.5 of [12] we are given positive numbers b and ¢ and
g e H(M) with g(g, 1)) <b. Then he H(M) is chosen with ¢(h, g)<min(b, c)
and o(h, 1) <b. Using Lemma 1a) it is possible to make the choice of & depend
continuously on g. To be more precise: let b and ¢ be positive numbers and D be
a finite-dimensional compactum. Then if g: D—H(M) is a mapping with
0(g(d), 1p;)<b there exists a mapping h: D—H(M) with o(h(d), g (d))<min(b, ¢}
and g(h(d), 1) <b for all de D.

2) In the proof of Lemma 2.4 of [12] let the map H depend continuously on /&
(see Lemma 2.2 of [12] and the paragraph préceding its statement).

LemMA 2 (parametrized homogeneity). Given >0, there is a 6 >0 such that if D
is a finite-dimensional compacta and if f: D—~H(M) satisfies o(f(d), 1y)<d for
all de D, then there is a map F: D—~H(H(M)) so that F(d)(f (@) = 1y and for
all de D, if g € H(M) with o(g, 1) >¢, then F(d)(g) = g. If ¢ = o0, & can be faken
to be . .

Remark. We will use only the case & = o in the following.

LemMA 3. Let E denote I, or I and Y be an E-stable space (i.e., Y YxE)
with D an arbitrary finite-dimensional compactum in Y. Then

a) there is a homeomorphism p: Y—Yx E with p(D)= Y% {0};

b) given compacta Do D and f: D—Y there is a sequence {f,: D= Y}oy such
thar f, converges to f and for each n, f,| Do = f1Dg, f, is injective on DN\Dy and
FDNDg) N fi(Do) = B.

Proof. a) Follows immediately from the special case where Y = E which is
well known (cf. [1]); to obtain b), let u: ¥Y— Yx E be a homeomorphism with
(D)= ¥x {0} and let ¢: D~{t=(t)e E| t,= 1} be an embedding. Then define
gn: DY X E by

9,(x) = (my 4 (%), (1/ma(x, D)) @(x)) -

Then for each n, f, = u~tg, is the desired map.

The following is a special case of a theorem of Torusiczyk that is formulated
in a manner convenient for our purposes. For a proof see Theorem 4.2 and Prop-
osition 4.1 of Chapter IV of [3] (see also [20, 210).

o0
LemmA 4 (Toruniczyk). Let X be a complete metric space and W = U1 W, where
p=
each W, is a finite-dimensional compactum in X. Suppose that given d finite-dimensional
compactum A<=X, £>0 and open VoA, :

a) there exists a homeomorphism F: X=X such that F|V = 1y, o(F, 1;p<e

and F(A)n A = @,
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b) there is a 5>0 such that if f A—X satisfies o(f, 1,)<8, there exists a homeo-
morphism F: X—X such that F|A = f, ¢(F, 1) <e¢ and F|V =1y, and

c) given an integer m there exists an embedding f+ A—W such thar

Q(fs 1A)<E H

Then if {A,}5, is any collection of finite-dimensional .compacta, and % is any
) ]

f/A W, = IAr\Wm .

open cover of X, there is-a homeomorphism F: X—X such that F(W) = Wu (J 4,

and Fis limitéd by %. "

The following lemma makes use of a technique for extending homeomorphisms
due originally to Klee. )
LemMMA 5. If DcH(M) is a finite-dimensional compactum, then there exists
a homeomorphism g: H(M)—H(M)x1, with g(D)c 1y, x1,.
Proof. In [10] it was shown that H(M) is /,-stable. Therefore by Lemma 3a)
there is a homeomorphism u: H(M)—H(M)xI, with u(D)=H(M)x{0}. Let
o nlu(D)-»l% be an embedding with o (7, u(D)) contained in a subset B of /, that
is homeomorphic to a finite-dimensional cube. We shall construct homeomor-
phisms g, and g, of H(M)x 1, such that g,g,(u(D))=14x/,. Then g = g,g,
will be the required homeomorphism.
Since 7; is an AR we can choose a mapping f: H(M)—I, extending
o m;pu(D)—I,. Then define the homeomorphism g,: H(M)x,-»H(M)x 1, by
.gl(xa y) = (xs y+ﬂ(x))'
" Since «(m,pu(D)) is contained in-a finite-dimensional cube B and H(M) is
uniformly LC* there exists a map f/: B—~H (M) extending a~*. Then by Lemma 2,
there is a map F: Bo>H(H(M)) with F(b)(f () = 1, for all be B. Let r be any
retraction of /, onto B and define the homeomorphism g,: H(M) x L,~H (M) x I
by gi(x,y) = (F(r(y))(x),y). We check that for de D, g g u(d)e lyxl,: ’

9291 1(d) = g291(m; 1(d), 0) = go(my p(d), amy u(d))
= (F(omy p(@)(my p(d)), amy p(d))
= (Flomy p(d))(fory p(d)), amy (@) = (Lyg, amg p(d)) € 1y x I .

In the following let st"(%) denote the nth star of % (cf. [2]).

LemMA 6. Let A be a finite-dimensional compactum and let It = (h,): A x I-H(M)
be a homo_zopy such that each of hy and h, is an embedding and h is limited by a given
.open (in H(M)) cover U of h(4xI). Then ’

a) there is a homeomorphism f: H(M)~H(M) which is limi/ea; by st® '
satisfies fho = hy, and ) s md

b) if h|Ax(0, 1) is 1-1, then the f above can be chosen to be limited by st*(4).

Proof. We shall first prove b). If 2] 4% (0, 1) is 1-1, then the di i

: s -1, imension of
h(AxI) = hy(4) v hy(4d) v UNh(Ax [i/n,1—~1/n]) is bounded by I+dimd and
ne

icm
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hence by Lemma 5 thére is a homeomorphism g: H(M)—H (M) x I, with gh(4x1)
=1y x1,. Passing to a refinement if necessary, we may assume that g (%) is of the
form {N,(1,) % U| U e %'} where %' is an open cover of ma gh(A x I)in I, and N,(150)
is a ball in H(M) of a positive radius & centered at 1.

By Theorem 4.2 of [2] there is an isotopy (/): 1, % I—1, which is limited by
st*(@") and satisfies fom, ghy = maghy and f; = 1;, for tze. We define f': H(M) x 1,
SHM)x 1, by £/, 9) = (%, Fomi0l0)- Then f= g~ fg: H(M)—~H(M) is the
desired homeomorphism. ’ ’

Proof of a). Since H(M) is I,-stable, it follows from Lemma 3b) that there
exists a homotopy /#': A x I-H (M) with &' = hon 4% {0, 1}, W'[A % (0, 1) is injective
and A’ is limited by st(#%). Thus part a) follows from b) applied to A and st(%).

Lemuma 7. Let AcH*(M) be a finite-dimensional compactum, Ag <A be closed
with Ay PLH(M) and >0 be given. Then there exists an embedding J: A—PLH (M)

with o(f, 1y)<e and flAy = 14,- ‘

Proof. By Lemma 1 PLH(M) is a dense uniformly locally contractible sub-
space of H*(M) and hence [7] there is a map /" A-PLH(M) with ¢(f', 1)<%}e
and f')Jd, = 1,,. Since PLH(M) is an I§-manifold, by Lemma 3Db) there is an
embedding fi A—Y with o(f",f)<%e and f/4p = 1ly,- Then f has the required
properties.

The proof of the main theorem now follows easily.

Proof of Theorem 1. Since H*(M) is a separable metric space, we can apply
Lemma 4, letting W = PLH(M). By Lemma 1b), PLH(M ) is the union of finite-
dimensional compacta. Condition a) is satisfied trivially since H*(M) is
1,-stable ([10]). Lemma 6 implies that condition b) is satisfied since two sufficiently
close maps of a finjte-dimensional compacta into a locally contractible space are
homotopic. Finally, Lemma 7 shows that condition c) is satisfied. Since PLE(M)
contains PLH (M) and is the countable union of finite-dimensional compacta, given
a cover U = {UnHE*(M)| Ue¥} of H*(M) there is a homeomorphism
F': H*(M)—H*(M) limited by %' and taking PLF(M) onto PLH (). Finally,
extend F’ to a homeomorphism F: H(M)~H (M) by F/HMNH*(M) = 1nan, o)

The proofs of Lemmas 2, 5 and 6 follow exactly the same if H(M) is replaced
by H(M). In [9] it was shown that PLH (M) has the “finite-dimensional compact
absorption property” in H*(M) and hence that (H*(M), PLH(M )) is an
(15, I§)-manifold pair if and only if H(M) is an I,-manifold. The following corollary
is a strengthening of the main result of [9]. It follows immediately from the suggested
modifications of Lemma 6 and Lemma 7. ‘ )

CorOLLARY 3. Let (4, Ag)= (H*(M), PLH(M)) be a pair of finite-dimensional
compacta. Given ¢>0, there exisis a homeomorphism @ H*(M)—H*(M) with
@ (A)<PLH(M), ¢/do = 14, and o(o(f),])<e for all fe H*(M).

Appendix. One reason for studying H(M) and the pair (H(M), PBLH(M)) is -
in order to gain insight into the question of wirether H(M) is an ANR (and hence

2 — Fundamenta Mathematicae CII
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by results of Torudiczyk and Geoghegan an l,-manifold (cf. [19])). In particular,
it is easy to see that if H (M) is an ANR, then so is H(M) (cf. [12]). In this section
we observe that for a given integer r, it suffices to study the most simple case: J,(B").
(Here H,(B") = {he H(B")| h|0B" = 1,5} and PLH,(B") = H,(B") n PLH(B",
Also Nyl = {he H(M)| ¢(h, 1,)<8}.) Our proof makes use of the following
fact which appears in the proof of Corollary 1.3 on p. 79 of [6].

Lemva 8 (Edwards-Kirby). Let {By, ..., B,} be an open cover of M" with B
a closed n-ball for each i. Then there exists a §>0 and a map

@1 Ny(lp)—Ho(By) % ... X Hy(B,) .

such that for each homeomorphism he Ny(Ly), b= [m o))’ o ... o [ (0 (W))]
where for each i, [n{@(h)]': M—M is the homeomorphism defined by

[m{e®)] (x) = {n"(q’(h)) x)  for

x Jor

x€B;,
x¢B;.

THEOREM 2. Let n be a fixed positive integer. If Hy(B") is an ANR, then H(M")
is an ANR for any compact n-manifold, M". Hence, if H,(B" is an ANR, then H(M™)
is an ANR for any compact n-manifold, M".

, P}roof. Let {By, ..., B,} be an open cover of M" with B, a closed n-ball for
each 7. Then let Ny(ly)cH(M) and ¢: N(1y)—Ma(B()x...x Hy(B,) be as in.

Lemma 8. Define y: Hp(By)X...x Hy(B)—=H(M) by ¥ (fi,....[n) =TSpowofi,
where

.fi/(-x) — {fl(x)

x for

for xeB;,

xé¢B;.

Then lﬁ/lp_l(]\—]:;j(.lM))i Y (Ns(1p))=Ns(1y) is an r-map; i.e., there exists a map
@1 Ny(1y) =¥ Y (Ny(1p)) such that (/= (Ns(149)) o @1 Ny(1p)~Ny(lye) is equal

t0 Livy(1ay- But 7 (Ns(1y) is an open subset of Hy(B) ... x Hy(B,) and hence, by .

.'flssumption, is an ANR, Therefore, being the r-image of an ANR [4], Ny(1,) = H(M")
is an AI\{R. But then since H(M") is a topological group, each point has an open
ANR neighborhood and hence H(M™ is an ANR.. .

Remarks. 1) In [16] Mason’s theorem [17] that H,(B?) is an ANR was used

to prove that H(M?) is an ANR for every compact 2-manifold, M?. Theorem: 2
thus provides an alternate path to this result.

2) In [15] it is shown that PLH,(B") is dense in H,(B") for n # 4. The reader
can easily see that this fact, combined with Lemma 8 shows that PLH(M™") is dense
in H(M") with the proper dimensional restrictions (see [9] for details). Thus the
methods of this paper provide an alternate proof of the results of [9] (see Corollary 3).

3) Theorem 2 suggests many possible methods for showing that H(M") is an
ANR. For example, since PLH,(B") is an ANR, to show that for any n-manifold ™
n # 4, H(M") is an ANR it suffices to show that for a given open cover % of Hy (B";
there exists a map ¢: H(B")—»PLH,(B") limited by 4. / ’
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