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On the local homogeneity and the invertibility
of a topological space

by

Chung-wu Ho (Edwardsville, Til)

Abstract. The author introduces a concept of local homogeneity for topological spaces and uses
it to characterize those invertible spaces which are homogeneously invertible, He then establishes
the local homogeneity and the homogencous invertibility of some spaces and finally compares the
local homogeneity of this paper with some other types of local homogeneity which appear in the
literature.

1. Introduction. In this paper we shall study a type of local homogeneity of
a topological space and its relationship to the invertibility of the space. In particular,
we shall answer a question recently raised by J. Chew [3, p. 621] that whether a homo-
geneously invertible Hausdorfl' space needs be normal (see Section 4). All the basic
definitions are given in Section 2, where we shall study the locally homogeneous
spaces and use the concept of local homogeneity to characterize those invertible
spaces which are homogeneously invertible. In Section 3, we shall establish the
local homogeneity and- the homogeneous invertibility of many familiar spaces.
Finally in Section 4, we shall look at Chew’s question and compare our notion of
local homogeneity with some other types of local homogeneity which appear in the
literature.

2. Local homogeneity and invertibility. Let X be a topological space. A point
x e X is called a local homogeneous point of X if for each open set U containing x,
there exists an open set ¥ with the properties that x e V<= U and for each ye V,
there exists a homeomorphism f of X onto X carrying x into y such that f (V)= U.

Note that we do ot require f to be identity outside U. A space is said to be locally

homogeneous if every point of the space is a local homogeneous point. Observe that
local homogensous points are preserved by homeomorphisms of the space. For
any space X, the set of all the local homogeneous points is open in X. If X is near
homogeneous (i.e. if for each nonempty open subset U of X and each x e X, there
exists 2 homeoniotphism f of X onto X such that £ (x) € U [2], [10]) and if X has
at least one local homogeneous point then the set of all the local homogeneous
points of X is open and dense in X. There are s'paces which have no local homo-
geneous points. This is clear because there are nontrivial spaces for which the only
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homeo.morphism of the space onto itself is the identity homeomorphism [9]. In the
follovfrmg, we sl}all describe, however, a near homogeneous space which does not
contain any local homogeneous point.

. Start with a closed interval of unit length: At the midpoint of this interval erect
an interval of length % so that the two intervals are perpendicular bisectors of each
other, At the midpoint of each of the four intervals in the resulting figure, erect an
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QUESTION 2.1. When is a homogeneous space locally homogeneous ?

o b:i)rin. ;nzeilest ﬁn the local homogeneous space' stems from the fact that the property
enwug1 ocally homogeneous characterizes those invertible spaces which are hopl g
g sly invertible (see Theorem 1.5 below). Recall that a space X is said tonl(s)-
e

invertible at a point x € X if for each open neighbourhood U of x, there exists
V g ]
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a homeomorphism f of X onto X such that F(X—U)=U, and X is said to be
homogeneously invertible at a point x € X if for each open neighbourhood U of x and
for each point y e X— U, there exists a homeomorphism f of X onto X such that
f(X=U)cU and f(y) = x. A space is called an invertible space (or homogeneously
invertible space) if-it is invertible (or homogeneously invertible) at each of its
points.

PROPOSITION 2.2. If a space is invertible at a local homogeneous point, then
the space is locally homogeneous and homogeneously invertible everywhere.

Proof. Let X be a space which is invertible at a local homogeneous point x € X,
Consider an arbitrary point y € X. We contend-that y can be carried into x by
a homeomorphism of X. First choose a neighbourhood U of x such that each point
of U can be carried into x by a homeomorphism of X, If y belongs to U then our
contention is true. If y does not belong to U, then by the invertibility of X at x,
we may choose a homeomorphism f of X which carries y into U. Then choose
a homeomorphism g of X which carries f () into x. The composite g o fis a homeo-
morphism of X carrying y into x. Since each point of X can be carried into x by
a homeomorphism, X is homogeneous. In a similar way, we can also show that X is
homogeneously invertible at x. But the properties of being a local homogeneous
point and of being a homogeneously invertible point are both preserved under
homeomorphisms. Hence, the space is locally homogeneous and homogeneously
invertible everywhere.

‘We can now give a very simple proof to the following fact which is undoubtedly
known. : .

COROLLARY 2.3. The only manifold which is homeomorphic to a suspersion is
a sphere.

Proof. It is well known that spheres are suspensions. Let M be a manifold which
is homeomorphic to a suspension. Then M has at least two invertible points (see
[6, Theorem 8]). But a manifold is always locally homogeneous. By Proposition 2.2,
M is invertible and hence, a topological sphere [4].

PROPOSITION 2.4. If X is a homogeneously invertible space with at least iwo
disjoint nonempty open subsets, then X is also locally homogeneous.

Proof. We will use the fact that the property of being a local homogeneous
point is preserved by homeomorphisms. Since a homogeneously invertible space is
clearly homogeneous, to show that X is locally homogeneous, it suffices to show
that X contains at least one local homogeneous point. Now, let W, W’ be two disjoint

. nonempty open subsets of X with xe W' and x' € W'. We shall show that x is a local

homogeneous point. Let U be any ‘given open set containing x. Set V= Un W.
Then for each ye V we choose a homogeneously invertible carrying y into x’ and
X— W' into W’. Also, choose a homogeneously invertible g carrying x' into x and
X—V into V. Then gof is clearly a homeomorphism of X onto X such that

gof(y) =x and gof(V)=U.
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THEOREM 2.5. For a Hausdorff space, local homogeneity is a necessary and
sufficient condition for an invertible space to be homogeneously invertible.

Pioof. The sufficiency part follows directly from Proposition 2.2. For the
necessity part, consider a homogeneously invertible Hausdorff space X. Tf Card X< 1,
* the space is trivially locally homogeneous. If Card X> 1, the space must contain at
least two disjoint nonempty open sets. Proposition 2.4 is then applicable.

3. Homogeneously invertible spaces. Tn this section we shall give some examples
of homogeneously invertible spaces. We shall observe that many of the invertible
spaces established by Doyle, Hocking et al. in [5] and [6] are in fact homogeneously
invertible spaces. In particular, the following are all homogeneously invertible spaces:
the n-sphere;, rational points of the n-sphere, an infinite set with the finite complement
topology, the space R® of the product of a countable, infinite family of real lines,
and the subspace of R” consisting of all the infinite sequences of real numbers with
finitely many nonzero terms. To show these to be homogeneously invertible spaces,
one needs only establish the local homogeneity at a single point. It is straight forward
to do this for each of the above spaces. In the following, we shall give a few more
examples of homogeneously invertible spaces for which the proof is less str'nght
forward. :

ProrositioN 3.1. The Cantor set is locally homogeneous, dand /1ence homio-
geneously invertible.

Proof. Let C be the Cantor set. We first show the local homogeneity of C.
‘At the nth stage in constructing the Cantor set from the unit interval, we remove
the open middle one-third from each of the subintervals and obtain 2" closed subin-
tervals I; (i = 1,2, ..., 2"). We shall call each of the sets I, C (i = 1,2, oy 2%
aunit of the Cantor set C. Note that each unit is an open and closed subset of C which
contains infinitely many further units. Also, each unit of C is homeomorphic to the
entire Cantor set C itself.

Now, consider any x & C and any open set U of C containing x. Let ¥ be any
unit’ of C such that x e V< U. Since Cantor set is homogeneous (see for instance
[11, Ex. 2-37]), for each y € ¥, there is a homeomorphism f from ¥ onto ¥ which
catries y to x. Extending f into a homeomorphism f/ of C by requiring /7 to be
pointwise fixed outside ¥, we get a desired homeomorphism,

Since- the’ Cantor set is known to be invertible [5, p. 959], it is therefore,
homogeneously invertible by Proposition 2.2.

ProrosiTioN 3.2. An infinite product of closed unit intervals is locally homo-
géneous and homogeneously invertible.

Proof. We first show that an mf‘mite product X = T 7, of closed intervals

pad
I, = [0,1] is homogenedus. The case' when the index set 4 is countably infinite

1has long been established [12] (also see [8]). Observe that the case of an uncountable
set 4 follows from the countable case as follows: the space ‘Xis homeommphm to
an uncountable product H X, where'each Xj is 4 product of a countable mﬁmtc
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family of closed unit intervals. By the countable case, each X, is homogeneous.
But a product of homogeneous spaces is obviously homogeneous, hence, X is
itself homogeneous.
Now we shall show that the point x € X with each component 7, (.X) =1is
a local homogeneous point of X where for each « € 4, n,: X—1, is the pro_}ectxon
map. Let any open set ¥ containing x be given. We can choose a product neigh--
n

bourhood U = ﬂ 7c“1 (U)) of x in Xsuchthat U=V and each U, is an open mtexval

in [0, 1] cont'unmg 4 and having a length less than £. Now let y be any point in U.
For eachi = 1,2, ..., n, we can clearly choose a (piecewise linear) homeomorphism

1+ [0, 110, 1] wlnch moves the point § to the point =, (y) and keeps the set U,
in 1tse1f. Using the homogeneity of an infinite product space of closed intervals,
we may then choose a homeomorphism

k: H I~ H 1,

AF ALy aue sl

which carries, for each component o # o, ¢y, ..., &,, the point % into the point 7,{y)
The cartesian product i = /iy X iy X ... X b, x k is then a homeomorphism of X onto
itself such that k(x) = y and h(U)< U. This establishes the local homogeneity of X
at x. Since X is known to be invertible [5, Theorem 11], it is also homogeneously
invertible.

COROLLARY. 3.3. The Hilbert cube is locally homogeneous and homogeneously
invertible. ’ '

PROPOSITION 3.4. The Hilbert space is locally homogeneous and homogeneously
invertible.

Proof. Since the Hilbert space is known to be invertible [6, Theorem 16],
it is sufficient to establish the local homogeneity. But by [1], the Hilbert space is
homeomorphic to a product of locally homogeneous spaces, hence, is itself locally
homogeneous.

We would like to point out here that not all invertible spaces are homogeneously
invertible. For instance, the universal one-dimensional plane curve is known to be
invertible [5, pp. 963~964], but it is not homogeneously invertible, for it fails to be
homogeneous [13]. '

4. Separation axioms and other types of local homogenejty. We first consider
the relationship between homogeneous invertibility and the separation axioms.
James Chew showed that a homogeneously invertible Hausdorff space is always
regular [3, Theorem 8]. This led naturally to the question that whether such a space
needed be normal also. We shall show that it is not necessarily the case. Let X be
the product space of an uncountable copies of the open unit interval (0, 1). By an
argument similar to that used for [6, Theorem 17], one sees easily that X is invertible.
Tt is also easy to see that a product of locally homogeneous spaces is Iocally homo-
geneous, Therefore, by Proposition 2.2, X is homogeneously invertible. X is clearly
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Hausdorff (in fact, X is completely regular). The fact that X is not normal
follows from a classical theorem of A. H. Stone [15, Theorem 4].

Finally, we shall compare our notion of local homoegeneity with some other
types of lécal homogeneity which appear in the literature. One of these, which is
very similar to ours, is called strong local homogeneity. It was studied by
L. R. Ford [7] and P. S. Mostert [14]. A space X is said to be strong locally homo-
geneous if for each neighbourhood U of an arbitrary point x, there exists a sub-
neighbourhood ¥ such that for each y € ¥, there exists a homeomorphism f with
f(x) =y and with f equal to the identity on X—U. A weaker form, introduced
by G. S. Ungar [16], which does not insist on f being identity outside U but instead,
requires only f to be an “e-homeomorphism”. of the space, is called uniform local
homogeneity. Specifically, a space (X, &) is uniformly locally homogeneous if there
1is a uniformity o for X such that (1) the uniform topology is 4~ and (2) given any x
in X and any 4 € &/ there exists a neighbourhood U of x such that if y € U, then
there exists a homeomorphism f such that f(x) = y and the graph of f is contained
in A.

.

Clearly, strong local homogeneity = uniform local homogeneity
= local homogeneity.

On the other hand, it is well known that strong local homogeneity and uniform local
homogeneity are not equivalent in general. For instance, the product space of a circle
with the Cantor set is not strong locally homogeneous, but is uniformly locally homo-
-geneous. The relationship between uniform local homogeneity and local homogeneity
seems to be more complex. Since uniform local homogeneity is defined as a topo-
logical property, to construct a counterexample for the equivalence of these two con-
«cepts, one has to construct a locally homogeneous space and show that:it is not
uniformly locally homogeneous under any compatible uniformity. However, it is
-easy to see that a cohnected locally homogeneous space is always homogeneous,
and in a private communication G. S. Ungar told me that for a locally compdct,
separable, metric space, homogeneity always implies uniformly locally homogeneity.
“Thus, for a connected locally compact separable metric space, local homogeneity,
homogeneity, and uniform local homogeneity are all equivalent.

Acknowledgment. The author is indebted to G. S. Ungar for pointing out an
error in a preliminary version of this paper, and for commenting on the relationships
between local homogeneity and uniform local homogeneity.
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