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Define .
#={0n(U%) dedy, ¥,={QnV,Blken} if yel,
V= {'Vv[ yel}.

We claim that % and ¥ satisfy (a), (b) and (c¢) of (3).
Check of (a). Let D be a closed discrete subset of Q. D is closed discrete in X.
Since X has property D, one can use (x) and (y) to find 6 &4 with D= U %,.

Check of (b). Let #" be an open (in Q) cover of Q. Then there is a y € I such
that {Q n B| Be4%,} refines # . But then also ¥#7, refines #".

Check of (). Let y€ I' and § € 4 be arbitrary. It follows from (g) that there is
an new such that y,(k)¢ U%,; for kzn Fix kzn We will show that
Q n V,(k)& U ;. Suppose the contrary. Since V,(k) € 4, it follows from (o) and (&)
that @ n V()= Q n U for some Ue%;. But Ue, so V(k)=U, by (B). This |
leads to the contradiction that y,(k)e U%,;. & |
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Effective bounds on Moﬂey rank
by

Gerald E. Sacks* (Cambridge, Mass.)
To the Memory of Andrzej Mostowski

Abstract. Effective bounds are obtained on the Morley rank of a 1-type, the Morley rank ar of
a totally transcendental theory T, and the Blum density number dr of a quasi-totally transcendental
theory T by means of type-omitting and absoluteness arguments over admissible sets. The above
restrictions on T imply that ar and dr are ordinals recursive in 7. Every theory T is seen to have
a universal domain hyperarithmetic in the hyperjump of 7.

1. Introdaction. This paper might better have been titled: On the Absolute
Character of the Morley Derivative. For the bounds given below on Morley rank,
and on Blum’s density number for quasi-totally transcendental theories, are derived
from some absoluteness properties of Morley’s analysis of 1-types. Let T be a count-
able theory of first order logic. Assume T is complete and substructure complete (*)
in order to smooth the application of Morley’s rank-and-degree machine to I
(The details of his machine will be reviewed in Section 2. A full account was given
in [12].) Suppose 7 is a substructure of a model of T, and p is a L-type over & (in
symbols o € o (T) and p € Ss£). If p has a Morley rank, then that rank is denoted
by ru(p), and the existence of that rank is indicated by the inequality : ry(p)<oo.

Let N be an admissible set as defined in Section 2. Assume T and & belongto N.
One aspect of the absoluteness of the Morley derivative is expressed by:

4)) ru(p) = p<co—speN&BeN.
Another aspect is the fact that the relation
peSs &ry(p)<p
is X, over N. (1) implies a bound first obtained by Lachlan [8]:

) rp(p) <o—ry(p) <%y,

* This article is based on a talk given at the 1972 Orléans Logic Conference. TIts preparation
was supported in part by NSF grant MCS 76-10430. The author is grateful to L. Harrington and
S. Simpson for several helpful comments.

() Substructure completeness is equivalent to admitting elimination of quantifiers.
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since every Morley rank achieved by some p over some & is also achieved by some p
over some countable &7, and since each countable < belongs to some countable .

The notion of “néxt” admissible set, as in [1, p. 60], is needed for an effective
version of (2). Let &/* be the least admissible set N such that o/ e N. Define ¥’ to
be the least ordinal not in /*. An effective version of (2) is:

(3) peSd &ry(p)<w-pedt &ry(p)<oy.

If o is countable, then there exists a real number C such that o is coded by C and
of = of. (One such C is in essence a counting of .o/ generic over & *.) The con-
clusion of (3) now becomes: p is (i.e. coded by a real) hyperarithmetic in &, and
ru(p) is an ordinal recursive in <. '

The proof of (3), givenin Section 3, is in the main an omitting types argument
over a countable admissible fragment of L,, ,. The argument succeeds thanks to
some weak absoluteness properties of the Morley derivative extracted in Section 2
from the strong absoluteness of the Cantor-Bendixson derivative. The notion of
universal domain also plays a part in the proof of (3). A universal domain % has
the advantage that Morley rank equals Cantor-Bendixson rank for all peSu.
(3) is applied in Section 5 to prove the existence of a countable universal domain %
for T with most of the effort directed towards holding down the ordinal needed to
construct % from T. .

As a further application of (3), a bound on dy, Blum’s density number, is
obtained in Section 4. Blum [2] calls T' quasi-totally transcendental (g.-t.t.) if the
Morley ranked points of SsZ are dense in Sof for every o € X~ (T). If T is q.-t.t.,
then dy is defined to be the least B such that for all o € &' (T), the points of St of
Morley rank less than f§ are dense in S.f. It will be shown that dp<#, by showing
dr<wi. (If Tis coded by a real, e. g. the set of Godel numbers of axioms of T, then of
is the least ordinal not recursive in the code for T.) oir, the Morley rank of T, defined
for all 7, is the least f such that for all &/ € 2 (T"), every Morley ranked point of S
has rank less than 8. L. Harrington has found a quasi-totally transcendental 7" such
that ar = &;. In Section 4 it is also shown that ap<w] when T is totally transcen-
dental,

A. Kechris [5] has pointed out to the author that some of the results of this
paper can be derived from the work of Blass and Cenzer (cf. [3]) on monotonic IT}
inductive definitions of sets of reals. Kechris’s approach is a striking example of the
power of generalized recursion theory. Yet another approach has been developed by
Harnik and Makkai [4] via Vaught sentences.

Some open questions on the absoluteness of the Morley derivative are listed in
Section 6.

2. Rank. Notation and definitions are taken from [12]. 2°(T) is the category
of all substructures of all models of T f: o/ -4 is a monomorphism of & into %.
S/ is the Stone space of 1-types over &/. A typical basic open subset of S/ is

{p| Fla,x) ep},
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where F(g, x) is a formula in the language of T with parameters g in 4, the uni-
verse of .
Sf: SB—Ssf is the continuous onto map induced by f If ge S#, then

Fla,x)e(S)q « F(fa,x) eq.

S is a contravariant, limit preserving functor from 2 (7' into the category of Stone
spaces. ‘

DS is the Morley derivative of S. pe DS« iff pe Sof and there exists an
f: oA —»B in A (T) such that (Sf)~*(p) contains a limit point of S%. DSf is the
restriction of Sf to DS%, and maps DS# onto DS«.

DFS, the fth Morley derivative of S, is defined by transfinite recursion. D°S = S,
DF*18 = D(D’S), and

D*Sat = () {DPSat| f<l}

when A is a limit ordinal. D?S is a contravariant, limit preserving functor from
A (T) into the category of Stone spaces. If there is a 8 (necessarily unique) such that

pe D!Sef —DP*1Sa

then p is said to be a Morley ranked point of Ssf of Morley f.

dSsZ, the Cantor-Bendixson derivative of Se7, is the set of all limit points
of Sef. d’Sef is defined by transfinite recursion. #°Sef = S, d** 1 Sst = dd*Sst,
and ) .

d*Sst = () {(d*Sst| B<i}.
If there is a § such that p e d*Sof —d’ 1 Sz, then p is said to be a Cantor-Bendixson
ranked point of Sef/ of Cantor-Bendixson rank f. The latter state of affairs is indi-
cated by: reg(p) = f< 0.

PROPOSITION 2.1. reg(p) <ru(p).

Proof. It suffices to show d?Ssf = D!Se for all § by transfinite induction. The
latter is straightforward, because the identity monomorphism 1,: &/ —&f belongs
to (7). &

Suppose %, ¥, W € A (T). ¥ is finitely gencrated if there exists a finite Y= V'
such that ¥ is the least substructure of %~ whose universe contains Y. Suppose
peDPSY and it ¥ W is an inclusion. p is said to split in DPSw- if (DPSH)™'(p)
has at least two members.

9 is an e-universal domain for T if for all f<e, all finitely generated ¥,
and all isolated p e D*S¥", the following holds: if p splits in DFS#" for some
W e A (T), then p splits in D’S#", for some finitely generated % o< %.

9 is a universal domain for T if % is an a-universal domain for 7" for all a.

Levma 2.2. Suppose U is an a-universal domain for T. Then DPSo = d* s
Jfor all f<a.

Proof. By induction of . For details, see the proof of Lemma 31.3 on page 190
of [12]. The point to remember is that D”S preserves limits. Let {#";} be the direct
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system of all finitely generated substructures of %. Then DS is the inverse limit
of the inverse system {D’S¥"}. H

The existence of a countable universal domain for 7'is implied by Proposition
31.2 of [12]. Unfortunately there is a gap in the proof of 31.2. It will be filled
in Section 5 by the type omitting argument of Section 3. The next proposition retains
all that is correct in the proof of 31.2. It will be needed in Sections 3 and 4. card is
an abbreviation for cardinality.

PROPOSITION 2.3. Suppose & € A (T) is infinite and carda<<card.sZ. Then
there exists a U=l such that card¥ = cardsf and U is an «-universal domain.
Proof. A chain {%,] n<w} is defined by recursion. % will be {J {%,] n<w}.

1 Uy = o.

2. For each f <, each finitely generated 7" <4, and each isolated p € DSy,
choose a #7 s, p finitely generated over ¥~ with the following property: if p splits
in D’Sy for some # e 4 (T), then p splits in DPSw Y s.p- Lhe existence of Wy 50
follows from the limit preserving property of D"S described in the proof of Lemma 2.2.
Let %,.; be a model of T which extends %, and every %} 5,p» and which has the
least possible cardinality.

9 is o-universal, since each finitely generated substructure of % is contained
in some %,. Assume card%, = carde/ in order to see that card%,., = cards.
The set of all finitely generated 4" <.« has cardinality at most that of /. For each
such %", S¥" has a countable base for its topology, hence only countably many
isolated points.

A set N is said to be admissible (cf. Barwise [1]) if it is transitive, closed under
the operations of pairing and set union, and satisfies the axiom schemes of 4, separa-
tion and collection. Every admissible set N in this paper also satisfies the axiom of
infinity: @ € N. Lemma 2.4 sums up the strong absoluteness properties of the Cantor—
Bendixson derivative alluded to in Section 1. It is not known if the Morley derivative
is equally absolute. 2.4 is inspired by an early result of Kreisel [7] to the effect that
the recursive ordinals, and none less, suffice for the Cantor-Bendixson analysis of
a closed, bounded X} set of reals.

Lemma 2.4 (strong absoluteness of the Cantor-Bendixson derivative). Let N be
an admissible set and sf a substructure of a model of T. If of € N, then (i) and (ii) are
equivalent for all p and all f<oo.

@ peSet &rep(p) = B
() peN&BeN&NE[pe S« &rep(p) = Bl.
In addition all values of the function g, defined by

g(B) = {pl pe St &rep(p) = B},

belong to N, and g is A, over N.

Proof. Since « belongs to N, its complete first order theory also belongs to N.
That theory is given by T'u Di(s#), where Di(s¢) is the diagram of ., since it was

e ©
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assumed in Section 1 that T'is substructure complete. A typical p € Sof is a consistent
set of formulas of the form F(x) with parameters in 4. “Consistent” means consistent
with respect to T U Di(s?), and has the same meaning inside N that it has outside vV
F(x) has a Cantor—Bendixson rank <oo defined by

ren(F(9) =

Part T of the proof is an induction on B intended to show the equivalence of (i)
and (ii) for all § € N. The induction is performed simultaneously with a recursion on f§
designed to show that the relation

(N ) rea(F(x))<pB
is 4, over N. Part IT of the proof will show that rcg(p) <o implies rcg(p) € N.

Part I. Fix fe N and suppose (i) holds. Let G(x) isolate p in d*Sef. Thus
G(x)ep, and for all g,

2) G(xyeq - q=pvrep@<B.

sup {rea()l F(x) ep} .

Then p is generated by the set Z(G) defined by
(3) {G@)} v (~HE)| res(HE)<P) 3

that is p is the unique 1-type containing all of Z(G). By induction (1) is 4, over N,
s0 Z(G), and hence p, are members of N. Also by induction, rep(p) =8 and (2) are
true in N. Consequently (ii) holds.

Now suppose (ii) holds. Then p is generated in N by a set Z(G) as in (3). Since
the concept of first order logical consequence is 4o, Z(G) generates p outside V.

"By induction Z(G) insures that rep(p) = B.

To see that rep(F(x))<p is 4,, observe that rep(F(x)) = p if and only if there
is at least one p, but not infinitely many, such that F(x) € p and p is generated by
some Z(G) as in (3). It is a 4, matter to decide if Z(G) is consistent and complete
(that is generates a 1-type), and if two Z(G)’s generate the same I-type.

Part II. Let « be the least ordinal not in N. Suppose p € S/ and rep(p)<ot.
Then there is a G(x) such that

(4) {GeN} U {~HO) reg(HE)<rep(m}

generates p. Since (1) is 4, ; it follows that (4) belongs to N, and is equal to (3) for
some B<o. But then reg(p)<a.

Each p of Cantor-Bendixson rank B is generated by some Z(G) as in (3). The
4,-ness of (1) over N implies that g(f) € &, and that g is 4, over N. B

COROLLARY 2.5. If o is countable, p € Ssf and reg(p)<co, then p is hyperarith-
metic in o and rCB(p)<w‘f (cf. Kreisel [7]).

Proof. Let N be %, the least admissible set with =7 as a member, and then
apply 2.4. B
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3. Bounding Morley rank.
THEOREM 3.1 (weak absoluteness of the Morley derivative, cf. Lemma 5.2)

Let N be an admissible set, and o a substructure of a model of T. Suppose <f e N.
Then

peSL &ry(p) =8 - peN&feN.

Proof. By 2.1, rep(p) < B, and so by 2.4, p € N. Let ZFC, be a finite fragment of
set theory strong enough to carry out all routine arguments of model theory. The
following collection & of axioms is X, over N, and talks about an end extension of N
in which ZFC, is true,

(i) ZFC,.

(i) The diagram of N. For each @€ N there is an individual constant ¢ and
a sentence

WMlyea Hb\/‘(y = D).

(iii) c0>ry(p)>d. One such axiom for each ordinal 5 e N.

(iv) # =% and % is a countable §-universal domain. One such axiom for
each d e N.

Assume ry(p) ¢ N in the hope of a contradiction. For the moment assume N is
countable. Then & is countable, and by 2.3, & has a model, namely ¥, the real
world. It follows that & has a model ./ that omits «, the least ordinal not in N.
(For details concerning the construction of such an 4 , see Keisler [6, p. 58]).
(iif) implies /4" is a proper end extension, because ru(p) must have a value in ./V,
and that value cannot belong to M. :

For each ze 4 , let te(z) be the transitive closure of z with respect to €,
the e relation of . If the restriction of e ;- to tc(z) is well-founded, then z is said to
be a standard set of A Let St(A") be the set of all standard sets of . St(JV‘) is
admissible, contains ¥, and its ordinals are just those less than (cf. {11, p. 60).
A" can be regarded as an end extension of St(4" ).

The countability of % in A" makes it possible to constrie % as a member of
St(A"). The universe of % becomes w, and the relations of % become sets of n-tuplés
of finite ordinals.

. From now on superscripts will be used to indicate in which universe ranks are
being computed. Since 7 can be injected into %, there is a q € SU n A such that ¢ is
a pre-image of p and () = ry(p). Since ¢ is an actual pre-image of p in the real
world and p has a Morley rank, g must also have a Morley rank. It follows from 2.1
and 2.4 that rgs(g)<o. A straightforward induction shows that any assignment of
Cantor-Bendixson rank in St(A") persists in . In short an isolated point of fﬂ“/“ll
in St(4") remains isolated in /. Thus rés(g)<a; hence (@) <« by 2.2. But this
last contradicts axiom (iii). . )

Now suppose N is uncountable. It suffices to show B is countable. There exist
a countable o7, =/ and a p e S7,, such that M(Po) = B. ¢, the least admissible
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set having o, as a member, is countable, hence susceptible to the above argument for
countable N. H . )

COROLLARY 3.2. Suppose & is a countable substructure of T and p is a 1-type
over sf. If p has a Morley rank, then p is hyperarithmetic in sf and its Morley rank is
an ordinal recursive in <.

4. Bounding d; and o,. dy, Blum’s density number, was defined in Section 1.

THEOREM 4.1. If T is quasi-totally transcendental, then dy is recursive in T.

Proof. Similar to that of 3.1. Let & be a substructure of a model of 7.
Define d to be the least f§ such that the points of S/ of Morley rank less than f are
dense in f. As in the proof of 3.1, the following set & of axioms is %, over T'", the
least admissible set with 7" as a member.

(i) ZFC,.

(ii) 7' is quasi-totally transcendental.

(iii) &7 is a countable substructure of a model of T.

(iv) d¥>5. One such axiom for each d<w].

Assume dy>w] in hope of a contradiction. Then for each § <o} , there is a count-
able & such that d¥ >8, and so each T *-finite (*) subset of ¥ is modeled by the
world. It follows that % has a model 4 that omits w] . (if) requires 4§ to have a value
in 4", and (iv) implies that that value is nonstandard. As in3.1, the countability of &/
implies o & St(A"), the standard part of 4. Since T is quasi-totally transcendental,
the isolated points of S/ are dense in S/ (cf. [12], page 200), and every isolated
point of S/ has a Morley rank. Let J be the set of isolated points of Sef. By 2.4,
IeSt(A).
 Fixp e I'to show ry(p) <w}. Suppose rig(p) = ¢; by 3.1 ¢ is a countable ordinal
(possibly nonstandard) of /4. By (i) and 2.3, there is a % € 4" such that & =% and

N E[% is a countable, (c-1)-universal domain].

Let g & S% be a pre-image of p such that r(p) = ri(g). By 2.2, ris(g) = re)-
It follows from 2.4 that r¥i*)(¢g) <w]. It was noted in the proof of 3.1 that any assign-
ment of Cantor-Bendixson rank in St(4") persists in 4. Consequently c<o)].
It now follows that the least upper bound (in A7) of

M ) pel}
is less than o7, since w} ¢ 4. But (iv) implics that the least upper bound of (1) is
nonstandard.

COROLLARY 4.2, dp <.

oy, the Morley rank of T, was defined in Section 1. Morley [9] showed that o <88
when T is totally transcendental.

TueoreM 4.3, If T is totally transcendental, then oy is recursive in T.

(* Le. member of T
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Proof. Same as that of 4.1. Let & € A" (T). Define «¥ to be the least B such
that every p € S/ has Morley rank less than f. %, is the result of two changes in
the axiom set % of 4.1: “quasi-totally” is replaced by “totally”, and df by «f . The
part played by I in 4.1 is now played by all of So. The concluding contradiction
concerns the least upper bound (in A7) of {f(p) pesSy}. B

5, Countable universal domains. The purpose of this section is not to prove the
existence of a countable universal domain % for T, for that fact follows easily from
the Lachlan bound on Morley rank expressed by formula (2) of Section I, but
rather to estimate the least ordinal needed to conmstruct such a % from T.

Tet WO be the set of all countable wellorderings of integers, and for each
Ye WO, let | Y| be the ordinal represented by Y. Suppose P(X, f) is a predicate
with variable X ranging over the reals, and f8 ranging over the countable ordinals.
P(X, P) is said to be X} if ¥e WO—P(X,|Y]) is Z1.

PROPOSITION 5.1. The predicate p € Sof & ryy(p) = B, restricted to countable s2°s,
is 21 ().

Proof. The predicate in question, call it P(p, o, f), is equivalent to

M (EB) e a(EQpegesalrcp(@) 2Bl -

(1) implies P(p, o, B] by 2.1. Suppose P(p, &, f8) holds. Extend & to &, a coun-
table, (8+1)-universal domain provided by 2.3. Let g€ S% be a pre-image of p of
the same Morley rank as p. Then rcg(g)=f by 2.2.

Since the predicate g € S# is arithmetic, it need only be verified that [res(q) > f]
is 2. The proof of 2.4 shows that the restriction of

@ YeWO — reg(g)=|Y]

to any admissible set N is IT, over N uniformly in N. The last phase refers to a IT,
predicate independent of N; its only parameters are integers. Thus there is a 4, for-
mula R such that for all ¥ and ¢, (2) is equivalent to

©) ‘ HYP(Y, @) F @R, Y, 9).

HYP(Y, q) is the least admissible set with ¥ and ¢ as members; each element of
HYP(Y, q) corresponds to a real hyperarithmetic in ¥, ¢g. A universal quantifier
restricted to HYP(Y, ¢) is equivalent to an unrestricted existential quantifier (cf. [11],
p. 418). Hence (3) is iom

- An admissible set N is said to be recursively inaccessible if for each x € N, there
is a ye N such that x ey and y is admissible.

LeEMMA 5.2. Let N be recursively inaccessible and sf @ substructure of a model

of T. Assume o/ € N, Te N and

NE[T is countable & (x)(x is wellorderable)).

(®) Proposition 5.1 can be derived from Lemma 4.8 of [3] without any mention of universal
domains.

e ©
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Then (i) and (ii) are equivalent for all p and all f<co:
() pe S &rulp) = 5,
(i) pe N&BeN&NF [peSd &rylp) = fl.

Proof. If p, &/ e N and pe S, let F(p) be the Morley rank assigned to p
inside N. By 3.1 it suffices to prove

0] rv(p) = B < r(p) = B

for all o, p and f in N by induction on f. Since elementary arguments of model
theory can be carried out in N, the value of r(p) is determined, as in the real
world ¥, by the countable structures. Thus it is enough to prove (1) for .«’s countable
in N.

Fix f and assume ry(p) = f. By induction rN(p)= B Suppose ri(p)>B. Then
in N there is a # > and a gop such that ¢ is a limit point of DS, In V there is
a neighborhood F of g that isolates ¢ from all points of S save those of Morley rank
less than f. But then by induction F isolates ¢ in DPS# in N.

Now assume 7y(p) = B. By induction ry(p)> f. Then in ¥ the following is true
for each #. There exist a countable %, and distinct gq, ..., g, such that

) AdchB, &pcg e SB, &rylg)=p (<n).

Since ri<r(p) <0, it follows from 2.4 that p is hyperarithmetic in &. Suppose
B<w¥. Then 5.1 implies (2) is 2! with parameter &#. By Kleene’s basis theorem
([11], p. 420), %, can be assumed to be recursive in 0, the hyperjump of the real
that codes . Since N is recursively inaccessible, 0 € N. Let 9, be the amalga-
mation in N of all substructures (of models of T') coded by reals recursive in 0%. In V,
p has infinitely many pre-images in 4, of Morley rank >f, and by induction the
same is true in N. But then riy(p)>f.

" Finally suppose Sz w?. Since ry(p)=j, it follows as in the proof of 5.1 that
there exist # and g such that

(3) poge SR &re(@zof .
The second half of (3) is equivalent to
(m)me0” - roa(g)>lml].

(Im] is the ordinal less than w{ represented by m.) It follows from 5.1 that (3) is =}
with parameter /. As in the previous paragraph, (3) has a solution (&, ¢> in N.
By 2.4 and 2.5,
rep(q) = ren(q) = o0 .
But then ry(p) = co>f. H
THEOREM 5.3. Let of be a countable substructure of a model of T. Then s/ can be
extenided to a countable universal domain U hyperarithmetic in the hyperjump of .

Proof. A compound of 2.3 and the last part of 5.2. % is the limit of a chain
{,] n<o} defined by recursion on u. %, is recursive in %,4 uniformly in n. (This
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can be taken to mean that the even part of the code for %, is the code for %,.)
Each %, has lower hyperdegree than 0 (in symbols %, <,0%) to insure that the
ordinals <y suffice for the construction.

Let %, be .

Choose some effective enumeration E of w* such that for all », the nth member
of E, denoted by (i,J, k, ), has the propetty that i<n. Let ¥ be the jth finitely
generated substructure of %;. If k € 0, let § be |k|, the ordinal represented by k;
otherwise let § be o¥.

The second half of the proof of 5.1 shows

Q) {pl pe SV & reg(p) <o}

is IT; with parameter %". By 2.5 each member of (1) is hyperarithmetic in . Con-

sequently the members of (1) can be arranged in a sequence hyperarithmetic in ¢”.

Let p be the I/th element of that sequence. ' )
Assume %, < 0%, Since s is recursive in %,, it follows that

0% =, 07 .

]

[0)) o= wf and

Consequently o? <of and 0V<,07.
Assume p e DSy and that p splits in D?S%" for some # e A (7). (If not,
let %,., be %,.) The definition of %,,, has two cases.

Case 1. f<oY. Thus f<w?", and so 5.1 implies that the predicate
® o # 91 & U =W & (s 2lp=gi€ D'SW)

is X} with parameter %,. By Gandy’s basis theorem, (3) has a solution
{do, g1, Wy <n0%. Let U,,, be #. Then %,.,<,0% by (2).

Case IL. B2 w!. By 3.2, rny(p) = oo. Hence there exist g5, ¢, and % such that
qo, g4 €S and :

@ do # 91 & U, =W & () i<2lp=gq; & ri(g) = 0] .
(4 is X} with parameter %,, because [ry(g) = o] is equivalent to
®) (m)med” - g,e D"y,

and (5) is X} by 5.1. Now proceed as in case L.

% (= U{%,) n<w)) is hyperarithmetic in 0, because %,< 0 uniformty
in 7. The last assertion is a consequence of several uniformities, two of which are
worth mentioning. (i) The set of indices of solvable X predicates with parameter P is
recursive in 0F uniformly in P. (if) An index for computing 0% hyperarithmetically
from 0% can be obtained effectively from an index for computing ¥ hyperarithmeti-
cally from 0%, if it is assumed that Y <, 0%,

To see that % is a universal domain for T, let ¥ be a finitely generated sub-
structure of %. " is the jth finitely generated substructure of some 4%,. Fix
and p. If f< w7, let k € 07 be a notation for f; otherwise let k be some non-member

e ©
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of 0. Suppose p is an isolated point of D*S¥". Then rqp(p) < o0, since d*S¥" = DSV
for ally. Let p be the /th element of (1). Suppose p splits in D!S# for some %~ e °(T).
If (i, j, k, I) is the nth member of E, then p splits in D%, ;, hence in some finitely
generated substructure of . B

COROLLARY 5.4. T has a countable universal domain that is hyperarithmetic in the
hyperjump of T.
6. Open questions.

1. To what extent is the assignment of Morley rank absolute ? Does Lemma 2.4
remain true when the Cantor—Bendixson derivative is replaced by the Morley deriva-
tive? Can the assumption of recursive inaccessibility in Lemma 5.2 be substantially
weakened ?

2. Does every countable theory T have a countable universal domain % such
that % is hyperarithmetic in 72 If not, can it at least be arranged that o¥ = wl?

Added in proof. C. Calmer (Stanford Ph. D Thesis, 1978) has answered all of the above
questions. In particular, Lemma 2.4 holds for the Morley derivative.
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