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Homotopy characterization of weakly flat knots
by

Vo-Thanh-Liem * (Athens, Ga)

Abstract, Let X be a compactum in the n-sphere §" nz= 6, having the shape of S"~%. If X is
globally homotopically unknotted in $", then its complement is PL-homeomorphic to the com-
plement of a locally flat codimension-2 sphere.

1. Introduction. After solving Siebenmann’s conjecture that “a globally 1-alg
codimension-2 sphere in S", n35, whose complement has the homotopy type
of §1, is weakly flat”, Hollingsworth and Rushing raised in [4] the following con-
jecture: “Assume that X is a globally homotopically unknotted codimension-2
sphere in S", then there is a locally flat (n—~2)-sphere X in §” such that
St X S 27, ‘

In [3], Daverman gives a “yes” answer to that conjecture for shape class
of §"=% if §"— X has the homotopy type of a finite complex.

As it is stated in the abstract, it will be shown in this paper that the conjecture
is true for the embedding of the shape class of the codimension-2 sphere for n>6 by
proving, through Lemmas 1-6, that the end of §"— X has arbitrarily small, finitely
dominated neighborhoods.

Actually, a little more general results, Theorem TI-ILI are obtained. In order to
make the paper readable, however, the proof for a simple case is presented in detail
and then, an outline for the general case is. given.

Finally, the author wishes to express his gratitude to J. G. Hollingsworth for
his interesting discussions.

2. Notations and definitions,

I: g finitely generated,

17; (PL-) homeomorphic or isomorphic,
== homotopy equivalence or homotopic,
~ homologous,

oV, Int¥V boundary, interior of a manifold V,
i, inclusion map,

* The author is receiving a postdoctoral fellowship at University of Georgia.
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fes 1y

induced map on homotopy, homology groups,

H,(H*) singular (co-) homology with Z or A-coefficient where A is the integral
group ring Z(m,),

A.[x] A-submodule generated by x,

14 universal covering space of the manifold ¥,

Dt k-dimensional PL-ball.

For basic shape theory results we shall refer to [1] and [9]. For convenience,
both shape theories in [1] and [9] will be used as a justification for [10].

Let X be a compactum in a manifold A7, X is globally 1-alg in M if for every
neighborhood U of X in M there is a neighborhood ¥ of X in U such-that
Ji 8'sV—X, f~0 in V—X, then f=0in U~X. X is globally k-LC in M if for
every neighborhood U of X in M, there is a neighborhood ¥ of X in U such that
iy m(V—X)>n(U~X) is trivial. X is globally homotopically unknotted in M if
it is globally 1-alg and globally k-L.C, for 2<k<[dim M), where [{dim M] is
the integral part of 1dim M.

For definitions of the end of a non-compact manifold, stable end ¢, =,(s), etc...
we refer to [11]. ‘

For definitions of regular neighborhood, PL-embedding, PL-homeomor-
phism, ete... we refer to Hudson [5].

An open manifold Q" with one end has a collar at the end if @ has a submani-
fold W" such that Q-IntW is compact and W= oW [0, 1). ’

A PL (or DIFF)-embedding ¢: (D**1, S9-(V, V) is nice if (IntD**")
cInty.

SIV ... vSE denotes the wedge product of u copies of the circle S*.

Let X be a finite subcomplex of a PL-manifold, N (K, M) denotes the regular
neighborhood of X in M (see [5]). :

3. Results and details of the proof. Throughout Lemmas 1-6, X denotes a con-
pactum in S having the shape of the codimension-2 sphere S"~2,

LemMA 1. If X is globally 1-alg, then there are arbitrarily small; simply connected,
PL-manifold neighborhood V's of Xin 8" such that V—X is a 1-neighborhood of the
end of S"— X, i.e. '

™ @) oV, V—X are path comnected,

(i) 7, (@V)>m,(V—X) induced by the inclusion map is un isomorphism.

Proof. Since X has the shape of §"~2, S~ X is a homology 1-sphere with
one end &. According to Lemma 1 of [3] or Lemma 8 below, the end of §"— ¥ is
stable and n,(¢) = Z, a finitely presented group. Hence, Theorem 3.10 in [11] shows
that the end & has arbitrarily small neighborhood W's, '

Let V= WuUX It suffices to show that V is simply connected. Since
Sh(X) = Sh(S"~?) and §""2 js simply connected (n35), there is a W' W such

that W' is a 1-neighborhood of the end and the map (V" )=r (V) is trivial,
where V' = W' u X,

.
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Now, sinca the map m,(W"-n(W) is an isomorphism (Lemma. 3.12/[11]?,
a loop i1,1 W-l’nt W' = V-IntV' is homotopic in We ¥ to a loop in W/ <),
There‘fore, the map m,(V-IntV)~m (V) is trivial. Then, n;(V) =0 by Van
Kampen's theorem, & N

Levima 2. Let V be a nelghtorhood of X as in Lemma 1. Then n,(V—X) and
a,(V—X, V) wre f.g. A-modules.

Proof. Let p: V= X V= X bo the universal covering space of V—X.Let Wbe
a neighborhood of X in [nt // as in Lemma [ such that Tn}(l':"‘ s (W X)-mz(l/l—-a};))‘
is trivial (X is globally 2-LC). Then, the TGS‘EI?]CUODS' of p on p™* )
p~1(W=X), p~ (W) are also universal covering projections since the f:orrespondm.g
Ii)nclusion maps from 9V, W—X, a into V- X induce jsomorphisms on their

fund;tjﬂfl;”‘i gl;?'lulfts'w. Then, p|p~*(4): p~'(4)—A4 is a covering map. Morcover,
p”(A;] is a_s-imp]y connected since it is a manifold with simply c‘onncitid_lzoundary
p~ i@V v ew) and it is contained in t1‘1e simply co.nnected manifold ¥—X. Hence,
p~1(4)—4 is also the universal covering space of A._1 N
Remark I. Let &, be a fixed point of the fiber P (x,), where Xo € .u G.
known that if we assign to each element /it of j;hg covering transformat}oni sgl;cl)l eplift
of p~(A4) the element [o] & 7 (4, Xo) such that: %e,(1) = h(eo), wémere( ,:{aox e
of u starting at ey, then we define an isomorphism betwee.n G and 7, ;ﬁsin .
this fact, we can prove that iy: m@W, xo)~m. (4, Xo) 1s an 1.som0{p ver.ing o
Thci‘e‘l’ore, we can always consider the homology .of umve;sa ctczon‘ o
spaces, pairs as A-modules induced by the same covering transforma
lsomltilr:vl:c\;s 17;;'.(111'); 1§'the proof of the lemma. The Mayer—Vietoris sequence of

the triple (7:;( A, W_—j( ) gives the exact sequence
Hy )@ By (W= X0~ HyV—X)— Hi@W)
Hence, we have the exact sequehcc
73 (A) BTy (W= X) =1y (V= X)=0,

‘ewicz’ rem.
> ];tzljx;?wi 1‘210‘2:” A be a finite complex such that m1(A) is7 a f;ijdi’}zup of u
generators. If n,(A) = O for 2<q<m—1, then n,,,(/f) is z.zf.g. “nr ' hlsm hthe
Proof. Letf: S'v ... vS,f—»A be an im‘be'ddingmducmg an 13011;2;163 nld) = O,
fundamental groups. Then, it is clear that f is (m—1)-connected s q
g<m—1. Hence,

7 o
nl"(.A) z nl”(z) ~ }{I"(Z) ~ }Lll(g’f(si V A v Sﬂ))

is a f.g. Zn,-module (see the proof of Theorem A of [13])). ®
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Since my(W—X)—n,(V—X) is the zero map, the map nz(A)—mz.(V—X) is
surjective. Therefore, my(V—X) is a f.g Zn,-module since m,(4) is f.g. by

Sublemma A. )
Finally, the second part of the lemma follows from this fact and the homotopy

—_—
sequence of the pair (V—X,0V). W :

Remark 2. From page 21 of [15], the cellular chain complex C:(Z) is chain
complex of f.g. free A-modules. If n,(4) is'a f.g. abelian group, then A is a Noe-
therian ring (Prop. 1(c), p. 154, [6]). Therefore, Sublemma A is also true if m,(4)
is f.g., abelian (see pp. 71, 22 of [6]).

Levma 3. Suppose that X has arbitrarily small neighborhoods V's as in Lemma 1
such that 7,(3V) = n(V—X) = n(S") for g<m—1, where m<[kn]. If X Is globally
homotopically unknotted, then m,(V—X) and m,(V—X,0V) are f.g. A-modules.

Proof. Let ¥ be such a neighborhood of X. Choose another W such that
R (W= X)—7,(V— X) is the zero map. The existence of such W is from the globally
m-LC property of X. C
 The proof now proceeds exactly the same as that one of Lemma 2. We have
to show 7 (V—X, W—X)=0 for all g, 2<g<m~—1 in order to have m,(4)
~ 1,(d) ~ H,(4) to be a f.g. A-module.

Indeed, we have ' '

(@ V—X = (W—=X)U 4 and 4 n W—X = dW is collared in 4 and W—X,

(b) inclusions map of W into 4, W—X, V'— X induce isomorphisms on funda-
mental groups,

(©) n(W—X,0W) =0 for g<m—1, my(4, 0W) = 0 for ¢<1.

Theorem. 9.3.5 in [12] gives

n (4, 0W) = m(V—-X, W—X) for gq<m-1l.

Moreover, from the homotopy sequence of the pair (V—X, W—X) and the
hypothesis for V, W, it follows m,(V—X, W—X) =0, g<m~1. The proof of
Lemma 3 is finished. ’

LevMA 4. If X is globally homotopically unknotted, then X has arbitrarily small
neighborhoods V's as in Lemma 1 satisfying

(a), n(V—X,0V) =0 for <2,

(b); n(V—-X) = ﬂ:q(S‘) Jor q<2.

Proof. (i) To show (a),: Assume that the set {x,, ..., x,,} generates the A-module
n(V=X, 8V). Let f: (D, SH)—(¥—X, 0V) be a nice PL (or DIFF)-embedding
which represents x,. W is obtained from ¥ by carving an open regular neighborhood
of f(P* in V—X. Then V= WU (n—2)-handle and V=W u D"? is an
(n—2)-disk traverse to f(D?). Since n—2323, it is easy to show that W satisfies
the conclusion of Lemma 1, and the A-module n,(W— X, 0W) generated by the
images of x,, ..., X,,. Inductively, we shall cancell all x;, i = 1,2, ..., m to obtain
a desired neighborhood of X in V.
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(ii) Sublemma B. For every neighborhood V of X enjoying (¥) and (a),, there
exists a neighborhood U of X in IntV such that U satisfies (%), (a), and (b),.

Proof. Let W be a neighborhood of X in'IntV satisfying (%), (a), and
Im(iy: m(W— X)-my(V—X)) = 0. Let 4 = V-Int W. Suppose that {915 s ¥}
generates the A-module 7,(W—X) (Lemma 2). Let f: S?—W—X represent y,.
Then, there is an extension f of f over D3, f: (D3, 8)—»(V—X, W—X).

On the other hand, by the homotopy excision theorem (Th. 9.3.5, [12]), the
map iy: my(d, OW)»sns(V—X, W—X) is surjective. Thus, there is a map
g: (D% S%)~(4, W) such that g=~Fin (V— X, W— X); in particular, [g]53] = [f]
in my(W—X) up to the action of m,(W—X).

Furthermore, we can assume that g is a nice PL-embedding by Theorem 4.7.1
in [5] or Lemma 4.8 in [11].

Let U, denote W u N(g (D), 4). It can be shown easily that U, also satisfies (x)
and 7,(U, — X)27y(W— X)/A. [y,]. Thus, ny(U;—X) is generated by the images
of Y35 ey V-

In order to prove that U, satisfies (a), we assume that U, contains a copy of W
such that B = U;-Int W = dWx [0, 1] U (3-handle). Since n>6, we can prove
that m,(U;— X, 0U;) = 0 (we will give in detail a proof for the general case in
Lemma 5). :

Now, the map iy: (U~ X)—n,(U; — X)—>m,(V—X) is still trivial. Hence,
we can successively kill all generators of m,(U; — X) to obtain a desired neighbor-
hood Uof Xin V. W

Lemma 5. If X is globally homotopically unknotted, then X has arbitrarily small
simply connected neighborhoods V’s in S” Sazi.sy’ying (*) and '

@) (V= X, 8¥) = 0 for q<[3n,

(b) m(V—X) = n,(S*) for g<[nl-1,

(©) my(V—X) = my(SY) for q<[in]—1. ’

Proof. Let (a),, (b),, (), denote the conclusion (a), (b), (c) of the lemma
for g<m. Assume n = 2k+2 or n = 2k-1. We will prove by induction on m<k—1,
starting with (a),;, (b)y; (¢), by Lemma 4; first, killing =,,(V—X); next, =, (07);
and finally, m,,.,(V—X, dV).

Step I. Assume that X has arbitrarily small neighborhoods satisfying (%),
(@), (b)y -1 and (c),,-;. Given such a neighborhood ¥, we will construct a neigh-
borhood U of X in ¥V satisfying () (a),, (b),, and (¢),—1.

Let W be a neighborhood of X in V satisfying (%), (a),, (B)u-1 and (),—q
such that {y: =, (W—X)-n,(V—X) is the zero map and W<lntV.

By Lemma 3, we can assume that {x,, ..., x,} generates the A-module z,(W— X).
A similar argument to that in Lemma 4, there is a nice PL-embedding f: (D™**, $™)
—(4, @W) such that the homotopy class [ f|S™] is also a generator of A4 [x,], where
A=V-W.

Denote U’ = W N(f(D"*!), 4). It is clear that U’ enjoys the property (*) of
Lemma 1.

b — Fundamenta Mathematicae CII
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PROPERTY (a)m We can assume that WclIntU’ such that
B=U'- Int W= @wx[o, 1]) U (m+1)-handles .

Theorem 9.3.5 of [12] shows that iy: m(U'— ~X,B)on,(W—X, 0W) is an
isomorphism for all.g<m, since for g<m,’ (W 0 D" OW) =0 (m=2), and
n(W—X,8W) = for all g<m.

Moareover, from Hurewicz’s theorem, duahty of handle decomposition [5],
it follows that m(B,8U') = 0 for all g<m, since m<n—(m-+1).

Now, from this fact and the homotopy sequence of the triple (U'— X, B,dU")
we can conclude that : ‘

n(U'—X,0U0") =0
m+1
PROPERTY (C),,.;. Since U’'—X has the homot0py type of (W X) u D

(U —-X) = 7 (S*) for all ‘g<m~1. Hence, we still have (a),-1 and (c),,, i

Finally, 7 (U’ —X)~m,(W—X)/A.[x;]. Hence m,(U'—X) is’ generated by
the image of X5, ..., X,. The proof will be finished after killing x,, ..., X, successively.

Step II. Assume that X has arbitrarily small ne1ghborhoods satlsfymg ), @n»
(b),, and (¢),—y. Given such a neighborhood V, we will construct a nelghborhood U
of X in V satisfying (¥), (a),,,, (b)n and (O)p-

Assume that {p,, ..., ¥} generates the A-module 7, (0V). Since 7, (V—X ) = 0
there is a nice PL-embedding f: (D™*?, S"—(V— X, 8V) such that [f|S™] =

Let U' = V-IntV(f (D’"‘”) V—-X ), then U’ is a better ne1ghborhood of Xin V
Indeed,

(i) Clearly, U’ enjoys the property (*)

() m(U'— X)ymmy(SH), for g<m<k—1, since (V'—X) v (n—(m-+1))-handle.

(m) We can assume that U’ cInt V.B denotes V-IntU’. The homology sequence

of (V—X B, 6V) gives H(V—-X B)=0 for q<m, since H,I(V-—X aVy=0

and H,_ (B, 6V) = 0 for all g<m. Now, the excision theorem and- Hurewicz's
theorem give ‘ ' :

for all gsm.

~ HV—X, B) = H(U'—X, 00" = n(U'=X, 8U") for all q<m.

(iv) m,,(UYR®(OV)[A.[y4].

We can proceed finitely many times this handle trading process to obtam
a desired neighborhood U. :

Step YII. This step is exactly the same as Step II, since we also have

s (V—X, 0V) is f.g. A-module by Lemma 3..

In order to complete the proof of the lemma, we need to prove (b), when
n = 2k+2. However, the proof of Step I also works for this case. W

LemMa 6. If X is glebally homotopically. unknotted, then: the end of S"—X is
tame.

icm®
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Proof. Case 1 (n = 2k+2326). Let ¥ be a neighborhood X satisfying the
conclus1on of Lemma 5. Then

Cramm. (i) H(V—-X,0V) =0 for g # k+1,

(i) Hyy (V—X,0V) is a projective, f.g. A-module, ' '

(iii) H*"2((V~X, 0V); G) = 0 for every A-module G.

Hence, V—X is finitely dominated by the theorem in [14].
‘ Let W be a nelghborhood of X in Int¥ satisfying Lemma 5 and the map
i,..,: nk+1(W—— X)~>7r,,+ (V—2X) is trivial. Then, from the homotopy sequence of

thc pair (V X W— X), the Hurewicz theorem, it follows that
HkH(V—X)szH(V-X, W—X)zHH‘l(Z, aW) (excision) ,

which is a f.g. A-module since (4, W) is a pair of finite CW-complexes. That
proves a half of (ii).

Let A4 = V-Int W. Then, the connectivity of V¥~ X, W—X and the homotopy
excision theorem (Th. 9.3.5, [12]) show that w4, 0W) = 0 for g<k.

Now, by the handle cancellation theorem (p. 246, [5]), we have a handle decom-
position of A rel. §W having no handles of index <k. Hence, there is dually a handle
decomposition of A4 rel. @V having no handles of index >n—k = k42,

Using a nested sequence of such nice neighborhoods and glueing a sequence
of nice Morse functions, we can obtain a handle decomposition of ¥V— X rel. 8%
having no handles of index 2 /k+2. Hence, the cellular chain complex of the pair
(V—X, 0V) has the property that

——
CiV—=X,0V) =0 " for all gzk+2.

Therefore,

oo - retered
H(V—-X,0V)=0 forall gzk+2,

and

Hq('E—X,F(')‘V; G) =0 for all gzk+2,

and A-module G. That proves (i) and (iti).

Now, from Theorem 8 (iii) of [14], it follows that H,,.. 1(V~—X aV) is a projective
A-module, '

This completes the proof of (ii). M

Case 2 (n = 2k 127). First, similar to the ploofofSublemmcL B, we can show
that & has arbitrarily small neighborhoods ¥ ’s that

() (V= X) = m (S for g<k,

(i) m (V= X, a¥) =0 for ¢<2.

Since m(V—X) is finitely generated, the homotopy excision theorem
(Th. 9.3.5 [12]) also works in this cas® (even after trading (k+1)-handles since
2k=Dzk+1 for kz3); and m(V—X) (¢<k—1) is unchanged after adding
(k+D-handles,

.
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Secondly, using a proof similar to that for Case 1, we can obtain a handle de-
composition of ¥'—X rel. ¥ (V-satisfying (i) and (ii); above) having no handles of
index >k+1.

Finally, it will be prowed that V—X is finitely dominated. W

THEOREM I. Let X be a compdctum in S", nz6, having the shape of the codi-
mension-2 sphere S""2. If. X is globally homotopically unknotted in S", then there
is a locally flat (n—2)-sphere X in S" such that §"—X~S"—X.

Proof t3]. By Lemma 6, the Main Theorem of [11] shows that the end of

8"—X has a collar, i.e. X has a PL-neighborhood ¥ such that '

PL
V—-X~0Vx[0,1).

Using this product structure of ¥'— X and the globally homotopic unknottedness

of X, we can show that ) : )
1 (0V) = m(V'—X) = m(SY) for g<}n]. '

Let D? be the image of a proper embedding of the 2-cell into ¥ such that 6.D?
represents the generator of 7,(9V) = Z, and D*x D""? the regular neighborhood
of D? in V. ‘ ‘

If B = V(D*xIntD""?), then it is clear that 7,(8B) = 0 for g<[4n]. Hence

PL

dB=~8""! by Poincaré duality, and thus 6B~S""!.

Therefore, B is the Pl n-ball and ¥V = B U (n—2)-handle.

Moreover, by Levine’s theorem [7], the attach sphere 0x D"~2 of this handle
is unknotted in 8B since

1 (0B—0x D" Y am (0V) = n,(SY) for g<[4n].

PL
Hence, it is the trivial (z—2)-handle, i.e. ki V'~ D*x §"7%; and J is the image in §” of
0x 8" under 2~1. M

Levma 7. Let {Ai}—ur{Bi}fr{Ci}—vl»{Di}—"){Ei} be an exact sequence of inverse
sequences of abelian groups. If the bounding maps of {B;} are isomorphisms, and
{4:}, {D}, {E;} are stable, then {C\} is stable.

Proof. Without loss of generality we can assume that {4,}, {D,} and {E}
are constant' sequences (Siebenmann’s terminology [11]).

Consider the diagram

o B ¥ ]
Ay —>B;—>Cy —> Dy —>E;

AR

4,—> By~ Cy—> D, —>E,

NN

A3 —> By —> Cy——> Dy —> E,

e

A4y—>By—>Cy—>D,—>E,
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@) ¢ylImey: Ime,~TIme, is surjective. Tt suffices to show that for every z, € ¢,,
there exists z; € C3 such'that ¢; cy(z;) = ¢y(23).
Since {D;} is constant, there is w, € D, such that

dy dyds(w,) = dy ¥(22) = y¢,(22) .

Let 23 € C; such that p(z5) = da(wy) (5ds(w,) = 0 by stability of {£;}). Then,
Yy ¢(23) = d, d,y(z5). Hence

}’(Cl(zz)—ﬁ Cz(zé)) =0eDy.

From the exactness of the sequence, there is s € By such that fb, by(ys)
= cy(z)—cyea(z3) . )

Let z; = z3+f(ys). Then, z; is a desired clement.

(i) To show ¢,|Imey is injective. It suffices to show that if z4 € Cy such that
ey¢3(z4) = 0, then ¢5(z,) = 0. .

Now, by stability of {D,}, there is y; € B, such that B(y3) = ¢5(z,). Then from
the exactness, there is an element x, € 4, such that a(xy) = by(y3).

From the stability of {4}, there is x, € 4, such that a(xy) = b3 (ps).

Hence, c3(z4) = Bbyal(x,) = csfa(x,) = 0. B

Lemma 8. Let X be a compactum in an orientable closed manifold M such that X
has the shape of a codimension-2 finite complex. If X'is globally 1-alg then the end
of M—X is stable.

Proof. By Lemma 1 of [8], there is a nested sequence of neighborhoods {V;}
of X such that the sequences {H,(V))} and {H(V)} are constant. Furthermore,

Iy Hj(VHxa Vi+1""X)iH:i(Vi= Vi—X)

by excision theorem.

Hence, by Lemma 7 the sequence {H(V;— X)} is stable.

Finally, using the globally 1-alg property and chasing diagram as in [3] or [8],
we can show that the end is stable and n(g) = lim H,(V,— X) is a finitely represented
abelian group. M o ‘

Turorem 1. Let X be a compactum in an orientable closed manifold M", n=6,
such that X has the shape of the (n—2)-torus. If X is globally homotopically unknotted,
then M~ X has a collar at the end e.

Proof, The proof of Lemmas 1-6 remains valid in this case. Tt follows that

. the end ¢ is tame. /

An casy diagram chase proves that the following sequence is exact
ZeslHmH (V,— X)=1lim H,(¥)—0

where {V;} is a suitable nested sequence of neighborhoods of X,
Since limH (V) = H(I""% = Z""2, n,(s) is finitely generated, abelian.
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Now, let ¥ be a neighborhood of X satisfying (a), and (b),, then from the
homotopy excision theorem and engulfing theorem, it is-easy to prove that 7,(V) = 0,
and m,(V)=~n(T""%) = Z""2. Then, the following diagram

0 = (V)= 7y (V, V—X)—*nl(V——X)——m',(V) -0

B =

Hy(V)~Hy(V, V= X)= H\ (V= X)—H,(W)-0
Q"
z

‘

shows that =, (V, V—X) = Z and n,(V—X)~Z"" 1. _
Since the group K,m,(s) = 0 (see [11] and TIL. 11.3 of [2]), it follows that the
end of M—X has a collar from the main theorem of [I1]. H
DerNITION. Let Q" be an open manifold with one end ¢ & is said to be
qth H(h)-stable if the inverse system {z,(V}), ix} ({H(V)), i,.}) is stable, where {V/;}
is a cofinal sequence of neighborhoods of e. nq(c) denotes the gth-homotopy group
of the end, hmrrq(V) if any.

A diagram

A — B
NS
ﬁ\x /7
C

is g- commutative up to homotopy, if a| 49 ~yB| AL, where 4 is the gth-skeleton
of the CW-complex A.

£ 18 g-equivalent to a finite complex X, if there is a nested sequence of neigh-
borhoods {¥;} of ¢ and maps f;: K~ V;and g;: ¥;~K such that the following diagram
is g-commutative, up to homotopy

Vi<2 V<2 Va2 .,

NN N
K = K = K

Remark 3. Since (k+ l)-'ske]eton of a CW-complex determines its gth homo-
topy group for all g<k, the end ¢ is g-stable, g<<k if it is (k- 1)-equivalent to
a complex K (similar to Lemma 1, [8].)

Similarly, H/(7) is f.g. (g<k+1), if the end i is (k+1)-equivalent to a [mllc
complex K with =;(K) f.g., abelian.

DEFINITION. A finite complex K is m-admissible if 7,(K) is
abelian and 7,(K) is a f.g. Zn,(K)-module for 2<g<m.

THeEOREM TII. Let Q" be an open PL (or DIFF) ) manifold with one end & (n36).
If ¢ is [¥(n+1]-equivalent to an [Ln]-admissible fi finite comp/e\ K, then there is an
obsiruction o € Ry ny(K) which vanishes if and only if Q has a collar at e.

finitely generated

|
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COROLLARY TO THEOREM III. Let M""2 be a simply connected codimension-2
submanifold of a closed PL (or DIFF)-maniifold N* (n>6). If the end of N—M is
3 (n+1)]-equivalent to S*x M, then N—M has a collar at its end.

Outline the proof of Theorem IIl. Define

Statement (a); = & has arbitrarily small neighbothoods
n,(V,dV) =0, ¢g<j.

Statement (b); = ¢ has arbitrarily small neighborhoods
ny(&)—m(V), q<J.

It will be proved by induction on j<k—1 starting with j = 1 ((a)1 5 (b), exist
by [LI]).

Tt follows easily from Remark 3 that if ¥ satisfies (a), and (b);, then 7,(V)
and m,(V,dV) are f.g. ZTE‘(E) -module. Hence we can obtain (a), by carving
2-handles.

To obtain (b), from {(a),+(b),}. Choose W<lIntV satisfying (2), and (b),
and Im(iy: m(W)=m,y(V)) is 7,(e)-

Since m,(W) is f.g., and Zn,(e) is Noetherian, ker iy is f.g. Then, the argument
of Sublemma B allows to add 3-handles (lying V-Int W) to W to obtain (b),.

To obtain (a);: Start with (a), and (b),.

V' such that

V' such that

The Hurewicz theorem and (2), shows that my(¥, 6V)zH3(l7,rc;1;); but the

latter is f. g., since H5(7) and Hza V) are f.g. by Remark 2 and Remark 3. Hence,
we can obtain (a); and so on. Finally, as in Lemma 6 we can obtain (b), and (a),_, .
The proof will complete in routine, H

Proof of the corollary. It suffices to mention that m,(S* x M)7,(S?) =
and n (S'x M) = n (M) f.g. abelian for all ¢ by Corollary 9.6.16 in [12]. B
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On decompositions of hereditarily unicoherent continua
by

Eldon J. Vought. (Chico, Calif.)

Abstract. Charatonik has defined a monotone upper semi-continuous decomposition of a con-
tinuum to be admissible if the layers of its irreducible subcontinua are contained in the elements
of the decomposition. He has constructed an admissible decomposition which, for many classes
of continua, e.g. A-dendroids, is unique and minimal with respect to having an hereditarily arcwise
connected quotient space. This Ppaper studies hereditarily unicoherent continua and uses collections
of closed separators (closed sets which feparate the space) with certain properties to obtain an
equivalent description of Charatonik’s decomposition. This viewpoint enables one to describe
precisely when such a continqum has a non-trivial admissible decomposition. One of the difficulties
in showing the equivalence is due to the lack of an adequate description of the layers of an irreducible
continuum having non-void interiors. A secondary purpose of this paper is to provide such a descrip-

‘tion. A monostratic continuum is one which does not have a non-trivial admissible decomposition
and an example is given at the end to. show that a A-dendroid may have no interior containing

menostratic subcontinua yet not admit an admissible decomposition each of whose elements has
void interior,

The study of monotone upper semi-continuous decompositions of continua
with “nice” quotient spaces has been undertaken by a large number of authors.
Of particular interest are three such works. FitzGerald and Swingle have described
in [5] a construction that yields a unique decomposition which is the finest possible
with respect to having a semi-locally connected quotient space. By a different
technique in [6], McAuley, using closed separators, has constructed a decomposition
equivalent to the one above. And Charatonik in [3] has given a decomposition which,
for certain continua, e.g., A-dendroids and atriodic continua, is unique and minimal
with respect to having an hereditarily arcwise connected quotient space, .

If 7 is an irreducible continuum there exists & unique minimal monotone upper
semi-continuous  decomposition whose quotient space is degenerate or an
arc [7, p. 10]. The elements of this decomposition are called /ayers and Charatonik
[3, p. 115] has defined a decomposition D of a continvum M to be admissible if

1. D Is upper semi-continuous,

2, D is monotone,

3. for every irreducible subcontinuum 7 in M, every layer of 1 is contained in
some clement of D,
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