LIVRES PUBLIES PAR I’INSTITUT MATHEMATIQUE
DE I’ACADEMIE POLONAISE DES SCIENCES

S. Banach, Oeuvres, Vol. I, 1967, p. 381, Vol. 11, 1979, p. 470.

S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, p. 380.

W. Sierpinski, Oeuvres choisies, Vol. I, 1974, p. 300; Vol. IL, 1975, p. 780; Vol. IIL, 1976, p. 684
J. P. Schauder, Oeuvres, 1978, p. 487.

Proceedings of the Symposium to honour Jerzy Neyman, 1977, p. 349.
Commentationes Mathematicae, Vol 1, 1978, p, 384.

MONOGRAFIE MATEMATYCZNE

27 K. Kuratowski.i A, Mostowski, Teoria mnogoéci, 5-¢me éd.,- 1978, p. 470.

41. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, 3-8me éd., corrigée.
1970, p. 520.

43. ). Szarski, Differential inequalities, 2-2me éd., 1967, p. 256.

44. K. Borsuk, Theory of retracts, 1967, p. 251.

45. K. Maurin, Methods of Hilbert spaces, 2-¢me éd., 1972, p. 552.

47. D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces, 1968, p. 380,

50, K. Borsuk, Multidimensional analytic geometry, 1969, p. 443.

51. R. Sikorski, Advanced calculus, Functions of several variables, 1969, p. 460.

52. W. Slebodzifiski, Exterior forms and their applications, 1970, p. 427.

57, W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 1974, p. 630.

58. C.Bessaga and A. Pelczynski, Selected topics in infinite-dimensional topology, 1975, p. 355.

59. K. Borsuk, Theory of shape, 1975, p. 379.
60. R. Engelking, General topology, 1977, p. 626.
6l. J. Dugundji and A. Granas, Fixed-point theory, Vol. 1 (sous presse).

DISSERTATIONES MATHEMATICAE

CLVIIL. T. Maékowiak, Continuous mappings on continua, 1979, p. 95.
CLIX. Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition
Fx, f(x)), 1979, p. 49.
CLX. D. Brydak, On functional inequalities in a single vanable, 1979, p. 48.

BANACH CENTER PUBLICATIONS

Vol. 1. Mathematical control theory, 1976, p. 166.

Vol. 2. Mathematical foundations of computer science, 1977, p. 259.
Voi. 3. Mathematical models and numerical methods. 1978, p. 391.
Vol. 4. Approximation theory, 1979, p. 312.

Vol. 5. Probability. theory (sous presse).

Vol. 6. Mathematical statistics (sous presse).

Sprzedaz numerdw biezgcych i archiwalnych w ksiegarni Ofrodka Rozpowszechniania
Wydawnictw Naukowych PAN, ORPAN, Patac Kuitury i Naula, 00-901 Warszawa.

icm

The superextension of the closed umit interval is homeomorphic
to the Hilbert cube

by

J. van Mill (Amsterdam)

Abstract. Let X be a compact metric space and let 2.X be the superextension of X. For the closed
unit interval I we show that A7 is homeomorphic to the Hilbert cube, thus answering a question
of J. de Groot.

1. Introduction. One of the unsolved problems in the theory of superextensions
is to determine the superextension of the closed unit interval AI. De Groot [13],
conjectured that A is homeomorphic to the Hilbert cube. This paper contains a proof
of this conjecture. Infinite dimensional techniques are very important in this work,
We will represent Al as an inverse limit of a sequence of Hilbert cubes, such that the
bonding maps are nearhomeomorphisms. An approximation theorem for inverse
limits of Brown ([16]) then is applicable, which gives us the desired result. The
class of Hilbert cube factors, a subclass of the compact metric absolute retracts,
has been investigated by several authors during the last years ([1], [23], [24], [25], [26]).
Several of the common types of absolute retracts, have been shown to be Hilbert
cube factors, e.g., contractible polyhedra [23], dendra [23], contractible cell com-
plexes [24], and hyperspaces ([11], [19], [25]). These results and Chapman’s results
concerning @-manifolds ([7], [8], [9]) will be of great importance for us. This paper
is organized as follows: the second section recalls the definitions of supercompactness
and superextensions and contains some theorems which have interest in their own
rights and which will be, in the fourth section, the tools in proving our main result.
The third section contains a proof that the Hilbert cube is a superextension of I,
relative a specially chosen nice subbase. This result we need as a first step in our
inverse limit construction.

The author wishes to thank P. C. Baayen and A. Verbeek for their encourage-
ment and helpful discussions.

2. Superextensions. In [13], De Groot defined a space X to be supercompact
provided that it possesses an open subbase % such that each covering of X by el-
ements of % contains a subcover of two elements of %. Such a subbase is called
binary. Clearly, according to the lemma of Alexander, every supercompact space is
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compact. The class of supercompact spaces contains the compact metric spaces
(Strok and Szymanski [20]), compact orderable spaces and compact tree-like spaces
(Brouwer and Schrijver [5] or Van Mill [16]). De Groot conjectured that every
compact Hausdosff space is supercompact. This was answered in the negative by
Bell [4], who showed that if X is not pseudocompact then BX is not supercompact.
Moreover there exists a compact separable first countable Hausdorff space which
is not supercompact (van Douwen and van Mill [12]).

Let X be a topological space and let & be a subbase for the closed subsets of X.
& is defined to be
, (i) a Ty-subbase if for each x, € X and S & & with x, ¢ S there exists a T'e &
with xoe T and Tn S =@. ,

(ii) a normal subbase if for each Sy, To €& with S5 n T, = & there exist
S, Tied with S;nTo=B=TynS; and S; VT = X

(iif) a supernormal subbase if & is normal while moreover for all Se ¥ and G
= G X with S A G=0 there existsan S, € & such that G=§, and S S, = @.

& is called binary if the corresponding open subbase % = {X\S] Se &}
is binary. A subsystem = & is called a linked system (1s), if every two of its members
meet. A linked system 4<% is called fixed if (M # & and is called free if
N # = @. If & is binary then any linked system ./ <& is fixed (and conversely).
A maximal linked system or mls (in &) is a linked system not properly contained in
any. other linked system. By Zorn’s lemma every linked system is contained in at
least one maximal linked system. The proofs of the following propositions and the
proof of Theorem 1 can be found in [21].

PROPOSITION 1. Let My, M, be mls’s in &. Then

(a) O ¢ M,. , '

(b) If Se Mo, TeS and S=T then T e M.

() If Se S\My then ATe My SNT = .

(@) My # M, iff IS e My, BTe My SNT =G

@ IfS,Te and SUT = X then Se My or Te M,

Notation. Ag(X) = {# =S| # is an mls in &}.

~ If & is a T;-subbase then for each x € X the linked system .#, = {Ses|xeS}
also is maximal linked; the map

it X—1g(X)
defined by i(x) = , is 1-1. If 4 is a subset of X then we define
At = {#) Mely(X) and ASe M Sc4}.

PrOPOSITION 2. (i) If AcBc X then A* <B™.
(i) If A, BcX and A B= @ then A" nB* = @.
(i) If S, Te& then SNT =@ iff S* nT" =@.
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W) If S, Te& then SUT =X iff ST VT = Iy (X).

W If Se& then ST U (X\S)T = A,(X).

As a closed subbase for a topology on 1,(X) we. take
ST =S| Se&}.

With this topology A,(X) is called the superextension. of X relarive the subbase <.

Tn case & consists of all the closed subsets of X, A,(X) is denoted by 1X and is called
the superextension of X. : S ‘

Tarorem 1. (i) X is embeddable in 1y(X) if & is a Ty-subbase.
(i) Agp(X) is Ty. )
(iii) lyr(X) is Ty if & is a normal subbase. : ‘
(v) Ag(X)- is supercompact. A binary subbase is {(X\S)*| Se &}.
! ) VSe&: i"1[S*] = S.
In case i is a topological embedding, we often identify X and i[X]. An ifzterwtl
structure ([5]) on a topological space X is a function Ii XX X—-2(X) such that
@ x,yel(x,y) (x,yeX),
(i) I(x,3) = I(, %) (x,ye X), ,
(iif) if u, v e I(x, y) then I(u,v)<I(x,y) (u,v,x,y € X),
) Ix, ) nllx,2)nI(y,2) # D (x,y,z€ X). '
A subset A<= X is called I-closed if for all x, y e 4 it follows that T (x, Y A.
If X is a supercompact space with binary closed subbase &, thén Iy: X' x X—2(X)
defined by . .
Iy(x,9) = N{Se | x,ye S}
defines an interval structure on X. Furthermore it is clear that each S € & is I,,- closed.
The converse is also true. If @ compact space X possesses an interval structure I and

a closed subbase & consisting of I-closed sets, then X is supercompact
([5], Theorem 1.1). In particular, & is a binary closed subbase for X.

: THEOREM 2. If & is a binary normal closed subbase. for X, then ‘
IS”(x: y) n I.?’(x: Z) n I.‘/’(ya Z)‘
is a singleton for each x,y;ze X.
Proof. Choose x,y,ze X and let p, g€ I (x, ¥) 0 Iy(x, 2) 0 Is(y, 2), with
P # q. As & is a binary normal closed subbase, it is a normal T';-closed subbase

([16], Lemma 1) and therefore there exist Sp, S; € & such that p.€ S\S; and
ge S\S, and Sy u Sy = X, We have to consider two cases: o :

() Suppose first that x e S;. 'We again distingﬁish two subcases:

(a) y € Sy. Then I,(x, )= S, and consequently g €Sy, which is a contradiction,

() yeS;. X ze Sy, then we can derive the same cohtradiction as. in (). If
ze Sy, then I(y, 2)<=S; and consequently p e Sy which is a contradiction.

(i) Suppose that x e'S;. This can be treated in the same way as case (). =
1!
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Lemma 1. If & is a binary mormal closed subbase for X, then the map
fi XxXxX-X defined by

{f(x> y: Z)} = I.’/’(xv y) n ]!f(x: Z) n I.Y(y: Z)

is a continuous surjection.

Proof. As a first step we will prove that (x, y, z) ¢f ' [S]iff L(x, ) n S = @
or x,)nS=@Bor Iy(y,2)n S =D (Se).

“=” Suppose that I(x,y) 0 S # @and Ip(x,2) N S # O and I(y,2)n S # @D.
Then o = {Te | x,yeT or x,zeT or y,ze T} u {S} is a linked system and
consequently, since & is binary, N #D. As N = I(x, ») N Ig(x, 2) O
A Ig(y, 2y 0 S, it would follow that f(x, y,2) €S, which is a contradiction

“ If T(x, %) 0 S = @, then Iu(x,y) N Iy(x,2) 0 Is(y, HnS=g and
so f(x,y,2) ¢S.

From Theorem 1 it follows that 1 is well-defined. To prove that f is continuous,
choose Se & and let (x,y, 2) ¢~ 1[S]. Without loss of generality we may assume
that I(x,y) n § = &. Using the fact that & is binary and that Iy(x, y)y is an
intersection of subbase elements it follows that there exists an Sy e & such that
I(x,y)cSoand Sy N § = @. The normality of & implies the existence of Sg, S’ € &,
suchthat S, S = @and § N Sy= Gand Sou S’ = X. Then x, y € Sy X\S' =S,
Define U = X\S". Let IT; (i = 0, 1,2) denote the projection maps of the product
Xx XxX. Then (x, y, 2) € I * [U] A II7 * [U]. Furthermore ITg * [U] N o7iuln
Af 1[S] = @, for suppose to the contrary that there exists a point (xq, Yo, Zo)
eIz Ul A OTLUT nf*[S]. Then x,eU and y,eU and consequently
I(xy, yo)=S;. Hence it follows that Is(xo,»o) NS = & and consequently
(%0» Yo» Zo) € f~L[S], which is a contradiction. Therefore f is continuous. To prove
that f is onto, choose x € X. Then

{f(xrx’ x)} = IY(X, x) N Iy(x» x) n Isﬁ(x: x) = {x} . B

Levva 2. g = f| {x}x{y}x X is a retraction of X onto Iy(x, ).
Proof. g is continuous, and furthermore it is clear that

glix}x {y}x X]=ly(x,) -
Choose z € I(x, ). Then

{g(Z)} = {f(xa J’, Z)} = Iy’(x’ y) n I.S’(xa Z) n I.‘/’(ys Z) = {Z} >
since z € Iy(x, ¥) (Theorem 2). This proves that g is a retraction. H

COROLLARY 1. If & is a binary normal closed subbase for the topological space X,
then the following properties are equivalent:

(i) X is connected.
(i) Yx,ye X: Iy(x,y) is connected.
(iii) Each intersection of elements of & either is void or is connected.
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Proof. (i)=>(ii) This is a consequence of Lemma 2.

(i)=() Suppose that X is not connected. Then there exist open non empty
sets Uand V'in Xsuchthat Uu V= Xand Un ¥V = @. Choose xe Uand ye V.
Then I,(x,y) is not connected, which is a contradiction. '

(iii)=-(ii) Obvious.

(ii)=>(iif) Let & be a subsystem of & such that (& #* & and ()& is not
connected. Choose x, y € (Y« and open sets U and ¥ such that xe U, ye V and
NLcUUV and Un Vn (& = J. Then for each 4 € o/ the interval Iu(x, y)
is contained in A4 and consequently I,(x,y)< (). This is a contradiction. B

A mean m is a continuous map m: X'x X—X such that

(i) m(x, x) = x for all xe X.

(i) m(x, y) = m(y, x), for all x,ye X.

THEOREM 3. Any topological Space which possesses a binary normal closed subbase,

.. also has a mean.

Proof. Let & be a binary normal closed subbase for the topological space X.
Let f be defined as in Lemma 1. Choose pe X and define m: X'x X—»X by
m = f| {p} x Xx X. Then m is a continuous map of X'x X onto X. Furthermore

{m(x, )} = Ip(x, ¥) 0 Ip(x, p) 0 Ip(p, %) = {x}
and

{mx, N} = Ip(x, ¥) 0 I(x,p) 0 Ip(, p) = Ip(y, x) 0 I (y, P) N I(x, p)
={m(y,x)}. &

Of course there are many spaces which possess a binary normal subbase.
Examples are products of compact orderable spaces, products of compact tree-like
spaces ([16]) and superextensions of normal spaces. Theorem 3 gives us many easy
examples of spaces which are supercompact, but which do not possess a binary
normal closed subbase. For example the supercompact space

Y = {(0,5)] ~1<y<1} v {(x, sin(1/x)| 0<x<1}

possesses no binary normal closed subbase, since this space has no mean ([3]).
That Y is supercompact is not trivial. To prove this, define for each ne {0, 1,2, ...}

2

= @n+n’

Notice that sin(1/x,) = 1 if 7 is'even and that sin (1/x,) = —1 if n is odd. Let r be
a retraction of ¥ onto {0} x[—1,1] defined by

. — (xay) if (x,y)E{O}X[—-l,l],
""’y)‘{(o,y) it () ¢ {0} x[—1,1].
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It can be shown that
{r“[{O}yk[‘x, 1NC| —1<x<1 and C is a component of

P[0} x [x, 1]} © r {0} x [=1, xINC| —1<x<1 and C is a component
| of {0} x[-1, *IT} v {(x, sin(1/x)| x € [x,, pl, where x, <p<xy-y3

n e\{‘O, 1,2, .3} u {(x, sin(1/x) xelp,x,], where x4 ; <p<X,;

nef0,1,2,..}}
is a binary closed subbase for Y. Moreover it is obvious that this subbase is not nor-
mal. That ¥ possesses no binary normal closed subbase can also be derived from
a rather deep theorem of Verbeek [211; if a connected space possesses a binary normal
closed subbase then this space must be locally connecred ([21], TII. 4.1 Corollary).

Clearly Y is not locally connected and therefore the result also follows. However,
this argument cannot be used in the class of connected and locally connected spaces.

Then our theorem applies. It is well-known for example that the n-spheres S, are ~

supercompact, but do not have a mean ([22]) and consequently they cannot possess
a binary normal closed subbase. It is unknown whether there exists a contractible
Jocally connected example. We will prove that'in the class of metrizable spaces, each
continuum which possesses a binary normal closed subbase must be an AR (absolute
retract), a theorem which has wide applications.

For a compact metric space X, let 2% be the space of all nonempty closed subsets

of X with the Vietoris topology, i.e., the topology induced by the Hausdorff metric.
This space is called the hyperspace of X. A basis for the open sets consists of all sets

€0, 0,, .., 0, = {Ge2| Ge U0iad 6no %0 for i=1,2,..,n}

where 04, 02, we 0 deuotes an arbitrary finite sequence of open subsets of X.
For many strong results concerning hyperspaces see [11], [19] and [25]. i

Lemma 3. Let pe X and let G be a / closed subset of X. Then h(G): = {AcX| 4 is
closed and Gc A or ped and A G # O} is an mis.

Proof. Verbeek [21], I. 1.3(). B

THEOREM 4. Let X be a connected metrizable space, which possesses a binary
normal closed subbase. Then X is an AR.

Proof. Fix a point p & X and define a map i: 2¥»AX by h: G—h(G) where 1(G)
is defined as in Lemma 3. We will prove that 4 is continuous. Let O be an open set
in X and let Geh™1[0"].

Casel.pe 0. Define U =<0, X> = {He2"| HA 0 # B}. As Geh™1[0"]
it follows that A(G) € O and consequently G n O # @, since G e h(G). Therefore
Gel.

Choose He U. Then Hn O # & and so there exists a g€ H n 0. Since pe 0,
it follows that {p, g} =O. However it is clear that {p, g} € h(H), and consequently
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He h™[0%]. Therefore U is an open neighborhood of G which is contained in
BO*].

Case 2. p¢ 0. Define U ={0) = {He2*| Hc0)} Choose HeU. Then
HcO and consequently He% '[0F]. Conversely if Heh 1[0*], then H<O,
since p ¢ O. The combination of these two results yields A~1[0*] = U, and there-
fore A"1[O*] is an open neighborhood of G.

Now, since X possesses a binary normal closed subbase & there is a retraction
ri AX—X defined by {r(#)} = {Se| Ses} (Verbeek [21], IL 4.5 and
consequently the map &: 2%— X defined by & = ro A is a continuous surjection. We
will show that & also is a retraction. Choose x € X. Then

Ex)) = rh({x}) = r{d=X]| 4 is closed and xe A or p € 4 and xe A}
r{dAcX]| A is closed and x e 4}
— ()

=X,

I

since r is a retraction. Now the connectedness of X implies that X is a Peano con-
tinuum (Verbeek [21], TII. 4.1 Corollary) and consequently 2% is homeomorphic
to the Hilbert cube Q (Curtis and Schori [11]). It now follows that X is an AR. B

The above theorem may seem to be a deep theorem, since we use the Curtis
and Schori result: 2¥ 2 Q iff X is a Peario continuum. However we only need that 2% is
an AR iff X is a Peano continuum, since a retract of an AR is again an AR, and this
was proved by Wojdyslawski [27] in 1939. The superextension ANV of any normal
space N possesses a binary normal closed subbase and therefore we lmmedntely
obtain the following corollary:

COROLLARY 2. The superextension AM is a strongly infinite dimensional AR iff M is
« non degenerdte metrizable continuum.

Proof. This immediately follows from Verbeek’s theorem ([211, IV. 2.6): 1M is
a strongly infinite dimensional Peano continuum iff M is a non degenerate metrizable
continuum,

This answers a question of Verbeek raised in [21].

QuEsTION 1. Is the converse of Theorem 4 also true (*)?

A counter example to this question cannot be obtained within the class of one
dimensional AR’s, since this class consists of dendrites, which possess binary normal
subbases ([16]).

A surprising consequence of Theorem 4, for which no direct proof is known, is
that the superextension of any metrizable continuum is contractible.

We will now derive some results concerning supernormal subbases.

Lemma 4. Ler & be a closed supernormal Ty-subbase for X and let U be a closed
Ty-subbase such that ° <%. Then VM € Ao X): {SeP| Se M} is an mls in .

(*) This was answered in the negative recently by A. Szymanski.
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Proof. Let € Ag(X) and define P* = {Se &| Se 4} From the normality
of & it follows that P#s &, and therefore P* is a linked system. Suppose that P
is not maximal linked. Then there exists an Sy € & such that P U {S,} is linked
and S, ¢ P*. Then S, ¢ 4 and so there exists an M e  with M n S, = . Since &
is supernormal there is an $* € & with M<S* and $* n S, = @. This is a con-
tradiction, since M € .4 implies S* € .# and therefore S* epP” ®

THEOREM 5 (G. A. Jensen; cf. [14]). Let & be a Ty-subbase for X, let T be
a normal T,-subbase for Y and let [ be a continuous map f: X—=Y such that
VTed: 1T e &.Then f can be extended to a contimuous map i Ax(X)—Az(X).
Moreover, if f is onto then f is onto. If fis 1-1 and VSe &: f[S]e T then ]' is an
embedding.

The construction of the map f is very simple. If /# e A,(X), then
Py={Ted| f[TeH}

is contained in precisely one mls in I

defined by f(4)

For another solution of the extension problem see [17].

COROLLARY 3. Let & be a closed supernormal T,-subbase for X and let % be
a closed Ty-subbase such that ¥ <. Then Ay(X) is a Hausdorff quotient of Aq(X)
under the map f defined by f (M) = {S € &| S e M}. Moreover: fis the identity on X.
' The definition of subbases which are supernormal seems to be pathological,
since in compactification theory a closed subbase almost always fails to have this
property. In our construction for AT however, subbases which are supernormal appear
in a natural way. Therefore it is worth the trouble to study some elementary proper-
ties of these subbases first.

PROPOSITION 3. Let {&,| ael} be a collection of closed Ty-subbases for the
topological space X, which all are supernormal. Then \) &, is a closed Ty-subbase

ael

which is supernormal. Moreover A 4 (X) can be embedded in [] Ay (X).
ael ael

. This mls is denoted by P, Py and the map f is
= P4 These mappings will be called Jensen 1 mappings.

Proof. That |J &, is a closed T;-subbase which is supernormal is obvious.
ael

To prove the embedding property, for all a e[ let
Ja Aagly“(X)—’X-y“(X‘)

be the Jensen mapping. Note that these mappings exist. Let
e ’llLEJIy,(X )~ “I;I(}%‘(X)

be the evaluation map defined by (e(x)), = f£,(x). We will show that e is an embedding
and for this it suffices to- show that e is one to one. Choose #,, 4, € A v 7 (X)

such that 4, # ,. Then there exist M;e U &, (i = 1,0) such that M Le M,

asl
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(i=0,1) and My n M, = @. Choose a, € I such that M, e &,,. Then, since &,,
is supernormal, we may assume without loss of generality that also M, e &,,. How-
ever, Corollary 3 shows that M;ef, (#;) (i=0,1) and consequently
Fuol o) # Fuolells). ,
If the conditions of Proposition 3 are satisfied, then we will always identify
Ay #(X) and e[/l J #(X)]. It then is usefull to characterize those points of H Ay (X)
ael

which belong to A u o (X). Note that a point x = (x,),er Of H Ae (X)) is a pomt of

ael
which the coordinates are maximal linked systems so that we can speak of ) x,.
ael
LemMA 5. Let {&,| o€ I} be a collection of closed T-subbases for the topological
space X, which all are supernormal. Then x € [| Ay (X) is an element of Ay o (X)
wel

ael
if and only if U x, is linked.

Proof. Ifx €ly o (X)), thenx = U X,, so that U x, is linked. If {J x, is linked,
wel

ael ael

then it also is qu1mal linked (in U .5”,,) for suppose to the contrary that there

ael

exists an S'e &, such that |J x, v {S} is linked, but S'¢ {J x,. Choose «, € I such

ael ael

that S e &,,. It then follows that x,, U {S} is linked and consequently, since x,, is

a maximal linked system, Sex, <= | x,.This isa contradiction. Hence ) x,€4 y » (X)
ael ael ael
and now it is not hard to see that e[ (J x,] = x. B

ael
The importance of Proposition 3 and Lemma 5 is that one can study the be-
haviour of a superextension relative the union of certain subbases, in a product of

—

1

l]fo

Fig. 1

superextensions. We will demonstrate this by an example, Let I denote the real
number interval [0, 1] and let I be embedded in I? as indicated in Figure 1. Define

T = {d=l?| A = I7Y0, xlvA = 07 x, 1] (e {0,1}),xel} .
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Then 7 is a binary normal closed subbase for I*. We are interested in A, (I) where 77,
is defined by
: To={TnI|TeT}.
(Here I denotes the embedded copy of I in I2.)
It is easy to see that 7, is a subbase which is supernormal. We assert that Ago(D)

is homeomorphic to the space X indicated in Figure 2. To prove this define an interval
structure Iy on X by

Lix, ) =N {TeJ| x,yeT}n X.

lIIo

The verification that Iy indeed is an interval structure is routine and follows im-
mediately from Figure 2, since for all x,y,ze X we have

IF(-x’y) mlﬂ'(xaz) nlf(y,z)cX.

Consequently, each element of 7" n X = {T'n X| Te T} is Iy-closed and there-

fore 7 n X is a binary closed subbase for X. We now take recourse to the following
theorem.

THEOREM 6 ([17]). Let X be a subspace of the topological space Y. Then Y is
homeomorphic to a superextension of X iff Y possesses a binary closed subbase I~ such
that for all T, Ty & T with Ty Ty # & we have that Ty n T'nX#@.

In particular, under these conditions YAy x(X). As an application of this
theorem it follows that in the example under discussion X: 2 go(I), since for all
To, T1€T with Ton T, n X # & we have that TonTynI#@,as can easily
be seen. The homeomorphism between X and Agoll) = Ag (D) is very “direct”.
For instance the point p in Figure 3 represents the & n I mls .# for which

{10, €], [e, 1], [a, B] U [, d], [0, a] U b, ] L [d, 1]}

is a pre-mls (A pre-mls is a linked system which is contained in precisely one mls).
Now, if one takes two different embeddings of I in I? of the above type, then
there arise two different superextensions Ago(I) and Az (I). What about Arou g (D)?
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Proposition 3 shows that Ag,, +,(I) can be embedded in A1) x 15,(Z), Which' is
contained in I? x I2, 50 that in any case A, o, (1) is finite dimensional. The normality
of Ty U I implies that Az, - (I) is connected (Verbeek [21], IiL. 4.1 Corollary)

<———]Z|

1
N

g
Agl0)

0

Fig. 3

and coﬁsequently Agqu g (I) is an AR (Theorem 4). Moreover Lemma 5 shows that
the points of I*xI* which belong to As. o, (I) are completely characterized in
a simple way. We will see that there is much more to say about Az, o,(I).

3. The Hilbert cube as a superextension of I. The Hilbert cube Q is the topo-
logical product of infinitely many copies of 7. A Hilbert cube is a topological space
which is homeomorphic to Q. In [17] it was shown that Q belongs to the class of
superextensions of 7, however this was not a satisfying result because we could not
describe the defining subbase well. We will present another subbase & for I such
that A.(I)=Q.

As in Section 2, let J be the canonical binary subbase for I2,

T ={dcP| A =I7'0,x]vd = II; '[x, 1] (ie{0,1});xel}.
Define
E={-23%=0,1,2,..}
and for each 7€ E let I be embedded in 1%, preserving arc-length, as indicated in
Figure 4.
All angles are 37 except the one at (4;0) which is }n. Define .o, by
Ay ={Tnl TeT}.

Then A, (I) is the convex-hull of the embedded copy of [ in I 2, We will show
that Ay w(I) is homeomorpbic to' Q.
ieE

LEMMA 6. Ay (1) is a convex subspace of 1| 2u (D).
icE icE
Proof. Suppose that Ay .([) is not a convex subspace of [] A (I). Then there
icE icE

existx, yeldy () and o, fe R witha+f=1, 00, f0 such that cx+ fy ¢ A qu_n,,(I) .
icE : €
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Since for all ie E the point ax;+ fy; € 1,,(I) it follows that ) (ox;+ fBy;) is not
ickE

linked (Lemma 5). Note that we identify ox;+ fy; and the mls which is represented
by ox;+py; (ie E). Now, there exist indices i, and #; such that (ax;,+fy;,) U
u(ax;,+ fy;,) is not linked. Hence there exist an M € ax;,+ fy;, and an N € ax;, + fy;,
such that M n N = @. If in the copy of I* corresponding to i, we draw a horizontal

~ 1

1

L n I
40 l"

]
3
=n
2
-n
1
=
0¢
0 1
3 1
Fig. 4

line through x;, and determine its intersection p, with the embedded copy of I,
and we do the same in the copy of J* corresponding to i,, thus obtaining p,, then p ,
and p, ax:e derived from the same point of I; for it not, then it is easy tc: ’see tha(;
Xi5 U X;, 18 not linked. In the same way, straight horizontal lines through y, and Vi
also must determine the same point on the embedded copies of I and con;::quent.I;
‘ the same is true for horizontal lines through ax;, + By, and ax;, -+ By;, because of
tl-%e specially chosen embeddings of . Hence it follows that the slituatign drawn in
Figure 5 is the only possibility (except for interchanging i, and iy). v

- Jy -~ ]I,
1 1
AgelD) 19(0 iﬂo ) I‘ Yig lﬂo
- . (1
‘0 ,l“"lfﬁylo i xRy
!
|
[}
|
Xig Xig| 4
N
0 .;. 1 0 ¥ 1

Fig. 5

Remarks. (i) M meets any set of the form 175 1[4 i
‘ : %, Xx] NI with x> ;
in the point O of the embedded. copy of I. ot FE et )

icm
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(ii) N meets any set of the form I Yx, 11 I with x<Io(ox, + By;,) in the
point 4 of the embedded copy of I.

(iif) It is possible that an element of axy,+ By, containing M, and an element
of ax;,+pBy,,, containing N, have a void intersection. In that case of course the
sets M and N also have a void intersection.

(iv) In Figure 5 we have drawn the points x;,, Yio» X1y Yig in such a way that
Iox;, <My, and Iox;, <ITyy;,. This is done because in the cases IIox;, = oYy,
or Hyx; = Hoy;, or (Hox;,<Ipy;, and Hox;,>oy,;,) or (Hox;,>1,y;, and
ITox;, <IIyy,;,) it is easy to see that (o3, + By ) (ox, + Byy,) is linked, as the reader
can easily verify.

Without loss of generality we may assume that IToy;,— o X, <M oYio— o X,
It then follows that

Hgl[ﬂoxi‘, N Icls* (Toxy,, LInT
since NoI\M and since
Mooy, + Byi) — Mo xi, S Moexsy+ Byig) — Mo Xy, -
However, this is a contradiction since x;, U X;, is linked. B

LemMA 7. Ay (D) is infinite dimensional.
icE

Proof. We will show that Ay () contains a copy of the Hilbert cube. For
icE
each n e E, let I, be defined by

O L S
w2732 -0’ 2 32 —n]
Define a map ¢: [[I,—][I* by
nekE nekE

((P (x))i = (x;, %«/i) B :
Note that for each i€ E, (¢(x)); is an element of A,(I) for all x €[] 7,. Further-
neE

more it is obvious that ¢ is an embedding. It suffices to show that the image of [] 1,

nekE
is contained in 1 ,(I) and for this it suffices to show that |) (@ (x)), is linked for
nek e nek

all x € [] I, (Lemma 5). Assume to the contrary that for some x & T4, U (@G
nek nekE nek
were not linked. Then there exist indices my and n; such that (¢(x)),, W (@ (X)),

is not linked and therefore there exists an M & (¢(x)),, 81d an N e (p(x)),, such
that M ~ N = @. Then there are two possibilities drawn in Figure 6 and Figure 7.
Without loss of generality we may assume that n; <ng. This shows that

5 (4, Ho(p (D)ol 0 I ITg I, Mo(9(0)s) N 1

Since n, <n, it follows that

V2 {Ho(e @) —%}<—;1; < :%,1— < V2(Mo(0 (=)
. 1 0


Artur


164 3, van -Mill

and therefore .
2o () =) <1/2 ({0 (2))io—3)

which shows that the coinponent containing 0 of 115" [%, (¢ (x)),,] N I cannot

be contained in the component containing 0 of 5[4, Ho(@(x)),] N I, contra-
diction.

1 ~—1I] e [
- 1
[4] . . ‘
F e
A1) (D)
M N
0 T K 0 1 1
Fig. 6
) <t ]I,
8] = 1 oasmml
l”o iﬂu
A1) A1)
M N
e ¥ : 1 0 ki 1 ]
Fig. 7
Now,

05 T o(9 (0))nos 1 I 5 (T o(@ (), 11 0 T
Since —n,< —n, it follows that the component containing % of

UEI [HO((P(x))nm 1] n I

cannot be contained in the component containin of 11—1 11 “./\ N
: g Px 1
o 1 ti . % 0 ( O(P( ))np ] 2

Lemma 6 and Lemma 7 now give the following:
THEOREM 7. iiu a (D) is a Hilbert cube.
s .

icm
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Proof. According to a theorem of Keller [15] each infinite dimensional compact
convex subspace of the Hilbert space is homeomorphic to the Hilbert cube. H

As noted in the introduction, we need A, (I) as first step in an inverse limit
nekE

representation of AL This will be demonstrated in the next section.
4. Al is a Hilbert cube.

DEFINITION. Let & and 7 be two families of closed sets in X. Then & sepa-
rates 7 if for any Ty, Ty € 7 with T, 0 Ty = @, there exist Sq, S, € & such that ~
TicS; (i=0,1) and Son Sy = @.

Notation. FC&.

For the closed unit interval I, define

& = {G<lI| G is the union of a finite number of closed .
intervals with rational endpoints} .
It is clear that & separates the collection of closed subsets of I so that each mls
M e M is completely determined by its trace on &. In fact it can be proved that A
and A4(I) are equivalent ([17]), which means, homeomorphic under a homeomorphism
which on I js the identity. Furthermore it should be noticed that & is a countable
subbase. Define
F = {(S, S)| S;e &L (i=0,1) and Sy n S, = T} .

Then & again is countable; we enumerate %, using a bijection of N\{1} onto Z.
If (S, S)) € F, then g = d(S,, S;)>0 and also § = +,/2>0. Consider the following
embedding, depending on (Sy, Sy), of I in I? (see Fig. 8). All angles are im except

|

l{L’o

the one at (4, 0) which is }=. Furthermore b—a =6 and Sy=lly 10,dl n I and
S, <II51[b, 11 n I Since S, and S, are finite unions of intervals, such an embedding
always is possible. In the embedding of I in [ 2 we will not use more angles than
necessary. As in Section 2 define

T ={dcI?| A =17*[0,x]v4 = O7*[x,1] (ie{0,1},xel}.
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This time, 44 ,;(Z) is not the convex hull of the embedded copy of I in I?, but it is
the space designed in Figure 9.
If (Sy, Sy) is the nth element of &, let A, (I) be the superextension of I, as

indicated in Figure 9. In addition, put &, = | &;, where the &/;’s are defined as
ickE
is Section 3.

~— I

I
Agar(D)

C .}. 1
 Fig. 9

A Q-factor is a space the product of which with the Hilbert cube is a Hilbert
cube. A Q-manifold is paracompact Hausdorff space modelled on 0, i.e., a space
which admits an open cover by sets homeomorphic to open subsets of Q. Q-mani-
folds are locally compact and metrizable. The hardest part of our program is to show
that for each » € N the superextension A L 9'1(1) is a Q-manifold, the proof of which

i=1 '

“will be postponed till Section 5.
LEMMA 8. For each ne N, A Oy’i(‘() is a Q-manifold.

Now, an interesting theorem of Chapman is applicable to show that 1 3 5/’«(1) is
i=1

even a Hilbert cube.
PROPOSITION 4. For each ne N, ) o o) is a Hilbert cube.
i=1

Proof. The normality of |J &; implies that A ) ya(I) is connected (Verbeek [21],
i=1 i=1

OI. 4.1 Corollary) and consequently i ] y‘(l) is an AR (Theorem 4). Therefore
i=1
}:G ya(I) is a compact contractible Q-manifold by Lemma 8. However, a compact
=1

contractible Q-manifold is a Hilbert cube, by a theorem of Chapman [7]. &
Comsider the following inverse limit system:

a1 gz 3
Ar D) < gD € AggnorD) ..

where all the bonding maps are the Jensen mappings.

icm
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Lemma 9. Al is homeomorphic to lim2 y  (I).
i=1 !
Proof. Since all subbases in the inverse limit system are supernormal and there-
fore are normal there exists for each n e N a Jensen mapping

St A=A g (D).
i=1
From the definition of the Jensen mappings it follows that for each n € N the diagram

:"/r A Dyi({)

/U< = ‘\l’gu-l
&.x—x\l A"aly“((])

commutes, and therefore the map

e: l]—éhﬂ/ligyi(l)
defined by (e(.#)), = &,(#) (neN) is a continuous closed surjection. It remains
to show that e is one to one. Choose 4, A € Al such that .# # .. Then there
exist M e .# and Ne A such that M ~n N = @. Since & separates the closed sub-
sets of I, there exist Sy, Sy € & with McS,, N=§; and S, N S; = @. Of course
it follows that S e.# and S;eN'. Now, (Sy,Sy)e &, say the nth element,
and therefore S, and S are separated by eclements of &, and consequently

E () # E (AN, since &, = ) &;. This proves that e is one to one consequently e is
i=1

a homeomorphism. B

An onto map between homeomorphic compact metric spaces is called a near-
homeomorphism if it is the uniform limit of homeomorphisms. An approximation
theorem for inverse limits of Brown [6], often used in infinite dimensional topology,
says that if ¥ = limX,, where {X.}, denotes an inverse sequence, and the X; are all
homeomorphic to a compact metric space X and each bonding map is a near-homeomor-
phism, then Y is homeomorphic to X,

If X and ¥ are locally compact, then a map f: X— Y is called proper if the
inverses of compact subsets of Y are compact in X, A proper map fis called cell-like
or cellular (CE), if £ is onto and point inverses have trivial shape. Chapman announced
a theorem that characterizes near-homeomorphisms between Hilbert cubes as being
those continuous surjections with the property that the inverse image of each point has
trivial shape. This result is a consequence of his papers [8] and [9]. This theorem
makes Brown’s approximation theorem applicable in our situation.

Lemma 10. Let g,_.,: A 3 y,(l)—)/l"fj‘y,(]) be the Jensen mapping. Then g,
i=1 i=1

is monotone.

2 — Fundamenta Mathematicae, t. CIII
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Proof. We will show that point inverses of g, are closed under the interval
structure of 4 p y,‘(I), which suffices to show that g,_, is monotone (Corollary 1),
i=4

since 1191 9’:(1) is connected. Choose A" EA« g y,l(l) and let Mo, M1 € gy li(AN).

Suppose there exists an M, ely (Mo, M )\gu- LA, Then g,_ (M) # A&
i=1

n—1
and therefore there exist N,, N, € U &, such that Nyeg,,(#;) and N, e V"
i=1
n-=1
and Ny n N; = @. However U & is supernormal, and therefore #/ <.#, (i € {0, 1})

and g, (M) AH, (Cmollary 3). This proves that N, e./lo and Ny & .#; and
therefore

yi(‘j{07 ‘/%J)CNJ—F El
i=1

which is a contradiction since ., e{ 5’31 9’,-(‘/”0’ M) B

Lemma 11. Let g,.q: A B i(l)_))"."g);f/i(l) be the Jensen mapping. Then each

point inverse either is a pomt or is homeomorphic to an interval. In particular g, .-,

is cellular.
Proof. Let £, be the Jensen mapping of 4 5, , (1) onto Ay (I). Let A" & A 8 o (D
. i=1 t i=1 !

Choose My, M, € gy ty(A) such that 4, 5 #,. Thed there exists an Mye H
n=1

and an M, e 4 such that My, n M, = &. Since |J &; is supernormal, it follows
i=1

that M, and M, are not both elements of {J &, (notice that g,_,(#,) = g,_ (A))
i=1

and consequently without loss of generality M, € &,. However, &, is also super-
normal and therefore we may assume that M;e&,. It now follows that
JulMo) # fo( M), since &, is supernormal (Corollary 3). Therefore g, (A4") and
Ffognli(A) are homeomorphic. However this shows that g,,' L (") either is a point
or is homeomorphic to an interval, since all points of £, g,*;(.#) must be elements
of a horizontal line through a point of the embedded copy of I, a point which is
completely determined by .4, and since g, (4 is connected (Lemma 10). &

THEOREM 7. The Supere,\terzszon of the closed interval is homeomorplzlc to the
Hilbert cube.

Proof. As a consequence of Chapman’s theorem it follows from Lemma 11
that all bonding maps in the inverse limit system for Al are near-homeomorphisms. All
superextensions in the inverse system are Hilbert cubes (Proposition 4) and therefore
Lemma- 9 and Brown’s approximation theorem give the result M/ Q. B

5. 2191 y,i(l) is a Q-manifold.
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Lemma 8. For each ne N, Ay y,((I) is a Q-manifold.
i=1

n n
Proof. Choose x & A,E"lyi(l)c ,=Hi A (D) ci]l}.m(l) Xi=1__[2)‘yi(f)- Let {p;| icE} u

v {pi ze{2 3,..,n}} denote the projection maps of the latter product. For
each i€ {2, 3, ..., n} the projection of 14(I) onto the first coordinate axis of 1% is
an interval, say [cf,ci]. Assume that for each ie{2,3,..,q} where g<n,
Hox;e(c?, ¢l) and that for ie {g+1,g+2,...,n} we have Hoxi¢(c?, ¢}). Then
define
& = min{d(ITox;, )| i=2,3,..,9; j=0,1}.
Let A be the finite set {2,3,...,n}. If ie 4, Mex; define
M* = cljint,M
(here I refers to the copy of [0, 1] embedded in Agp (I)=I?). Also, for ie 4, put
F(x) = {M* Mex;(je AN{}) and (M = IIg'[0, Hyx;] 0 T or
M =" [ox;, 110 1) and M* 0 Ootyx; = 3} .

Notice that & (x;) always is finite. If i€ {2, 3, ..., g} then choose a subinterval
(a;, B) of (c?,¢!) (an interval is non-degenerate in our terminology) such that

(i) Hox;€(a;, b)),

(i) @—cf>%e and ) —b;>1s,

(iii) Hy Ya;, bl N Ag(I) consists of two closed convex subspaces DY and D} ‘
such that IT, D? =[a;, Hyx;] and I, D} = [,x;, b,

(i) Ho*las, bln U F(x) =9

(v) for each subinterval [e;, e,] of [a;, ITox;) and for each subinterval [dy, d,]

of (IIox;,b;] we have that Hg'le;, e,] n I and ITg'[dy, d;] n I both have no
isolated points.

If ie AN{2, 3, ..., g} then choose a subinterval [a;, b;] of [c?, c!] such that

@ H3'[a;, b N Ag (D) is convex in Ag(D),

(ii) x; is an interior point of gt a;, bl M Ag () in Ag (D),

(i) Hgtlay, bl n F(x) =

(iv) for each subinterval [€1= ez] of [a;, b;] we have that ITg*[e, e,] N I has
no isolated points.

(One should convince oneself that in all cases suitable a;, b; do indeed exist!)
We will show that the closed neighborhood

B(x) = ﬂ pitlg 1[(’17 blnde (DI Ay g oD

of x is a Q-manifold, which will establish our lemma (there is an open Uin 4 ¢ , ()
. i=1

such that x e U= B(x) and as B(x) is a compact Q-manifold, there also is an open O
2%
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in A G 9,{(1) such that xe O< Uc=B(x) and O is homeomorphic to an open éubset

of Q)
Let us first anatornize B(x). Consxder F={0, 1} and for each 6 = (5)); € F
define

X@ = (A N

i=g+1

it G e, bl Ag (D] N Ay 7D

It then is clear that

U X(o) = B(x).

cel’

A. For each o € F the set X (o) is closed and convex in 4 » m([ ). Assume to the
i=1

contrary that for some o e F the set X(¢) were not convex. Then there exist
y,ze X(o) and e, f € R with >0 and f>0 and a+f = 1 such that ay+fz ¢ X(0).

We claim that

U (y+p2), v U (ay+ B2

icE

is not linked, for else it would follow that oy /;’zeﬂ o g,(l), and as (o +f2);

= ay;+ fz; for each i, it is easily seen that also oy +fize X (cr). Therefore there exist
two indices 7y, jo such that (ay+pz);, U (ay+f2);, is not linked and consequently
there exists an M e («y+fz);, and an N e (ay + fz);, such that M n N = &. Now,
if i, and j, are both elements of Eu {g+1, g+2, .., n} then, using the same
technique as in Lemma 6, this leads to a contradiction, for we have chosen the
intervals [a;, b;] (ie {g+1,g+2,..,n}) in such a way that IT;'[e;, e,] has no
isolated points for every subinterval [e,, e,] of [a;, b;]. Therefore, let us assume
that i;€{2,3,...,q}. Since straight horizontal lines through (ay+pfz);, and
(oy+ Bz);,, must intersect the embedded copies of I in the same point, the situation
sketched in Figure 10 is the only possibility (except for an interchange of the
indices i, and j,, which induces a similar situation).

(ay +:BZ)LD

Fig. 10

Remarks. (i) It is possible that an element of (ay+ f2),,, containing M, and an
element of (ay+ B2);,, containing N, have a void intersection. In that case the sets M
and N of course also have a void intersection.
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(ii) In Figure 10 we have drawn the points y;,, Zig» Xio»> Yjo» Zi 20d X, in such
a way that Iy, <Hgz,,<IIox;, and oy, <oz, <IToxj,. This is not the only
possible configuration. More generally, we may assume that either (II, y,o<1'1(,zio
<Hyx;, and oy <Ioz;,<Iox;) or (Hoxi <oy <Ipzy and Iy x;,,<Ioyj,
<I,z;,) (these two cases are similar), for.in all other cases it is easy to see that
(oy+ ﬁa),o U (ay+ B2)y, is linked. The lack of generality in our diagram will cause
no trouble, as will appear from the proof.

We distinguish two subcases:

(a) Ho“lo IIDy'QSHO Hoyju

Since Mc<lly (Ho(ocy—l-ﬁ’z)m, 1A, it follows that ITo'[Hoyi, 110 T=
<15 (o e, 11, since I3[y, 110 T has no isolated points and since
Ho(ey+p2) 1y~ o yio < Ho(oy + B2) ;= vy, However, this is a contradiction
since y;, U y;, is linked.

(b) HOZJO Hoyjusnozlo Ho}’m

As NcIIgt[0, Hyley+B2z);) n I we conclude that (gt H0 Wn e
cIlgt[0, Hyz;,) N 1, since oy + Bz);o— Hoij<H0(ocy+ﬁa),o oY+ Theref01e,
if g1 Hgz;, N I contains no jsolated point of 5[0, IIyz;,] n I, then this is a con-
tradiction. If II5* Iy z;, N I contains an isolated point of M151[0, Hyz;] N I, then
Iyz;, = Hyx;,, for if not, then g0, I,z n I is not perfect, whlch is a con-
tradiction. Now, since

(1731[0, Hoxjo] nD*n Ht;l [@igs IIox;] = (%]

it follows that also ITy¥;, = Iy X;,, for if not, then y;, U ¥j, is not linked. However,
this implies that also (o + pz);, = I x;, and consequently N € z;, . This is a con-
tradiction, since z;, U zj, is linked.

1t now follows that the nelghborhood B(x) of x is a finite union of closed (and
hence compact) convex subspaces. By a theorem of Quinn and Wong ([I8],
Theorem 3.4) it follows that B(x) is a Q-manifold provided that for all non-void
subsets F, of Fthe set () X(o) either is void or is homeomorphic to Q.

ceFo

B. Let F, be a non-void subset of F. Then () X{(o) either is yoid or is homeo-

aeFo

morphic to Q.
Assume that () X(o) is non-void. Tt sufﬁces to show that () X(o) is infinite

aeFo aeFo
dimensional for an infinite dimensional compact convex set of the Hilbert space is

homeomorphic to @ (Keller [15]). Choose y & ﬁ X (o). We again distinguish two

aeFo
subcases: ;
(2) For each ie{2,3,...,n} the point ITyy, is an element of (¢, ¢h).
Assume that y is such that for every coordinate y; (i€ E U {2, 3, ..., n}) a straight
horizontal line through y; does not intersect I in 0 or 1. (This assumption is justified
by the fact that if y= 1(0) or i(1), then N X(o) is the mtersectmn of a ﬁmte number

ageFo -
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of sets, each of which intersects i(/)(= I) in a neighborhood of .) This intersection,
say f, must be the same point for every coordinate. Define

50 = mln{[yi"—ci)ll IIE.{Z, 3,0 n}} 3
51 = min{lyi—cilll ie {25 3: .‘.,7’1}}

and choose 1, € E such that

1 . = =
- ’—;«<7} min{8o\/2, 814/2,F5 1=/}
0

For all je E, let I; be defined as in Lemma 7.
It is easy to show, using the same technique as in Lemma 7, that for all je E

with j<n, and for each point d of I;x {f//2} we have that |J y, U d is linked
1=2

(notice that indeed I;x { f/\/2} = Aw (D).

Now, by induction, for each k & {m € E| ny<m} we will construct a point %,
of Ay (I) with the following property: for all je E with j<n, there exists a (non
degenerate) subinterval I} of I; such that for every point d}‘ € I_',fx {f /\/ 2} the system

n
Uriu Ukyu Udj
i=2 JeE JeE
ksj Jsno
is linked.
For each j e E with j<n, let &; be the middle of the interval I, x { f'/\/2}. Then

the linked system

n
Uyiv U a;
i=2 jeE
Jsno

is contained in at least one maximal linked system goell(;’ 9’1([)' Define

h_3: = (go)-2 The intervals I;2 (j<n,) now can be found in the following way:
@) I;*: =1L if Hoh_sel_,.
() I;?: = [}, Hod)) 0 I; if Ooh_y e (%, Toa@)NI;.
(i) I72: = [,@;, 11n I; if ok, € [I,3;, 11N,

Tt is easy to verify that the intervals I72 (j<n,), defined in this way, satisfy our
requirements. '

Let all points &, be defined for allkz! (I, k € {m € E| ny<m}).For each jeE,
j<m, let &; be the middle of the interval I} x { f'/\/2}. Then the linked system

4 n

is contained in at least one maximal linked system p,el s y‘(l). Define

hs1: = (Po)ar- The intervals I3 (j<n,) now can be found in the followihg way:
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() 13': =1} if Dohy €1y,
(i) I3': = [4, Hoaj] 0 I} if Mohs €14, Hod N
(i) I3 = [Hod}, 1] o I} if Hohy e (o), 1N,
Again it is easy to verify that the intervals I3’ (j<no), defined in this way, satisfy
our requirements.
Now it is obvious that () X (o) contains a copy of [] I3, which shows that
ageFo jeE
jsno

\ X(o) is infinite dimensional.
ceFo

(b) There exists a coordinate ipe{2,3,..,n} such that Hoyiogé(c?u,c}u).
We will construct a point ge () X(¢) such that Hog,-e(c?,cg) for all

oeFo

ie{2,3,...,n}. Then case (a) is applicable to show that () X (o) is infinite dimen-

oelFp
sional. Without loss of generality we may assume that

N X(@) = Nt Sd0 Ay .M,
aeFo i=2 i=1

where each ; (2<i<n) is convex in As(/) while, moreover, for each i>q we
have S; = JI5 *[H] 1 Ag,(I) for some (non-degenerate ) interval H;. As in case (a),
we may assume that a straight horizontal line through y; does not intersect 7 in 0
or 1. Let this intersection be f. Define V = {ie{2,3,...,n}l Moy ¢ (e, e}
Clearly V={g+1, g+2, ..., n}. Now, for every ie V there exists a subinterval L,
of H, such thatITyy; e L;and L;x {fIN2=AgfI). Let 6; denote the length of this
interval (ie ¥). Let § = min{, ie V}. Moreover define

00 = min{]ﬂoyi—'cf;l\ie 2,3, ..,0\V; je{0,1}}
and
¢ = #min {g,, 8} .
Choose for each ie ¥V a point g, L;x { f/J2} cAg,(I) such that
oy —Hogil =@
Recall that 4 = {2, 3, ..., n}. We will show that

Z=Uagav U »
teV ieA\Y

is linked and consequently each mls ge2p y‘(I) which contains & is a point of
i=1

N X(¢) such that ITog; € (c?, e}y for all ie {2, 3, ..., n}. Assume that % were not
ceFp
linked. We again distinguish two subcases:

Case 1. There exist two indices iy, jo € V such that g;, U g, is not linked, Then
choose M e gy, and N & g;, such that M n N = @. There are two subcases.
(i) One of the sets M, N contains the corresponding projection of y, say y;, € M.
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Since N<IIg'[0, Hog;) n 1 and since |Hog; —~oyl = [Hogja—1Toy;)| it
follows that I3[0, Hoy;0] N IO, oy, 0 I (5[0, x] n I contains no
isolated points for II,g;,<x<II,y;,!). However, this is a contradiction since

05H0, Moyl n I =1,

LIIO | lm,

Jig Yig L/ Yo

Fig. 11

(if) None of the sets M, N contains the corresponding projection of y.
It now follows that for example M<ITg*(I1,4g;,, 11 N L

lfrn‘ LIZ’O

iy Yip 9 Y

Fig. 12

However, this is a contradiction since M contains a coniponent of length at
3 /= 1. -
least $0,/2 while all components of ITg(IT, Jjos 11 0 I'have length less than or

2 - . :
equal to %¢./2, since I15* [H;] A I contains no isolated points and the same is true
for each subinterval of H;,.

‘ Case 2. There exist indices i, € ¥ and j, € A\V such that g, U ;. is not linked.
This can be treated in the same way as Case 1(ii). ° °

This completes the proof of the lemma. B

Added in proof. The main result of this paper. that A7=<Q can also be derived by using
a recent characterization of the Hilbert cube due to H. Toruficzyk.
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