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Abstract. K. Morita posed a problem to characterize spaces which have a compactification
by adding a countable number of points. In this paper we shall establish a theorem that a metrizable
space X has such a compactification iff X is Cech-complete semi-compact and R(X) (= the set of
all points having no compact nbd) is Lindelof.

§ 1. Introduction. All spaces are assumed to be completely regular and T;.

Let o X be a compactification of a space X. Then oX is called a countable-points
compactification if the remainder aX— X consists of at most a countable number
of points. This notion is due to K. Morita, and concerning this he posed the following
problem in [1]: Characterize those spaces which have a countable-points compacti-
fication.

As he pointed out there, if a space X has a countable-points compactification
then X must be necessarily Cech-complete and semi-compact, and in case X is sep-
arable metrizable the converse is also true by a theorem of Zippin [7], to which
K. Morita gave a proof in [3] based on his results on uniformities [2]. However,
even in case Xis Cech-complete semi-compact metrizable it does not have a countable-
points compactification in general as will be shown by Example 4.2 below. Thus
K. Morita suggested the author to find a necessary and sufficient condition for
metrizable spaces to have such a compactification. Namely the purpose of this paper
is to give an answer to his suggestion above and to establish the following theorems.
In the sequel for a space X' R(X) denotes the set of all points having no compact
neighborhood.

THEOREM 1. Let X be a Cech-complete semi-compact space. If R(X) is separable
metrizable then X always has a countable-points compactification.

THEOREM 2. A metrizable space X has a countable-points compactification if
and only if X is Cech-complete semi-compact and R(X) Lindeldf.

The author wishes to express his deep appreciation to Professor K. Morita for
his helpful advices and constant encouragement.

* The contents of this paper were announced in [8].
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§ 2. Preliminaries. Throughout sections, for any space X by a uniformity of X
agreeing with the topology we shall mean a family ¥ of open covers of X satisfying
conditions (i) to (iii) below:

@@ If W, B e P, there exists We ¥ such that W is a refinement of U and BV,

(i) If We ¥, there is B e ¥ which is a star-refinement of 1.

(D) {St(x,W)| Ue ¥} is a local basis at each point x of X.

In this section we shall begin with several definitions and theorems given in
Morita [3], which will be essential to our proof of Theorem 1.

An open set U of a space X is called y-open if Bdy U is compact, where for a sub-
set 4 of a space R BdgA4 denotes the boundary of 4 in R. A finite open cover con-
sisting of y-open sets is called a y-open cover. As is known a space X is called semi-
compact if each point of X has arbitrarily small y-open sets as its neighborhoods.
For this notion the following theorem of Morita [3, Theorem 1] is well-known.

THEOREM 2.1. The totality. I' of all y-open covers of a semi-compact space X is
a uniformity of X agreeing with the topology, and the completion yX of X with respect
to I' is the maximum of all compactifications 0X’s of X with the following property:

(x)  For any point p of 0X and any neighborhood U of p there exists an open ser V
of 60X such that pe VaU and BdpyV < X.

K. Morita called the above yX the Freudenthal compactification (cf. [5]).

As was mentioned in the introduction K. Morita gave his own proof to Zippin’s
theorem above in the following way [3, Theorems 10 and 11]. In the sequel N denotes
the set of all positive integers.

THEOREM 2.2. Let X be a semi-compact separable metrizable space. Then X has
a uniformity T'y = {U,] ne N} of y-open covers agreeing with the topology with the
Jollowing properties:

(@) N, is a star-refinement of W,_,.

(b) W, is a refinement of the covers

(U, X-Cly Uy, Ul Un BdyUy; # @, Uell,_}

Jori=1,.,n=1;j=1,..,r, where ¥; = {Uyl j=1,..,r]}

Then the completion 8X of X with respect 1o I'y is compadct metrizable with prop-
erty (%) in Theorem 2.1.

THEOREM 2.3. For any metrizable compactification 0X with property () in
Theorem 2.1 of a Cech-complete semi-compact separable metrizable space X there
exist a compactification aX with Card(aX—~X)<8, and a continuous map ¢ from
0X onto oX such that @|X = the identity of X.

‘We shall need further several lemmas. The condition (b) in Lemma 2.4 below
was. pointed out by K. Morita.

Lemma 2.4, Let X be a Cech-complete semi-compact space and therefore let
X = {G)| ie N} with an open set G; of yX for i€ N. If a closed set F of X has

e ©
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a countable open basis then there exists a countable collection Y of y-open sets of X
satisfying the following conditions:
(a) For any pe F and any neighborhood V of p in X
pelUcClyUcU,

hold for some U, U’ el
(b) For any pe F and any ie N

UnFcV

peUcClUcU'=ClyU'cG,
holds for some U, U'e .
Proof. Let 8 = {B;] ie N} be a countable open basis of F. Let us put
& = {ClLyB| ieN} U {yX—G}| ieN}.

For each pair of sets E, E’ in § with E N E’ = @, by Theorem 2.1, we can choose
two open sets Vip, Vgg of pX so that

(1) : Ec VEE'a E'= VE’Ea CITX VEE’ n ClyX VE'E =d E]
and
2 Bd,x Vgp=X, BdyVpecX.

Tet B be the collection of those sets chosen above. Then by (2) BN X
={VFnX| VeB} is a countable collection of y-open sets of X. Let us put

U={Vin. . AV, X—Cly(Viu .0V VieBn X,i=1,..,

’

s;8eN}.

Then 1l is also a countable collection of y-open sets, and satisfies the desired proper-
ties of the lemma. To see this, let p e F and ¥ be open in X with p e V. Choose an
open set V' of pX so that ¥ = V' n X. Let ¢ be any point of ClyF— V. Then the
following two cases arise:

Case (i). If g€ X then ge F and g 5 p. Hence for some B;, B, € B we have
qeB;, pe B, and ClyB, n ClyB, = @.

Case (ii). If ¢ ¢ X then ¢ e pX— G, for some i € N since X = ﬂ G;. Then there

is B, € B such that p e B, =Cl,y B,=G,. Hence each of the two cascs above implies
that there are two sets V3, ¥7 in 9 such that

geVy, peVi ClyVinClyVi=9.

Since ClyF—V' is compa‘ct, we can choose ¢;, i = 1, ..., n so that
) 1 1
ClyF-V'eV,u..u¥,.
Then each of sets

n n
U=NWinX), U =X-{CLV,nX)
i=1 i=1

4 — Fundamenta Mathematicae t. CIII, 2
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is a member of U, and we easily have

pelUcClLUcU’, U'nFcV,

which shows (a). Let pe F and ie N. Then there is B, B such that pe B,
< ClyB,=G;. Let ¥y, ¥, be the sets in B chosen above for the pair Cl,x By, yX~—G;
with ClyB,cV, and yX—G,cV,. Then by putting U, =V, nX and
U, = X—Cly(V, n X) we easily have

pe U =ClyU, cU,=ClyU,=G;.

Since each of U; and U, is a member of 2, the condition (b) holds. This proves
Lemma 2.4.

For any y-open cover X of a semi-compact space X let I denote the collection
{U] Uel}, where U = yX—Clx(X~U). By Theorem 2.1 I is an open cover
of pX. :

Lemma 2.5. Let X ‘and F be as in Lemma 2.4. Then there exisis a sequence
{W,| ne N} of y-open covers of X such that for any point p of F

© {St(p, W) " F| ne N} is a local basis at p in F, and

@ N{Stlp, ) neN}=x.

Proof. Let U be the collection obtained in Lemma 2.4. Consider a pair of
sets U, U"in U such that Cly Uc U’. Then {U’, X—Cl, U} is a y-open cover, and
since the set of all such covers is countable, we write them as 1[,, 2,, ... Then the
collection {,| n e N} satisfies (c), (d). Clearly (c) is satisfied by (a)' in Lemma 2.4,
Let peF and i N. By (b) in Lemma 2.4, there are- U, U’ in U such that
peUcClUcU'=ClyU' =G,. Then {U’, X—ClU} is some U, and we have

CSt(p, 11,) = 9X—Clx(X—U")=ClyU' <G, .
Thus
N {St(p, )| ne N}c N {Stp,IL,)l ieN} = NG, = X,
which shows (d). This proves Lemma 2.5.

LemMa 2.6. Let F be a closed set of a semi-compact space X. Then for any v -open

set G in X and any y-open cover B of X there exists a y-open cover U of X such that
WU N Fis a refinement of )

FnG F-Cl(FN G, FAV]| VNnBG(FNG) # @, Ve By .
Proof. Let G be a y-open set and B a y-open cover of X, Let us put
K = F  BdyG~St(Bdp(F 1 G), B) .

Then we have K<=G U (X —Cly(F G)), and since K is compact there exist two
y-open sets Uy, U, of X such that
KcU, u U,

UG, UycX-Cl(FnG).
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Let us put
H=U, uU,u St(Bde(Fn &, B).
Then H is a y-open set of X, and we have (GdyG—H) n F = @. Since BdyG—H
is compact and F closed, there exists a y-open set U of X such that
BdyG—-HcU; and U,nF=0.
Now let us put
U= {U, U, Us, G, X~ClyG, V| Bdx(Fn Q) n V £ &, Ve B}.
Then the construction above shows that U is a y-open cover of X and satisfies the

desired property of the lemma. This completes the proof.

In concluding this section we shall state the following lemma given in Morita
[2, IV, Theorem 2]. .
LemMmA 2.7. Let Y be a space which is complete with respect to a uniformity {2}
agreeing with the topology, and X a dense subspace of Y. Then there exisis a homeomor-
phism @ from Y onto the completion X* of X with respect to {X, o X} such that
o|X = the identity of X.
§ 3. Proof of Theorem 1. We are now in a position to prove Theorem 1.
Proof of Theorem 1. Assume that X is Cech-complete semi-compact and
R(X) separable metrizable. Note that R(X) is closed in X. Hence, by Lemma 2.5,
there exists a sequence {1l,| ne N} of y-open covers of X such that for any point p
of R(X)
(3) {St(p,U,) N R(X)| ne N} is a local basis at p in R(X),
@ N {Stp. W) neN}cXx.
Moreover, by induction with the aid of Theorem 2.1 and Lemma 2.6, we can con-
struct a sequence {B,| ne N} of y-open covers of X satisfying the following
properties:
(5 B, is a star-refinement of B, _,.
(6) B, is a refinement of .
() B,n R(X) is a refinement of the families

{Viy 0 R(X), R(X)—Clx(R(X) N V),
Vo RV 0 Bdea(R(X) Vi) # B, VeB, )}
for i=1,.,n—1;j=1,..,r;, where B, = {V,| j=1,..,r}
Let us put
A, = {FPn@X—-X)| VaRX) # 3, VeB,}.

By Theorem 2.1 each member of 2, is open and closed in yX—X. Let us put
A, = @X-X) A St(R(X), B,). Then (yX—X)—A, is open in 9X—X, and is

4%
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compact since X— R(X) is open in yX and X U 4, = (X—R(X)) u St(R(X), B,).
Let us denote the members of W, by 4,;,i =1, ..., 5,. Letus put Dy = pX—X)—4,
and for neN

-Dnl = AIIL"'AM-H: Dni = (Ani’“'jU Anj)'“AIHIa 1<i<S11 .
<i

Then {Dy, D,;| ne N, 1<i<s,} is a disjoint family of open compact subsets of
yX— X. Moreover, since

Dy St(R(X), B,y) =@  and  ClLyRX)=SHR(X), B,,,),

D,; is open also in (yX—X) u R(X). Similarly D, is open in (yX—X) U R(X).
Let us put

Z = GX-X) U R(X)
and

W, = {Dy, VnZ| VO RX) # B, VeB,},
- W, = {Dy, Dyl 1gk<n, j=1,..,8}u
' V{VAZIVARX)# 9, VeB,) for n>l.

Then Z is a compact subspace of yX and by the construction above each 2, is an
open cover of Z for ne N. Since ®,, is a star-refinement of B, by (5), we have

(®) B, is a star-refinement of 2B,.

Therefore & = {2,| ne N} is a normal sequence of open covers of Z.
Here we note that the following properties are satisfied.

©) n St(R(X), B,) = Z— Dy u U {D,| neN, 1<i<s,} and St(D, W) = D,
where D = D, or D;, for ne N.

(10) St(p,2,) = St(p, B,) N Z for each point p of ClR(X).

(11) {St(p,2B,)| ne N} forms a local basis afp in Z for any péint p of R(X).
12) m St{R(X), W,) = n StRX), B)nzZ =) {Q St(p, W,)| p € CLxR(X)}.

Indeed, (9) and (10) are obvious. Since Z is compact, in view of (3), &, (6)
and (10) we can verify that (11) is satisfied. For (12) it should be noted further that

N st(R(X), B,) = U{NSt(p, B,)| peCLyRX)}.

Now we shall apply the arguments in Morita [4] to Z and &: Let (Z, ®) be
a topological space obtained from Z by taking {St(p, W) ne N } as a local basis
at each point p of Z; and Z| & the quotient space obtained from (Z, @) by identifying
two points p and ¢ such that g e St(p, W,) for each ne N. Let us denote by ¢ the
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composite of the identity map from Z onto (Z, ) and the quotient map from
(Z, ®) onto Z|®. Then ¢: Z—Z|® is continuous. For any set 4 of Z let us put
Int(4; @) = {peZ| St(p, W, =4 for some n},
Int(2B,; &) = {Int(W; B)| WedB,}.

Then we have (13) and (14) below.
(13) o to(Int(4; @) = Int(4; B).

(14 ¥ = {o(Int(,; $))| ne N} is a normal sequence of open covers of Z|®,
which defines a uniformity of Z/® agreeing with the topology.

Therefore Z/@ is metrizable. These results are proved in [4].
By the construction of Z/¢ and (11), we readily have that the map
@|R(X): R(X)—¢(R(X)) is one-to-one, and '

o o(R(X)) = R(X), Int(W,; &) n R(X) = B, n R(X).
Therefore by (13) we have
(15) o™ (o (Tnt(,; #)) N ¢(R(X))) = B, A R(X) -

Since {8, n R(X)| ne N} defines a uniformity of R(X) by (3), (5) and (6), by (15) the
map @|R(X) is a uniformly homeomorphism between R(X) and @(R(X)) when we
regard R(X) as a uniform space with the uniformity {8, n R(X)| ne N} and
@(R(X)) as a uniform space with the uniformity obtained by restricting @ to ¢ (R(X)).
Since Z/® is compact, Clzq@(R(X)) is also compact. Hence, in view of Lemma 2.7,
@|R(X) is extended to a homeomorphism / from dR(X) onto Clzee (R(X)), where
SR(X) denotes the completion of R(X) with respect to {8, R(X)| neN}.

On the other hand, in view of (7), {8, n R(X)| ne N} is a uniformity of
y-open covers of R(X) satisfying the same properties as those of I'y in Theorem 2.2.
Therefore SR(X) is a metrizable compactification of R(X) having the property () in
Theorem 2.1, where X beeing replaced by R(X). Hence by Theorem 2.3 there exist
a compactification aR(X) of R(X) with Card(«R(X)~— R(X))<s, and a continuous
map 7 from SR(X) onto aR(X) such that

n|R(X) = the identity of R(X).
Let us put
¢ =noh™": Clyae(R(X))SR(X)—aR(X).
Then we have
Ee(RXD) = (@IRX) ™ @(R(X))—~R(X) ,
EHR(X)) = p(R(X)).
Let us pw!
D, ={{g}l ¢ EZ/‘I’“CIZ/MP(R(X))} v {&Hp) peaR (X)) .

Then D, is-an upper semi-continuous decomposition of Z/ @ since & is a closed map
and Clyp@({R(X)) is closed in Z/®. Let S be the quotient space and & z|o-s
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the quotient map. That is, S is the adjunction space Z[® U aR(X). Then as is easily -
g

seen 4R (X) is embedded as a closed subspace in S and & is an extension of ¢ such
that & yields a homeomorphism between Z|®—Clyep(R(X)) and S—aR(X),
and EYaR(X)) = Clze @(R(X)) holds.
Now let us show that Card(S— R(X))<8,. By (12) we have
NSHR), By) = ¢ (Clyop(RCX)))
since
NSt(R(X), W,) = ¢~ o(Clyy R(X)) = ¢~ ¢(ClzR(X))
= ¢! (Clge e (R(X))) -
On the other hand, by (9) ¢ (D) is a single point of Z/®, where D = D, or Dy,
and Z|6 = o{N\St(R(X), W,)) v {p(D)] D= D, or Dy} Hence we have
Card(Z[®—Cly e (R(X))< 8. Therefore Card(S—aR(X))<s,. Since
Card(«R(X)—R(X)) <Ny,
Card($'~ R(X)) = Card ((S—aR(X)) U (xR(X)—R(X)))< ¥, .
Thus Card(S—R(X))<#,.
Let us put
f=Ee0: Z~—>Z/§D->S.
Then we have
fIR(X) = the identity of R(X),
and since ¢~Lp(R(X)) = R(X), EHaR(X) = Clyep(R(X)) and ¢™1R(X)
= ¢(R(X)), we have ‘

FTIR(X) = R(X).
Let us put

D, = {{x} xeyX-Z} v {f()| seS}.

Since f'is a closed map and Z is closed in yX, applying the same argument as above
to D,, we can construct a space T  containing S as a closed subspace and a continuous
map f from yX onto T so that

Nz=rz-s, f8)=2,
and f maps yX—Z = X—R(X) hdmeomorphically onto T'—S. Then we have
FIR(X) = fIR(X) = the identity of R(X),
FIR(X) = f7'R(X) = R(X),
F(x~R(X) = X~R(X).

t[‘herefore the map f|X: X—f (X)is bijective, and we have f~1f (X) = X. Hence flx
is a homeomorphism from X onto F(X), since fis a closed map.
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On the other hand, by the continuity of f T is compact Hausdorff and f(x)
is dense in 7. Therefore we can now regard T as a compactification of X. Moreover,

~since T—@(X) = S—R(X), we have

Card(T— @ (X))<8 .
That is, T'is a countable-points compactification of X. Thus X admits a countable-
points compactification, and our Theorem 1 is now completely proved.
Remark. Theorem 1 was proved by T. Terada [6] in case R(X) is further as-
sumed to be compact. Then his résult was extended by K. Morita to the case that
R(X) is separable metrizable having the compact boundary in X.

§ 4. Proof of Theorem 2. .

Levma 4.1. If a paracompact space X has a countable-points compactification,
then R(X) is Lindeldf.

Proof. Let o.X be a countable-points compactification of X. Let 1 be an open
cover of R(X). Since X is paracompact and R(X) closed in X, there exists a normal
open cover B of X such that 8 n R(X) refines U. Since B is normal, B is refined by
4 o-discrete open cover B = (J B, of X such that each B, is discrete. Let
%, = {B| B R(X) # @, Be B,}. Take an open set B of uX so that Bn X= B
for Be B,. Then since X is dense in «X, each member of {B| Be B,} is mutually
disjoint. Moreover, for B e 8, we have B—X # @ since B R(X) # . Therefore
the cardinality of B, is at most countable since Card (@X—X)<,. Since |J B,
covers R(X) and (U B;) " R(X) refines 1, Whas a countable subcover. Hence R(X)
is Lindelof. This completes the proof.

Proof of Theorem 2. Theorem 2 now immediately follows from Theorem 1
and Lemma 4.1.

ExAMPLE 4.2. Let S be the topological sum of an uncountable number of
copies of the space of irrationals. Then S'is Cechi-complete semi-compact metrizable.
Since R(S) = S is not Lindelsf, Lemma 4.1 shows that S has no countable-points
compactification.

Remark. As a necessary condition for a space X to have a countable-points
compactificatiorf we have that the cardinality of any collection {U,| ae 2} of disjoint
open sets with U, n R(X) # @ for a € Q is at most countable. This is shown in the
proof of Lemma 4.1. Clearly the space S above does not satisfy either this condition.
This condition was observed for the first time by the author who communicated
it to T. Terada together with Example 4.2 above; this condition was utilized also by
T. Terada [6] in the construction of his examples.
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Chaines de théories umniverselles
par

Maurice Pouzet (Villeurbanne)

Résumé. Une théorie universelle T' (théorie engendrée par des énoncés universels) est dite
irréductible lorsque T n’est pas lintersection de deux théories universelles distinctes de 7. Nous
prouvons que étant données deux théories universelles T et 77 d’un langage comportant au plus des
prédicats et des constantes, si toute chaine (pour Iinclusion) de théories universelles irréductibles
comprises entre T et 7" est au plus dénombrable alors toute suite croissante de telles théories est
stationnaire.

Introduction

Divers auteurs ont étudié (ou seulement utilisé) des conditions de chaines
analogues & celles intervenant dans la théorie classique des idéaux, mais concernant
certains ensembles d’énoncés ou certaines classes de structures. C’est le cas notam-
ment de A. Robinson (qui les étudie d’un point de vue essentielloment algébrique,
voir par exemple les chapitres VII et VIIT de [20]) de A. Malcev (qui les utilise de
fagon implicite, voir le chapitre 33 de [14]) de R. Fraissé (dont I’intérét pour ces ques-
tions est 1ié & sa notion d’abritement, voir [5] et le chapitre 3 de [4]) et, pour des
études particuliéres, de G. Higman, [10] J. B. Kruskal [11] C.S'.J.A. Nash~
Williams [16], R. Laver [13]. '

I nous a paru intéressant d’entreprendre une étude systématique des conditions
de chaines portant sur les théorics universelles (ce cadre d’apparence limité suffisant
A exprimer I’essentiel des résultats connus) et plus particuliérement sur celles dont le
langage ne comporte pas de fonctions (le cas général nous semblant actuellement
trop difficile) avec comme premier objectif une classification de ces théories (en
connexion avec le programme suggéré par A. Malcev, voir chapitre 34 § 2 de [14]);
Ceci compte tenu d’autres applications, par exemples & des problémes de décidabilité
voir [9] ou d’axiomatisabilité liés & la définissabilité voir [17}.

Dans ce texte nous prouvons essentiellement le résultat suivant.

THEOREME. Etant données deux théories universelles T et T' dun langage
comportant au plus des prédicats et des constantes si toute chaine (pour Iinclusion)
de théories universelles irréductibles comprises enire T et T' est au plus dénombrable
alors toute suite croissante de telles théories est stationnaire.
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