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Proof. Since y is countable, we may extend to a conservative strict scale
{a, a<y+1). Choose a,;, 80 that a,.,(m)=b(m) for all new and so that
e(m) = dypy(m)—a,(n) defines an increasing function ce®w. Now if we define

tyin(k) = ak)y+n  for k,neow

then it is easily verified that {a,] a<y+o+1 is a conservative strict scale.

3.2. THEOREM. If {b,| a<w,}S% then there is an f: [wP—~0 such that

1. There is a scale which is governed by f.

2. Every scale which is governed by f majorizes {b,| «<wi}.

Proof. By Corollary 2.6 it suffices to construct a conservative strict scale
{a,] a<w,> which majorizes {b,] a<w}. This is easily accomplished using
Lemma 3.1 to recursively choose the sequence <{a,| a<w;y so that

(VB<w)@.<0)b<a,] s.b.e.p.
Thus if there is an unbounded (major) scale {a,| a<w,y then there is an
f: [0?—w such that
1. There is a scale which is governed by f.
2. Bvery scale governed by f is unbounded ‘(major).
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Non-finitizability of a weak second-order theory
by

Wolfram Schwabhiuser (Stuttgart)

Abstract. The weak second-order theory R,, based on the axioms for ordered fields and the
continuity scheme, and Tarski’s weak second-order geometry S; are shown to be not finjtely axio-
matizable.

Introduction. Weak second-order theories are understood here in the sense of
Tarski [11] (using finite sequences). Mostowski pointed out that the weak second-
order theories of familiar mathematical structures are either finitely axiomatizable
or not recursively axiomatizable (with respect to the notion of weak second-order
consequence), in fact, the theory of real numbers does not even have an analytic
axiom system (see [6]) while the theories of natural numbers, integers, rational
numbers, and complex numbers turn out to be finitely axiomatizable.

Then, Vaught proved the existence of weak second-order theories which are
recursively but not finitely axiomatizable (see appendix of [8]). The axiom systems
in his example, however, are just constructed to get this result by a diagonal argument,
namely, they are of the form

c=k—="lo, (keN)

where c is an individual constant, k is the numeral for the number &, and o, is the
kth sentence in a recursive enumeration of all sentences or of all first-order sentences.

So, it remained an open problem to find “mathematically motivated” weak
second-order theories of the same kind. Already when writing [8], the author had
two candidates for such theories — which are recursively axiomatizable by defi-
nition - and he discussed them with colleagues. '

The aim of this paper is to show that one of these candidates (for the other one
see 7.1) is indeed not finitely axiomatizable. Tt is the theory R, based on the axioms
for ordered fields and the weak second-order continuity scheme.

With this, one also gets a negative answer to the question-raised by Tarski
in [12], p. 25 ~— if a corresponding weak second-order geometry &, is finitely axio-
matizable (6.1),

The proof of our result makes use of the observation that all models of R, are
Archimedian ordered fields. Then, a translation {from R, into the system A, of
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second-order arithmetic of [2] is constructed which transforms the weak second-order
continuity scheme into the comprehension scheme of A,. With this, the result is
reduced to the following result of Mostowski:

(¥) A, is not finitely axiomatizable.

The reduction is done in two steps (in Sections 3 and 4) using an intermediate
theory Ry, which is formally first-order but contains a predicate N for being natural,
for which standard interpretation is required.

1 wish to express my thanks to Professors Mostowski and Dana Scott. Scott
helped me by remarks in a discussion, which encouraged me to resume older attempts
in this direction and to write to Mostowski asking if (+¥) holds. Mostowski sent
me some letters, in which he gave a sketch of a proof of () and other helpful infor-
mations. Moreover, I could discuss this paper in his seminar. A proof of (x)
has been published in the paper [5] of Zbierski.

1. Basic notions. We assume that two kinds of denumerably many variables
are given, namely the individual variables (as in first-order theories) (usually denoted
here by X, Y, Z, ..., sometimes with indices) and the sequence variables (variables
for finite sequences) (X, Y, Z, ...). For defining terms and formulas of a weak second-
order language L (determined by its “primitive” relation and operation symbols),
we use all the rules familiar from first-order logic (*) and, in addition to them, the
following ones.

1. Sequence terms (terms for finite sequences) are introduced by the rules:

a) if X is a sequence variable and x an individual variable, then X and Ix are
sequence terms.

b) if Ty, T, are sequence terms, then also (T o T,) (parantheses will be omitted
according to the usual conventions).

2. Equations Ty = T, between sequence terms T, T, are subsumed among the
atomic formulas.

3. Quantification is allowed also for sequence variables.

A structure N for L is understood as in first-order logic, i.e., it has only one
universe Uy (for interpreting the individual variables), while sequence variables are
always interpreted as finite sequences of individuals (elements of Uy), I is interpreted
as the operation of forming one-termed sequences from individuals ((x) from x),
and o is interpreted as the operation " of concatenation of finite sequences
Gf X =x1, 0, x5y and ¥ =y, ., ¥, then X"V = (xp, o Xy Yoy s YD)

With this, it is assumed to be clear what it means that a valuation h over A
(i.e. a mapping which assigns to each individual varjable an individual of 2 and to
each sequence variable a finite sequence of individuals of ) satisfies a for-

() See, e.g., [9] as well as for other things, which are not defined here and can be naturally
transferred to weak second-order logic when used so. We use = as equality sign of L. Fmly, denotes
the set of formulas of L.
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mula o in 2 (abbreviated & Satye), also that o is valid in U (i.e. satisfied by each
valuation, abbreviated Fqo), that 2 is a model of a set X~ of formulas, and that « is
a (weak second-order or WII-) consequence from X (abbreviated o & Cngp(2)).
(For more details compare, e.g., [8], however, we do not need here the case that
a relation or operation of 9 may have finite sequences as arguments.)

Intuitively speaking, the notion of weak second-order consequence differs from
first-order consequence in that we have “standard interpretation” (not an arbitrary
second universe) for the sequence variables and that we consider I and o as logical
constants (their meaning does not depend on the given model).

We shall not need here the equivalence of the notion of weak second-order
consequence with a notion of formal provability (with infinitary proofs) as introduced
by Lopez-Escobar in [4].

A set T of formulas is a weak second-order theory (WII-theory)iff T'= Cnyy(T).
T is called finitely axiomatizable (for short: finitizable) or recursively axiomatizable
iff there is a finite or a recursive set X, respectively, which is an axiom system for T
(i.e. T = Cnyy(2).

2. The WII-theory R,, the Main Theorem. Let L, = L(S,P, <) be the weak
second-order language with two ternary relation symbols S, P and one binary re-
lation symbol <. We shall read Sxyz as “the sum of x and y is z”, Pxyz as “the product
of x and y is z”, and x<y as “x is less than y”. It is known how other familiar notions
as +, —, % 0, 1, <, >, > can be expressed in this language. We shall freely use
such symbols when writing up (abbreviations for) special formulas of L.

Let Zop be a finite axiom system for ordered fields, expressed in L, (by first-
order formulas). The WII-continuity scheme is the set (Ct) consisting of the following
(infinitely many) formulas Ct, z:

(CH)  VxV¥yla(x) A BF)—x<ylAdxa(x) ATy ) AVx[e®x)V FX)]
—AzVxVy[e(x) A B(Y)»x<z<y],

where a(x), fi(y) are arbitrary formulas of L, such that the variables y, z are not
free in a(x) and x, z not free in (y). Ct, ; expresses the well known axiom of the
Dedekind cut for the lower class and upper class defined by a(x) and #(y), respect-
ively. The definitions for these classes may contain “parameters”, i.e. a(x) and (¥)
may contain free variables u, v, ..., X, Y, ... other than x, y. If one wants to have
sentences only as axioms, one can consider the corresponding sentences
Ct, ;= YUVv .. YXVY ... Ct, ; instead of Ct, ;. '

Let R, be the WII-theory based on the axiom. system Fopu (Ct) in the lan-
guage L.

We want to prove the

2.1. MaIN THEOREM. R, is not finitely axiomatizable.

This will be done by reducing the Theorem to the non-finitizability of some
other theory T (in the second stepT = A4,,). The general idea of this reduction is the
following one.
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A “translation” is constructed by which already a finitizable subtheory Ry
of R, is “equivalent” with a finitizable subtheory T~ of T (and R, with T). This
ensures that finitely many (additional) axioms will be translated into finitely many
additional axioms on the other side, and the finitizability of R, would imply that of T.
To get a subtheory, the axioms of R, have to be formulas ae R, (“theorems of R,”).

‘We put Ry = Cnyy(I), where I" consists of the axioms of Zop and the axioms
Al,"A2, to be fixed below. :

3. Reduction to the theory Ry. In L, we can express that x is a “natural element”
(i.e. a natural multiple of the unit element) of the field considered, in fact, this holds
iff there is a “natural sequence for x”, i.e. a finite sequence consisting of the con-
secutive natural elements from O to x. We may use then the natural elements as

natural numbers.
For later use, we list here some more notions and formulas of L, which ob-

viously express these notions.
3.1. “X is an initial segment of ¥™:

(X, Y): =3Z2X-Z =Y (.
3.2, “X is a final segment of Y”:
Fs(X,Y):=3ZZ-X =Y.
3.3. “X is a segment of Y™”:
Sg(X,Y): =3UaVUXV = Y.
34. “X and Y have the same length (“equal lengths”):
EI(X, Y): = 3t3Z{1Sg{t, X) A T18g(It, Y) A
Als(It o X oTIt, Z)AFs(Ite Y o It, Z) A
AVWYW [Sgto Wolte W e lt, Z) A
A T1Sg(It, W) A 11Sg(It, W)
S 3xAyAUIAV(W = Uolx o VAW = Uolye V)I}.

In fact, EI(X, Y) says that there is a finite sequence 3 = (Wi, Wy of finite
sequences W, beginning with X and ending with ¥ such that always W,.,, arises
from W, by changing one element only; 3 is described by a sequence

Z = O WL L NS

of individuals. (For structures with possibly finite universe, which we do not need
here, one can express the same notion by using more complicated “separating
sequences” C instead of one-termed sequences (£, see, ¢.g., [8], p. 75 or [7], p. 107.)

(!) We use : = for equality by definition.
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3.5. “X is a natural sequence for x”: -

Ns(x, X): = Is(10, X) AFs(Ix, X) AVyVz[Sgdy o Iz, X)—z = y+1].
3.6. “x is natural”:
Nx: = X Ns(x, X) .
3.7. “X has length k”:
Lhik,X): = {k = 0AX X = X}v{k=1A3Y[Ns(k—1, Y)AEIX, V)]}.
3.8. “x is the kth member of X”: ‘
Mb(x,k, X): = JUIAV[X = Uelxo VALh(k, U-Ix)].

In R, obviously, Lh(k,X) implies Nk, and Mb(x, k, X) implies Nkak>1.
Using 3.6 (for which 3.4 is not needed) we can express the Archimedian axiom

Al: Vxdn[Nnax<n].

Moreover, Al is a theorem of R,, since the proof well-known from foundations of
analysis for the Archimedian axiom uses a Dedekind cut which can be brought to
the form Ct, 5.

Putting A1 to the axioms of R, we get that each model of R; (the more each
model of R,) is an Archimedian ordered field and, hence, isomorphic to a subfield
of the ordered field R of real numbers (cf., e.g., [13], p. 245). So, we shall consider,
in the sequel, only subfields of R as models of R;, which is certainly sufficient.
‘With this, natural elements are the same as natural numbers, and each model U is
determined by its universe Uy, which is a set of real numbers.

3.9. The “translation” mentioned before will transform each sentence o of L,
into a sentence Rd («) (the “reductum” of «) which is equivalent in R; with o but does
not contain sequence variables in other connection than in subformulas of the
form Nx. Formally, we introduce a new unary relation symbol N and require that
it has “standard interpretation™ only (i.e. Ny x holds iff x is natural). Then, N has
the same meaning as in 3.6, and the following things are independent on how N is
introduced. Then, R, will be translated into a theory Ry, which has a first-order
language Ly = L'(S, P, <, N) but a notion Cny of consequence different from
first-order logic (using models with standard interpretation for N only). Similarly,

or R; and a finitizable subtheory Ry of Ry.

3.10. For the natural numbers in our models, we can use well-known techniques
for encoding finite sequences of natural numbers by one number. We use here the

following results (see, e.g., [9] p. 115 ff.).

A. There are (primitive recursive) functions 1h from N to N and g from N?
to N (with B'(a,i) abbreviated by (4);) with the. following properties:
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1. th and B’ can be expressed by first-order formulas with primitive symbols -+
and - only (interpreted in N).

2. For each finite sequence {dq., ..., &> of natural numbers, there is a natural
fumber @ such that th(a) = k and (d), = a,for each x<k. The least such number
a will be called the sequence mumber of the given sequence.

3. 1h(0) = O (hence, 0 is the sequence number of the empty sequence).

Result A vields a technique of replacing inductive definitions by explicit ones.
Especially, we get

B. There is an explicit definition (as in A.1) for the function e,: N—N with
e,(n) = 2"

We can extend the functions Ih, §', and e, to universes of arbitrary models
of R; by assigning, say, the (not needed) value 0 if at least one argument is not
natural. Using A.1 and B, we can express these functions in the languages L, and Ly.
We shall freely use corresponding terms in these languages.

3.11. Dyadic representations. It is well-known that each real number x has
a uniquely determined dyadic representation

x\'
(3.) X = yas F s
v=0
where
(b) x, is an integer,
(c) - for each vz1: x, =0 or x, = 1, but

(@) there is no n such that x, = 1 for all vzn.

We call then x, the v-th digit in the dyadic representation of x.
The n-th dyadic approximation

v=0
of x is then uniquely determined by
® X,-2" is an integer
and
_ 1
(2 0<x—X,< o

Thus, the following notions are expressed (in any model of R;) by the given
formulas.
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3.12. “x is an integer™:

Int(x): = NxvN-—x.
3.13. “x is even”:

Ev(x): = Ju[Int(u) Ax = 2-u].
3.14. “d is the nth digit (in the dyadic representation) of x”:
D@, n,x): = NnATds{Int(s) A0S x—s<1A
Alln =0Ad =5)v
. V(mZIAEBv(@S)Ad = 0)v
v (nz1ATEBv(s)ad = D}

Note that these formulas are (or may be considered as) formulas of Ly.

For eliminating sequence variables, we encode finite sequences of real numbers
by single real numbers.

3.15. DepnNITION. For each integer x, we introduce the natural number X en-
coding x (the code of x) by ‘
4= 2-x, if x>0,
2.(—x)—1, if x<O0,
3.16. DERNITION. The real number y encodes, or, is the code of the k-termed
sequence X = {Xy, ..., %y of reals (abbr. y = c(X)) iff y, is the sequence number
of the finite sequence {%;,, ..., £,0> of naturals, and for any v=1: Y- jypsx = Xy

(x =1, ..., k); here, the additional indices are used for the digits of the numbers
y and x, as in 3.11.

Obviously, we have a one-to-one correspondence between integers and their
encodings and, also, between finite sequence of reals and their encodings. Moreover,
also the last encoding is “absolute” in the sense that X has the same code y in all
models of R, containing y and the members of X.

The function * (extended as in 3.10) can clearly be expressed in Ly. We can
also express the following notions by formulas (as before).

3.17. “s is the sequence number of a k-termed sequence (of naturals)”:
Sa(k,s) := Nsalh(s) = kAVt{Ntalh(t) = kA
AVINiAi<k—(s); = (t);]-s<t} .
3.18. “y encodes the k-termed sequence X (of reals)”:
C(y,k, X) := Lh(k, X) A3y,{D (o, 0, ¥) ASn(k, Yo) A
Alk = 0—y = 0]A
AVIVEVuVnVd[Niai<kAMb(x,i+1, X)ANnAnz=1
—{D(u, 0, X}l = (Vo)) A
A{Dd,n,)oD(d, (a—=1)-k+i+1, y)]}.
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3.19. “y encodes the finite sequence X
C(y, X): = AkC(y, k, X) .
Since we want to encode finite sequences by single reals in an arbitrary model
of R;, we want to have
A2': YX3dyC(y, X)
as a theorem of R . We prefer to get this from an axiom A2 which will bg formulated

in Ly (and, hence, can be used for Ry also).
Already in Ly, we can express the following (as before).

3.20. “p encodes a k-termed (finite) sequence”:
F(k,y) = 3y0{D(¥,0,y) ASn(k, yo) ATk = 0y = 0]} A
AVi{Niri<k—dxVnVd[Nnanz1--
D, n, X)D(d, (n—1)-k+i+1, y)[} .
3.21. “y encodes a finite sequence”:
F(y): = 3kF(k,y).

3.22. “y encodes the one-termed sequence {x)”:
yIx := Ay, Tx[D(¥0, 0, I AD (g, 0, X)ASn(1, yo) A (Yo)o = Xol Alnt(y—x) .

Tn this case, y and x have the same digits except the Oth one. Thus, one-termed se-
quences trivially have encodings.
3.23. “y, encodes the concatenation of the finite sequences encoded by y,
and y,”: ‘
Cc(Yl > Y2 y3.) = akam{F(ka YI) A F(ma YZ) AF(k+ms YS) A
AYiViVu, Vu,YVu,VoVad[Nini<k ANjAj<m A

3
A /\ D(“v: 0: Yv)ANnAn>1*»?
v=1

(Ws); = (A (Uglss = (M)A
ADE, (m=1)k+i+1,y)e
D(d, (n—1)-(k+m)+i+1, y5)) A
A{D(d, (a—1)m+j+1,y,)
D(d, (a—1)-(k+m)+k-+i+1, va)b]} -
Now, we introduce
A2: VY. Vy2[F (v1) AF(y2)->3y5 Co(yy, Y2, ¥a)l - »

It is intuitively clear, that A2 is a theorem of R,, namely, by using a continuity axiom,
one can prove the existence of a number y; with a dyadic representation which can
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be defined by means of the parameters y,, y,. A more detailed proof can be obtained
from an axiom of the scheme (DR) (concerning dyadic representations) in the next
section. Thus, we may take A2 as an axiom for Rj.

We also get A2' from A2, since each finite sequence can be obtained by con-
catenating one-termed sequences.

3.24. Now, we can introduce the “translation” described in 3.9. Let 3 be a one-
to-one mapping from the set of all (individual and sequence) variables into the set
of individual variables; for abbreviation, we put x' = 8(x), X' = $(X) (both are
individual variables !). By a well-known method, we can transform any o« e Fmly,
into a logically equivalent formula & containing atomic formulas only of the forms
given in (1) below. We put then Rd(ex) = Rd (%), where the latter is given by the
inductive definition
(1) Rd(Sxyz) = Sx'y'z'.

Similarly, for Pxyz, x<y, x =y, X = Y.
RA(Y = Ix) = Y'Ix'.
RAIX-Y = 2Z) = Cc(X', Y', Z).
(2) Rd(eap) = Rd(x) ARA().
Similarly, for the other propositional connectives.
Rd(Vxe) = Vx'Rd (%)
RA(VXw) = VX'[F(X)-»Rd ()]
Similarly, for 3.
Clearly, always Rd(x) € Fmly,. By an inductive proof (following (1) and (2)), we get

3.25. THEOREM. If U is a model of R and h, k' are “corresponding” valuations
over N, i.e., such that I'(x") = h(x), ¥'(X") = c(h(X)) for any variable x or X, then

hSatya  iff A SatyRd(e).

Since valuations are not needed for sentences, we get
3.26. COROLLARY. If U is as before and o a sentence of L,, then

Foot iff Fo RA () .

Let Ry be the theory with the language Ly based again on the axioms of Zop
and Al, A2 (with consequence Cny, see 3.9). Then, Ry and Ry have the same
models. Similarly, let Ry be the theory based on Zop and the continuity axioms Ct,, ;-
now for formulas o, ' of Ly. As before, we get Al, A2 as theorems of Ry, hence,
Ry is a finitizable subtheory of Ry.

" 327 LemMa. The formulas RA(NX) and Nx' are equivalent in Ry.

Proof. By 3.25, RA(Nx) (with Nx from 3.6) is satisfied (like the atomic
formula Nx") by exactly the valuations which assign a natural element to the
variable x'.

Applying 3.26 to continuity axioms, we get
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398. THEOREM. An arbitrary continuity axiom Ct,p = Vi .. Vu,VX, ..
VX, Ct, 5 of L, (written as a sentence) holds in a model W of Ry iff

u ;
o= V) .. Vu,VXS L VX /\jF(X(,)'*Cth(a),Rd(ﬂ)]
X

holds in 2.

Here, 7' is a consequence of a continuity axiom (without the premisc. occtl_rring
in 9") of Ly. On the other hand, we can obtain an arbitrary continuity axiom (.th’ B
of Ly, up to equivalence, as such a y'. Namely, et o, B be like o, B bl:lt in L,
(with N from 3.6). Applying 3.28 to these «, f, we have n = 0. Moreover, if ,welre-
place in Rd(x), Rd(f) the corresponding parts R4 (Nx) by Nx', we gct back o, f’ —
up to a change of variables. By_3.27, this replacement gives equivalent formulas,
hence, also y' is equivalent to Ct, 4.

Thus, we get that all continuity axioms of L, hold in a model %A of R3 (or Ry)
iff all continuity axioms of Ly hold in . This yields

3.29. TueoreM. Also R, and Ry are equivalent in the sense that they have the
same models.

Qur reduction is completed by

3.30. THEOREM. If Ry is non-finitizable, then also R,.

Proof. If R, would have a system of finitely many axioms — written as sen-
tences —, then the reductums of these axioms (in addition to the axioms of Ry)
would characterize the same class of models, hence, they would form a finite axiom
system for Ry.

We can replace in 3.30 “if — then” by “iff”, since the converse “translation”
is obvious.

4. Reduction to the theory A_,. We use here the set-theoretical version of A,
which can be described als follows. A, has a second-order language with L,, with
variables for individuals (a, b, ¢, ...) and variables for sets (A, B, C, ...) and non-
logical symbols 4, -, 0, 1 (for arithmetic of natural numbers); the atomic formulas
are those familiar from first-order logic and © € A where 7 is a number term (as in
first-order logic) and A a set variable.

An w-structure is a structure 9t which has the set N of natural numbers as
universe for the individual variables and standard interpretation for +, -, 0, 1, €
(i.e., these are interpreted as the usual addition, multiplication, zero, and one in NV
and the element relation) while the universe Sy, for the set variables is an arbitrary
subset of B(V), i.e., it consists of certain (but not necessarily all) sets of natural
numbers. Obviously, each w-structure M is uniquely determined by Sg; thus, also Sy
is sometimes called an w-structure.

This notion of structures leads to a corresponding notion Cn,, of w-consequence,
i.e., aeCny(Z) iff « holds in all w-models (w-structures which are models)
of Z.
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The theory A, is the set of w-consequences of the comprehension scheme (Cp),
which consists of the following (infinitely many) formulas Cp,:

(Cp) dAVala e Aep(a)],

where ¢(a) is an arbitrary formula of L,, such that the variable A is not free in ¢ (a).
Again, parameters are allowed, and one can use the corresponding sentences
Cp, = Ya, ... Va,YA, ... YA,Cp, instead of the Cp,.

The notion of w-consequence can be equivalently replaced by a notion of
w-provability (with infinitary proofs, using the w-rule and some more “arithmetical”
axioms, see [2] for a version of A, with variables for number-theoretic functions
instead of sets). However, this will not be used in this paper.

We shall construct two “translations”, from Ly to L, and conversely, and get
theorems similar to 3.25.

For the first translation, we encode each real number by a pair of a natural
number and a set of naturals as follows.

4.1. DEFINITION. Let x be an arbitrary real number, and its dyadic represen-
tation given as in 3.11. We put

8:(x): = %o,
$:(x): = {ne N| x,,.; =0},
s(x): = (s4(x), 52(x)) .

We call these things the number code, the set code and the code of x, respectively.

Intuitively speaking, s,(x) encodes the integer part and s,(x) the fractional
part of x, and we have s,(x) = s,(x41). s gives a onc-to-one correspondence between
real numbers and their codes. Since we required 3.11(d) for the dyadic represen-
tations, s,(x) is always an infinite set, and each infinite set of natural numbers can
be obtained as s,(x) for some real number x. On the other hand, also finite sets can
be obtained in this way if we drop 3.11(d). i

4.2, DeFiNITION. The pair {a, 4) is an encoding of x iff it is given as s(x)
in 4.1 but with a dyadic representation satisfying 3.11(a)-(c) only. .

Thus, a real number x is uniquely determined by each of its (oné or two) en-
codings; it has two encodings iff its set code is cofinite (i.e., the complement of a fi-
nite set).

We have to express the primitive notions for reals by their encodings. For this,
we use some calculations and definitions.

Let the sequence {X,),.y Of dyadic approximations of x be defined as in 3.11

“(with condition (d) not necessarily holding). Then, this sequence has the limit x,

1 L. _ _ !
and 0y —X,< S for each n. Similarly, for y, 7,, z, Z,. Now, let

du = Z,,—(J\’,,-Fy,,), Cy = Ly Xy Yy
4 — Pundamenta Mathematicae {. CIII, 2
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A routine calculation gives that x+y = z iff

3
) |d,,|<5;, for each n,
and, that x-y = z iff

K
@ le,l < 5 for each n,

where K is an arbitrary number with K3>|xol+|yol+3. We may put then
K = %o+Fo+3 (since |uj<f for any integer w).
Let g be the unary function from N into N given by

3n e
— , if n is even,

glm =
n—1 . .
—, if n is odd.
2
Then, for any integer x, we have

(3 g(X) = R+x

(g was just defined to get this). g (is primitive recursive and) can be expressed by

a first-order formula of arithmetic (as in 3.10, Al). We use in L,, a corresponding
operation symbol g, as well as A and terms for the functions considered in 3.10.

4.3. DEFINITION. Let “r represents 4 on (the segment determined by) »” be *

the notion expressed by the following formula of L,:
tRp.A: = Vifi<n—{ie A=@); = 0)A(Tie Am(); = 1)} .

= we get then that the following notions are expressed (in any -structure con-

taining the sets mentioned) by the formulas given there. (For 4.4 and 4.5, this is

obtained by multiplying (1) and (2) with factors and adding summands such that

these conditions can be expressed by means of natural numbers instead of rationals.)
44. “a, A>, {b, B), and {c, C) are encodings of real numbers x, y, z with

x+y =2":

S(a, A, b, B, c,C): = VaVrVsVt{rRp,A AsRp,B AtRp,C
eIy + T
<3+[a+b]2"+2¢

<6+C'2“+ZA+ZB} .
where
. n—-1

I =g+ @),
v=0

and Xy, Z similar with a, r replaced by b, s or ¢, t, respectively (given by explicit
definitions according to 3.10).
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4.5. “la, A, {(b, B), and (¢, C) are encodings of real numbers x, y, z with
x'y=2z"

f’(a, A,b,B,c,C): = VnVrVsVi{rRp,A AsRp,BAtRp,C

' —[c+a-b]-22"+3, 35 .
<la+b+3+Zc+a-Zg+b-2,]-2°
<fa+b+3]-2°* 4 [c4a-b]- 2>+ 5,25},

where £,, 2y, X as before.

Remark. From 4.4, 4.5, one can see that the relations defined by the given
formulas in the standard model are 119 in the sense of the Kleene-hierarchy (see,
e.g., [9], Chapter 7). On the other hand, these relations are not recursive since the
(non-recursive) equality of sets (for (b, B) an encoding of O or 1, respectively, and,
say, A neither finite nor cofinite) can be obtained as a special case.

4.6. “A is an infinite set (of naturals)”:

‘ Inf(A): = Yadbla<babeA].
47. “{a, A> and <{b, B) are codes of real numbers x, y “Eith x<y”:
L(a, A, b, B): = Inf(A) AInf(B) A
Alb+g@)<a+g(b)v
v{b+g(a) = a+g®d)Adn[Vili<n--ieAwieB)A
AneAA"IneBl}].
4.8. “(a, Ay is the code of a natural number”:
N, A): =3ba =2baVnneA.

49, For our first translation, let 9, be a one-to-one mapping from the set of
all individual variables (of Ly) into the set of pairs of an individual and a set variable
(of L,); for abbreviation, we put {x', X'’} = 8(x). Then, the s-reductum Rd(e),
for formulas o of Ly, is given by the inductive definition
(1) For o being Sxyz, Pxyz, x<y, Nx, X =y, the s-reductum Rdy(e) is

S(X',’ X”’ y/? y"’ ZIJ Z”), P(){’} X’/l y" y/,7 ZIJ Z,I)’ L(x,! XI,? le y”)? N(xlﬂ x")?
X' =y AX" =y", respectively.
(2)  Rdg(anp) = Rdy(@) ARA(f).
Rd(Vxe) = VX'V [Inf(x")—Rd ()] .
Similarly, for the other propositional connectives and for 3.
Clearly, always Rd (o) € Fml,.

For the second translation, we use the following encoding.

2%
@
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4.10. DerINITION. Let 4 be an arbitrary set of natural numbers. The code r(4)
is the real number x determined by the following dyadic representation (with digits x,
as in 3.11):

a) if 4 is infinite: xp = 0, X,y = 0 iff nE 4,

by if A is finite:  xg =1, x,4y =1 iff ne 4.

In 4.10, obviously, if 0K x <1, then s,(x) = 4, and, if 1<x<2, then s,(x) = 4
(the complement of A). Also, if 4 is finite, then r(4) = r(4)+ 1. Again, both encod-
ings are “absolute”.

Then, the following notions are expressed by the formulas of Ly given with
them. )

4.11. “x is the code of a set of natural numbers”:

S(x): = 0<x<1v {1<x<2 ATk [Nk AInt (2" X)]} .

4.12. Provided that x is such a code and n natural, the statement “xz is an
element of the set encoded by x” is expressed by

E@,x): = [0<x<1AD@O,n+1,x)]v[1<x<2AD(l, n+1,x)].

413, Let 9, be a one-to-one mapping from the set of all variables of L,
(individual and set variables) into the set of variables of Ly; for abbreviation we
put a’ = 9,(a), A’ = 9,(A) (both are variables for real numbers!). By a well-known
method, any @ € Fml;  can be transformed into a formula ¢ logically equivalent
with ¢ and containing atomic formulas only of the forms given in (1) below. We
put then Rd (@) = Rd(p), where the latter is given by the inductive definition

(1) For ¢ being a+b =c¢, ab =c¢, a = b, acA, the r-reductum
Rd,(p) is Sa'b'c’, Pa’'b’e’, a’ = b', E(a’, A’), respectively.

(2)  Rdi(e AY) = Rd(@) ARA(Y).
Rd(Vap) = Va'[Na'-Rd (¢)].
Rd,(VAg) = VA’[S(A)—>Rd,(g)].

Similary, for the other propositional connectives and for 3.
We consider now, (relational-) substructures 2 of R (more general than in 3.25)
and corresponding w-structures M of the following kind:
4.14. Uy is a set of real numbers such that (a) whenever x e Uy, then also
x+1€ Uy, (b) all numbers of the form s/2 where s is an integer and & natural,
~are in Uy.
4.15. Sy is a subset of B (V) such that all finite sets of naturals and their com-
plements are in Son-
4.16. DEFINITION. For each 2 with 4.14, let s(20) be the w-structure M with Sy
consisting of (i) the sets s,(x) with x € Uy, and (ii) the finite sets 4 with 4 of the
. form (i).
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4.17. DEFINITION. For each 9 with 4.15, let r(9%) be the substructure 2A
of R with Uy consisting of the real numbers x-+u such that x is of the form r(4)
with A& Sy and u is an integer.

We easily get

4.18. THEOREM. For each W with 4.14 and M wirth 4.15:

s() has Property 4.15,

(M) has Property 4.14,

r(s(M) = A,

s(r(Mh) = M. )

4.19. THEOREM. The w-structures of type 4.15 are exactly the models of the
theory A, based on the following axioms:

B1 JAVa—laeA,
B2 ' TInf(B)~»JAValac AcsaeBva = b],
B3 “1Inf(B)—»JAValae Ac>TaeB].

These axioms are trivial consequences of certain comprehension axioms, thus,
A, is a finitizable subtheory of A,.
By inductive proofs following 4.9 or 4.13, respectively, we get
4.20. THEOREM. If  is of type 4.14 and h, h' are “corresponding” valuations over %,
s(), respectively, i.e. K'(x') = s,(h(X)), B (x") = s,(h(x)) for any variable x of Ly,
then
hSatyo  iff K SatyeyRd,(0) .

4.21. TueoreM. If M is of type 4.15 and h, h' are “corresponding” valuations
over I, r (M), respectively, i.e. K'(2') = h(a), B’ (A") = r(h(A)) for any variable 2 or A
of L, then

hSatge iff H SatgmRd.(e).

4.22. COROLLARY. [f 2 is of type 4.14 and M = s(N) (equivalently, M of 1ype 4.15
and W = r(M)) and o, ¢ are sentences of Ly, L, respectively, then

(@) F oo iff F R, )

(ii) Eqmo iff FaRdA ().

Next, we have to check how the continuity axioms behave in our translation.
First, we replace them by other axioms for Ry.

Under the hypothesis of Ct, , (sect. 2), the formula $(x) defines the complement
of the set defined by a(x), hence, (y) can be replaced by —la(y). Moreover, it is
well-known that one can make the additional hypothesis that the upper class has no
least element. Thus, Ct, , is equivalent (under Zop) with the “special continuity
axiom”: '

Cts,:  VxVylax)A 1u(y)—>x<y]A3xa(x) Ady e A
A T3 { () A Vy[Taly)—»x<yl}
->FAzVxVy[a(x) A Ta@)-x<Kz<y],
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and we can equivalently replace the scheme (Ct) by the scheme (Cts) consisting of
all such Cts, (again, with y, z not free in a(x)).
Let (DR) be the set consisting of the following formulas DR, ,:

(DR)  Int(w) AVYm{Nm-In[Nnam<nAymn)]}
-»3z{D(u, 0,z) AVn{Nn—-D(0, n+1, 2)y®)]},

where y(n) is an arbitrary formula of Ly (possibly with “parameters” as before)
such that z is not free in y(n). DR, , expresses that there is a real number z with
the dyadic representation given by the integer part u and the formula y, which may be
considered as defining a set of natural numbers. Cts, and DR , denote the sentences
obtained by universal quantification as before.

Cts, and DR, , have the forms

Cts, = HC,—»3zCC(2),
DR, , = HD, ,»3zCD, ,(7),

where HC, denotes the hypothesis and CC, the claim for z in Cts,, similarly for
DR, ,.

The equivalence of both schemes can be obtained, intuitively speaking, by
observing that, in a Dedekind cut, the dyadic representation of the separating el-
ement can be defined in terms of the lower. class, and conversely. To make this pre-
qise, we put

423, o, ,(®): = ViVk{NkAD(u, 0, ) AVi[NiAi<k—+D(0,i+1, )y D] A

AViNiAk<i»D(0,i+1, t)]-x<t+1/2%

(here, the hypothesis stated for t and k means that the dyadic representation of t co-
incides with the given one up to the k-th digit and has zeros afterwards),

424, y,(n): = Ft[Int(2*t) Aa(t) A Ta(t+1/2°%1)]
(t denoting the (n-+1)-st dyadic approximation of a separating element intended,
where 2°%1-t is even).

Then, we have as a theorem of Ry:

4.25. Nn--"lp(meFtInt ) Aalt) A TTo(t+1/2"4) A Tnt (27 0)].
Moreover, we get

4.26. LemMA. If y(n) = y,(n) and U a subfield of R, then

FqHC, Alnt(w) Aa(uw) A Ta(a + 1)-HD, , A [CC(2)+>CD,,(2)],
“and, hence
EyVuDR, ,—Cis, .

4.27. LemmA. If a(x) = a, (X) and W is a subfield of R, then
FqHD, ,—~HC, A [CC,(z)~CD; ,(2)]
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and, hence,

FyCts,—~VuDR, ,

Thus, in a subfield U of R, all axioms of (Cts) hold iff all axioms of (DR) hold,
hence

4.28. THEOREM. Zop U {Al1} U (DR) is an axiom system for Ry.

4.29. Remark. The same argument goes through for R, if we allow formulas
from L, in the schemata (Ct), (Cts), and (DR).

Now, consider an arbitrary axiom DR, , from (DR). For its claim, we get

Rd,(HzCD, ,) = JzFA {Inf(A) ARd(D(u, 0, 2)) A Vn'Vn"
Han'=2aan’=N--y(, n", 2/, A)eop(n’, 0]},

where, for abbreviation, IV is used as a constant (which can be eliminated), A = z",
Y, 0", 7, A) = RAMD(O, n+1,2), p(0, n") = RA(y(). Applying 420, we
get that (i) the formulas NnAy(n) and @(2a, N) “define” the same (infinite) set
of natural numbers (when corresponding models and valuations for the other free
variables are given), and (ii) the formulas Y (2a, N, z/, A) and a € A are equivalent
in A, . With this (and a similar argument for the hypothesis HD, ,), the reductum
Rd, (DRu ,) turns out to be a consequence of a certain comprehension axiom Cp,.

On the other hand, consider an arbitrary comprehension axiom Cp,. For its
reductum, we have

Rd(Cp,) = Ax{SE) A Yn[Nn—-E(n, x)eym)]},

where x = A’, n = &, y(n) = Rd(¢(a)). Distinguishing the cases that y(n) fulfills
the hypothesis of DR, , or not, we get Rd(Cp,) from DRy ,ADR, ~, i.e., as
a consequence of (two axioms of) (DR).

Thus, by 4,22, all axioms of (DR) hold in % iff all axioms of (Cp) hold in the
corresponding model, in other words,

4.30. THEOREM. Ry and A, are equivalent in the sense. that, for any U, ilﬁ as
in 4.22, A is a model of Ry iff M is a model of A,. :

Our reduction is completed by

4.31. THEOREM. If A, Is non-finitizable, then Ry Is non-finitizable.

Proof. If Ry would have a system of finitely many axioms (sentences), their
reductums (in addition to the axioms of Ag) would also characterize, by 4.22, the
class of models corresponding to models of Ry, hence, they would form a finite
axiom system for A,.

Of course, we also get the converse of 4.31 (noting that all models of Ry are
of type 4.14).

With 3.29, 4.31 and the result () from [5] (see Introduction), the Main The-~
orem 2.1 is proved. ‘ ,
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5. Models. Since R is a model and the downward Lowenheim-Skolem~Tarski
Theorem holds for weak second-order languages (see [11]), R, has also countable
models.

By 3.28 and 4.30, the models of R, are (up to isomorphism) those of the
form r(M), where M is a model of A,. From the corresponding results for A,
(see [2] and [1,11), we get ‘

5.1. THEOREM. (i) The intersection of all models of R, (considered as subfields of R)

" is the field u of the hyperarithmetic real numbers (i.e. of the real numbers x such
thar s,(x) is a hyperarithmetic ser). (ii) §y irself is not a model of R,.
5.2. THEOREM. For any model N of R,:
(i) W is an Archimedian ordered ficld.

(i) A is real-closed.

(iif) A has infinite wranscendence degree over the field of rationals.

Proof. (i) was stated in 3. (ii) holds, since the first-order continuity axioms
(which characterize the real-closed fields by [10]) are contained in (Ct). By a theorem
of Lindemann — seg, ¢.g., Corollary 3 in [3], p. 186 — one can construct countably
many independent transcendents which are computable and, hence, in . Thus,
(iii) holds.

6. WIl-geometry. The weak second-order geometry &5 introduced by Tarski
in [12], p. 24 f., is based on a recursive axiom system, which includes a geometrical
version of a weak second-order continuity scheme. “Translations” from &5 to R,
and conversely — similar to the “Translations” in Sections 3 and 4 — can be carried
out using techniques from [12] and from this paper (especially for encoding finite
sequences of points by finite sequences of coordinates). This gives

6.1. THEOREM. &5 is not finitely axiomatizable.

6.2. THEOREM. The models of &} are — up to isomorphism — the Cartesian planes
over the fields which are models of R..

The question (also raised in [12]) if &} is complete was settled negatively by
Mostowski in [6] (namely, the theory of the Cartesian plane over R has no analytic
axiom system and, hence, must be a proper extension of &3).

7. A problem. Let R, be the weak second-order theory based on a first-order
axiom system which differs from that of R, only in that the continuity axioms Ct, ,
are used for first-order formulas «, f only (i.e., formulas of L, without sequence
variables). ‘

On the other hand, consider, first-order Peano arithmetic, which is based on
axioms including the induction scheme

(Ind) (0) A Vx [a(X) > o (x4 1)] = Vxo(x) .
Similarly let P, be the weak second-order theory based on the same (first-order)

axioms, and let P, be based on axioms differing from the preceeding ones in that
weak second-order formulas o are used in the induction scheme.
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Note that R and P, can easily be shown to be finitely axiomatizable as follows.
The first-order continuity axioms are equivalent to axioms stating that (i) each
positive element is a square, and (ii) each polynomial of odd degree has a zero.
However, it is not difficult to express (i) and (ii) by a weak second-order formula.
From an induction axiom of P,, one can obtain as a theorem that, for each element x,
there is a natural sequence for x (as in 3.5). This together with finitely many other
axioms characterizes the models of P, up to isomorphism and, hence, is a finite
axiom system for P,.

7.1. PROBLEM. Is P, finitely axiomatizable?

Addendum. Jouko Viinénen asked the question if one gets a theory “equivalent™
to Ry (and hence to R;) by adding the quantifier Qo (“there are infinitely many”)
or its negation (“there are at most finitely many™) to the first-order theory R of real
numbers. The answer is negative. In fact, from Tarski’s quantifier elimination
method, one can get the

THEOREM. The quantifier Qu, if added to R, can be eliminated.

Proof. It is sufficient to eliminate Qo in formulas of the form Qg x« where o is
a first-order formula. By Tarski’s method (and an obvious distribution of Qox
to disjunicts) such a formuly is equivalent to a disjunction of formulas of the
form

M Qox[m = 0Ag;>0A...Ag,>0]

where = and ¢, ..., g, are terms for polynomials in x (with other variables in the
coefficients, in general). Since a non-trivial polynomial equation has only finitely
many solutions, and the inequalities hold in an open set, (1) is equivalent to the
first-order formula

@ Ax[o;>0A... A0, >0] Ay

where y is a quantifier-free formula stating that all coefficients of 7 are equal to zero
(for n = 0, (2) reduces to ). )
Thus, the situation is different from that for theories of natural numbers, where,
by adding Q, analogously, one gets a theory equivalent to P, (see 7) since the
formula Vx1Q,yy<x expresses that all elements x are standard elements.
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Small subsets of first countable spaces
by

Eric K. van Douwen (Athens, Ohio) and Michael L. Wage (New Haven, Conn.)

Abstract. The existence of two types of first countable spaces is shown to be equivalent to
a certain structure on the rationals. This structure, whose intuitive content is that discrete subsets
of the rationals are small, is consistent with the usual axioms for set theory.

Introduction. In this paper we present two consistent examples of first countable
spaces both of which require caraful handling of certain sets which are small in an
intuitive sense. We use two combinatarial principles, called P(c) and BF (c), which
will be explained in Section 2. Both are strictly weaker than Martin’s Axiom, hence
strictly weaker than the Continuum Hypothesis, and BF(c) is strictly weaker than
P(c). However, it is consistent with ZFC that P(c) and BF(c) be false.

We first recall some definitions. A space X is collectionwise Hausdorff, ab-
breviated CWH, if for each closed discrete subset D of X there is an open family
{U,| xe D}in Xsuchthatx e U,, forallx e D, and U, N U, =@, forallx # yeD.
A space is o-discrete if it is the union of countably many closed discrete subsets.
A space is pseudonormal (or has property D) if any two disjoint closed subsets,
one of which is countable (and discrete) have disjoint neighborhoods. (This is not
the usual definition of property D, [M, p. 69], but is equivalent to it in first countable
regular spaces.)

Our first example answers Mike Reed’s question of whether every CWH
o-discrete Moore space is normal (hence metrizable) in the negative. This question
is quite natural, since in a CWH, space closed discrete subsets are “small”, so a CWH
o-discrete space is o-“small”.

1.1, ExaMPLE 1. [P(¢)] There is a CWH o-discrete Moore space which is not
pseudonormal.

The fact that there exists a nonnormal CWH Moore space was known already,
see [W]. The example in [W] does not require any additional set theoretic axioms.
Interest in collectionwise Hausdorffness in Moore spaces stems from Fleissner’s
Theorem that V = L (which implies CH, hence P(¢)) implies that first countable
normal spaces are CWH (in fact this is true for normal spaces with character <c), [F].

The existence of Example 1 will be deduced from the existence of Example 2,
which answers Mike Reed’s question of whether property D implies pseudonormality
in Moore spaces in the negative. )
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