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Approximate continuity of functions of two variables
by

Urszula Wilczyhiska (E5d2)

Abstract. In this work we shall consider the (well known) approximately continuous functions
of two variables and we shall introduce the notions of approximate continuity on the product,
approximate continuity on the hyperbolas, 4 xy-approximate continuity, 4.y-approximate con-
tinuity on the product and Axy-approximate continuity on the hyperbolas. In the first part of the
paper we shall investigate the relations between the introduced classes of approximately continuous
functions. Next we shall generalize the representation theorems of Bogel and Tasche for the case
of approximately continuous functions. At the end of the work we shall give the necessary and suf-
ficient conditions under which the function fo ¢ is approximately continuous in some sense for every
function f, which is approximately continuous in the same sense, where ¢ is a homeomorphism
transforming the plane onto itself. '

K. Bogelin [1] studied the relation between the continuity of the real function f of
two real variables and the continuity of the rectangle function generated by f. This
work deals with a'similar question concerning approximate continuity. We shall
introduce six kinds of approximate continuity of functions of two variables. In three
definitions we shall use the ordinary increment of functions and in the other —-
the so called two-dimensional increment. In the first part of the paper we shall study
in detail various relations between the introduced classes of approximately continuous
functions, Next we shall prove, for the case of approximately continuous functions,
some theorems which are similar to the theorems proved by Bogel in [1] and Tasche
in [2] for continuous functions. The last part of the paper includes some conditions
under which the superposition £ g is approximately continuous when fis an approxi-
mately continuous function and g is a homeomorphism transforming the plane onto
itself.

We shall use the following notation:

{[e, b];¢} — an interval (parallel to the Ox-axis) with the end-points (a, c)

and (b, ¢).

{a;1b, c]} —— an interval (parallel to the Oy-axis) with the end-points (, b)

and (a, ¢).

la, ¢; b, d]— arectangle min(a, b)) < x < max(a, b), min(c, d) < y < max(c, d).

Axf{[xl ) xz]i C'} zf(xZ’ C)""f(xlr C)’
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4,1 {a; vy, 321} = fla, y)~f(a,y0),
xyf[’xla Y15 %25 yz] f(x23 J’z)"‘f(xz, yl) f(xl ) y2)+f(x1 H yi)
4., 4,, and 4., are additive rectangle functions and the following equalities
hold (see [11, p. 50):

Axf{[xls xl]; yz}'—Axf[{xls x2]§ yl}

M By F T, 715 %2, 9] =
= Ayf{xl; [Y1:YZ]}_Ayf{x15 i, 21},
2 F o y2)=f (%1, ¥0) = duf {[¥1, %13 93+ 4, F (%15 [y1, yal} +
+Axyf[xla Y1 5 X2, J’:z]:
® ALS A1 =3 4f,
=1 =1

where A stands for 4., 4,, 4,,
It is not difficult to see that every additive rectangle function can be represented
as the 4,,-function for some function of two variables (see [1], p. 50).
‘We suppose that all the sets under consideration are measurable.
Let |-|; and ||, denote the linear and the two-dimensional Lebesgue measure,
respectively. Recall that the number g,,4 = lim |4 N [xo—#h, xo+A]};/2h (when
k=0t ‘

A<Rand x, € R) is termed the density of 4 at x, (if the limit exists). The definitions
of the right-hand and left-hand, upper and lower densities are similar with obvious
modifications. If 4= R?, and (x,, ¥,) € R?, then the number

QoA = 'hm:’{ 4 N [xo=h, yo—h; Xo+h, yo+ b, /4R ‘

is termed the density of 4 at (xg, yo).
We shall make use of the following properties of density:

#  if g4’ = 0, 4" =1, then g, (4' " 4") =1,
if Qo d’ = Qxoyyd” = 1, then g4’ " 4") = 1,
5) if g4 = o4z = 1, then gy p0(4;x4;) = 1.

DeriniTION 1. We shall say that the function f: R*—R is approximately con-
tinuous at (x,, yo) if and only if there exists a set 4 = R? such that Q(xoyeyd =1 and

lim (f(x P)=f (%0, ¥0)) = 0.

(x,9)=* (xo0,30
(x, JA

DEeFNITION 2. We shall say that the function f: R*>R is approxmw[&/y con-

tinuous on the product at (x4, ,) if and only if there exist a pair of sets 4, 4,=R
such that g,,4; =1, g,,4, = 1 and

Lm  (f(x, %)=/ (%0, 90)) = 0.
(x,9) = (x0,y 0)
(x,y)edix4d;

icm

Approximate of functions of two variables 99

DerFINITION 3. We shall say that the function f: R*~R is approximately con-
tinuous on the hyperbolas at (x,, yo) if and only if there exists a set A< R* (R* de-
notes the set of all positive numbers) such that g4 = 1 (¢* denotes the right-hand
density) and

lim (f(xsy)“f(xod’o)) =0.

(x—x0)(y~y0)~+ 0
| (= %0)(y~yo) | & 4

If, in the above definitions, we put the two-dimensional incrément
Ay f %9, Y03 %, ¥] in the place of the ordinary increment, we shall obtain the
definitions of the A.,-approximately continuous function (the A,,-approximately
continuous function on the product, the 4,,-approximately continuous function
on the hyperbolas, respectively) at (x,, y,).

Finally we shall say that the function f: R*~R is 4, (4,)-approximately con-
tinuous at (xo, ¥o) if and only if the function ¢ (x) = f(x, o) and ¥ (3) = f (%0, ¥)
are approximately continuous (as a function of one variable) at x, and y,, respec-
tively.

Now we shall study the connections between the introduced classes of functions.

TueoreM 1. If a function f: R*~R is approximately continuous on the prodict
at (xo, Yo), then it is approximately continuous at (xo, ¥o). If f is A,,-approximately
continuous on the product at (xq,y,), then it is Ay-approximately continuous at
(xo » Y O)'

Proof. The theorem follows immediately from (5).

Remark 1. The converse theorem is not true. For example, the characteristic
function of the set {(x,y): y>x® or y<—x* or y = 0} is approximately con-
tinuous and A4, -approximately continuous at (0,0), but is neither approximately
continuous on the product nor A,,-approximately continuous on the product at
this point. ) '

Lemva 1. If A<RY, of A =1 and B = {(x,): |xy| € A}, then. 0(0.0yB = 1.

Proof. It is easy to sec that B is a measurable set. Let T'(h) be a triangle with
vertices (0, 0), (0, k), (h, k). B is symmetric with respect to the following axes:

x=0,y=0,y=x py= ~x; thus it suffices to prove that
AT N Bl

6, lim - e

© wor TR,

Put aC = {at: te C} for CeR, aeRand D, = {y: (x,y)e D} for DCR2 xeR.
In virtue of the theorem of Fubini we have

h
I7(H)  Bla = [I(T() 0 Bl d,

h h
T, = £ (T ]y dx = gxdx .
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Observe that for 0<x<h we have (T(h) n B), = [0,x] N (x~H4. It is well
known that |cd], = |c|*]4]; (see, for example [4], p. 64). Hence

(T o B)ly 110, x]n (™94l _ |10, x"] n Al
(T ()sl4 [0, x]ly 1[0, x*1l
From the assumption it follows that for every >0 there exists a 6 >0 such that,
for every real x, if 0<x<§, then
!.1_4_{3_!:,0_’ J_C_]Ll> 1—e¢.
110, x4

Obviously we can suppose that §<1. Then for 0<x<J we have x%*<x; hence

100, x*] Al

T, #ly

Thus for every x such that 0<x<¢ and for each />x we have

T @ A B)ly > A=) (T )y -

>1-¢.

If A<$, then
" "
0j'](T(Iz) O By dx>(1—g) (j; (T ).l ax

and so (6) holds.

COROLLARY. If AcR*, ofd =1 and B={(x,y): [(x—x0)(y—yo)l €4},
then Q(xyy0, B = 1. 7

THEOREM 2. If a function f: R*— R is approximately continuous on the hyperbolas
at (xg, Yo), then it is approximately continuous at (xo, ¥o). If f is A,-approximately
continuous on the hyperbolas at (x,, yo), then it is A,,-approximately continuous at
(05 Yo)- .

Proof. The theorem easily follows from the above corollary.

Remark 2. The function from Remark 1 shows that the converse theorem is
again not true. ) )

Remark 3. The approximate continuity (4,,-approximate continuity) on the
product at (xo, yo) does not imply the approximate continuity (d,,~approximate
continuity) on the hyperbolas at that point. As an example we can use (for
(x5, ¥o) = (0, 0)) the following function:

_Jforx=n"tn=1,2,.,y %0,
fee ) = {0 for remaining (x, y) .

Remark 4. The approximate continuity (4,,-approximate continuity) on the
hyperbolas at (x,, y,) does not imply the approximate continuity (4,,-approximate
continuity) on the product at (x,, y,). Let A < R* be a set such that o054 = 1and0is
the point of accumulation of R*—A4. If f is a characteristic function of the set
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{(x,»): |xyl e 4 U {0}}, then it is easy to see that f is approximately continuous
on the hyperbolas at (0, 0) and 4,,-approximately continuous on the hyperbolas
at that point. We shall prove that f is neither approximately continuous on the
product nor 4,-approximately continuous on the product at , 0).

Let A;, A,<R be such sets that 4, xAy={(x,¥): |xp| € 4}. There exists
a sequence {a,} such that a,\O and a, ¢ A forn = 1, 2, ... Tt is easy to see that for
every xe R we have x¢ 4, or a,x~* ¢ 4,. Consider the intervals [\/ds, 2/a,] on
the Ox-axis and [27'/a,, \/a,] on the Oy-axis. Let

AP = 1Ja, 2Ja)~4;, 4D = 27 /g, Ja]-4, .

If£,(x) = 4,x™*; then we have [,/a,, 2./a,] = AL U £; 4(4%”). Hence | 4", >271 /a,
or | (AN, =271 /a,. In the first case we have

I((R—41) A [0, 2/a,]|

AP 1

— =
2/a, ~ 4’
because R—A;>AY. In the second case we shall use the following inequality:

FAREIUIRS

1|

max (£l 149,

xe[2-tVay, Yan]

max
xe[21 Van, Y]

(see [5], p. 227). It is not difficult to compute that (D' @) = 4;

hence

-1 A(H) 1
I e

[(R—A5) n [0, \/'d;]|1 >|A(2n)|1 1
= i \/a_n

(8) \/a" = \/5'"
because R—A, >4,

For every natural n one of the inequalities (7) or (8) holds, and so it is impossible
to have g4, = 1 and g4, = 1 simultaneously. Then f is not approximately con-
tinuous (4,,-approximately continuous) on the product at (0, 0).

THEOREM 3. If a function f: R*-R is A.-approximately and A,-approximately
continuous and A,,-approximately continuous (d.,-approximately continuous on the
product) at (x4, yo), then it is approximately continuous (dpproximately continuous on
the product) at that point.

Proof. We shall prove the theorem in the case of approximate continuity on the
product., The proof in the remaining case is quite similar.

Let A, A3 R be the sets connected with the 4,-approximate and 4, -approxi-
mate continuity of f at (x,, ¥o) and let A7, 4y =R be the sets connected with the
4.,-approximate continuity on the product of f at (xg, o). Put 4, = 45 N 4'{
and 4, = 45 N A%, In virtue of (4) and (5) we have

>

9) ’ Qoo X 4p) = 1.

3 — Fundamenta Mathematicae T, CIV
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For every £>0 there exists a 6>0 such that, if (x,y) e 4, x4,, |x—x,|<§,
[¥—Yol <6, then

(10) 14, f{[x0, x]; yo}<3e,
(11) IAyf{XO; [J’O,J’]}E<%3,
12) (4 f [X05 Y05 %, Y] <}e.

Hence in virtue of (2) we have for such points (x, y)

[f G, ) —f (x0, Yol <t ,

and f is approximately continuous on the product at (xg, ¥o).

Remark 5. A similar theorem for the approximate continuity on the hyperbolas
does not hold. As an example we can use (for (x,, ¥o) = (0, 0)) the following furic-
tion: :
for x=n"%, n=1,2,..,y—an arbitrary number,
for the remaining (x, y) .

FGen) = {é

Remark 6. Bogel proved in [1], p. 51, that from the continuity of f at (x, y)
it follows that fis 4, -continuous, 4,-continuous and 4,,-continuous at that point.
It is easy to see that in the case of approximate continuity a similar theorem is not
true. .

Using the method of proof of Theorem 3, one can prove without difficulty the
following theorems:

THEOREM 4. If a function f: R*~ R is approximately continuous, 4, (4,)-approxi-
mately continuous and - A,,-approximately continuous at (xq,¥o), then it is 4,
(4.)-approximately continuous at that point. If fis 4, (4,)-approximately continuous
and approximately continuous at (x,, yo), then it is A sy-approximately continuous at
that point.

THEOREM 5. If a function f: R*—>R is approximately continuous on the product,
A, (4,)-approximately continuous and A.y-approximately contimious on the product
at (xy, Yo), then itis A » (4)-approximately continuous at that point. Iffis A.-, 4,-ap-
proximately continuous and approximately continuous on the product at (x05 Yo)s
then it is A.,-approximately continuous on the product at that point.

THEOREM 6. If a function f: R*-R is approximately continuous on the hyperbolas,
Ay-approximately continuous on the hyperbolas and A, (A y)-approximately continuous
at (xo, yo), then it is A, (4,)-approximately contimious ar that point.

The following theorem also has its analogue in Bogel [1]:

THEOREM 7. A function f: R*-R is A,y-approximately continuous at (x,, ¥)
if and only if it can be represented in the Sform :

(13) F9) =g »)+o@+y(y),

where g.is approximately continuous, A.-approximately and 4,-approximately con-
tinuous at (xq, Yo)- ’

icm°®
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Proof. 1. Suppose that (13) is fulfilled. It is easy to see that A, (o+Y) = 0;
so for every (x,y) we have in virtue of (3)

(14) Axyf[xo;.l’oixd’]=Axyg[xo’yo;an’]'

From Theorem 4 we conclude that g is 4,,-approximately continuous at (x,, ¥).
From (14) it immediately follows that f is also 4,,-approximately continuous at
(xq, ¥o)-

2. Suppose now that f is 4,,-approximately continuous at (x,, ¥,). Then the
function g(x, ) = f(xq, ¥o)+ 4.,/ [x0, ¥o;%,»] is approximately continuous
at (xg, o) and 4,-approximately and 4,-approximately continuous at that point,
because it is not difficult to verify that 4,.g {[x,, x]; yo} = 0and 4,9 {x,; [y, ]} = 0.
If we put @(x) = 4.1 {[x0, x]; yo}, ¥(») = 4,f{x0; [¥o, ¥}, then g, @ and ¥
fulfil (13).

THEOREM 8. A function f: R2—R is 4,,-approximately continuous on the product
at (xq,yp) if and only if it can be represented in the form

S0 =90, N+e@+y (),

where g is approximately continuous on the product at (xq, yo), A.-approximately
and A,-approximately continuous at (xy, yo).

The proof is quite similar and will be omitted.

Remark 7. The above theorems are of the local kind, as the following example
shows:

Let 4, = R be a set such that go4; >0 and go(R— A;)> 0 (here ¢ means the upper
density). Put

_ = if yedy,
f(""y)“{x2+1 if yéd,.

This function is 4,,-continuous at every point, because it is not difficult to see
that |d,,.f [xo, ¥o; X, Y| [x*—x5| +|x—xo| for every (xo,¥0) and (x,); so f is
4.,~approximately continuous (4,,-approximately continuous on the product) at
every point. We shall show that it is impossible to find a function g which is approxi-
mately continuous, 4,-approximately and 4,-approximately continuous at every
point and two functions ¢ and \ such that (13) is fulfilled. Suppose that such functions
do exist. Hence

(15) S, =) = glx, N+ .

From the 4,-approximate continuity of g it follows that for every x there exists
a set A,=R such that go4, = 1 and that the following limit exists:

(16) lim [g (v, )+9 ()] = 9(x, 0+ ()

yadx


Artur


104 U. Wilczynska

Itis casy to see that 0 is a point of accumulation of 4, N 4, and of 4. N(R~A4,).
Hence .
{an lim sup f(x, y)—lim inf £ (x, y) = [x*+1—x|>0,
y=0 y=0

yedy yeds

and from the fact that the right side of (15) has a limit we conclude that the left-hand
side of (15) must also to have a limit, and so

lim supy (y)—lim infy (y) = |x*>+1~x] .
y=+0 y=0

vedy yedx

This is impossible because y does not depend on x.

M. Tasche in [6] proved the global theorem on the representation of a function
which is 4,,-continuous on the hyperbolas at every point in the form (13), where g is
continuous at every point. We shall prove a similar theorem for the 4,,-approximate
continuity on the hyperbolas.

THEOREM 9. If a function f: R*—R is A,,-approximately continuous on the hyper-
bolas at every point, then it can be represented in the form

FEe ) =g, MN+g.()+9.09) ,

where g is approximately continuous at every point.
Proof. Put

g(x,y) = 4,,fla, ¢;x,y1,
9:(x) = f(x,0)—f(a,0),
92(3) =f(a, ),

where (a, ¢) is an arbitrary fixed point.

It is easy to verify that the required equality is fulfilled.

A function g is approximately continuous on the hyperbolas at (a, ¢), and so it
is approximately continuous at (a, ¢). Let (x,, ¥o) # (4, ¢). We shall prove that g is
approximately continuous at (x,, ¥o). Suppose that a Xo and ¢ # y, (in the case
where a = x, or ¢ = y, the proof is simpler). A function S is 4,,~approximately
continuous on the hyperbolas at (x,, y,), and so there exists a set 4 <R* such that
054 =1 and

hm Axyf[x0>y0;x:y] =0-
(x—=xo)}(y=y0)=+0
| (x=x0)(y—yo) |e4d

For every >0 there exists a §>0 such that if

Px=xo|*[e=yol<d and [x—xo|*|c—yol€ 4,
|a—xol*|y=yo| <6 and |a—x0|-ly—y0|eA,
[x=xol"[y~yol<d and |x—xo||y—yole4,
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then the following inequalities hold:
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IAxyf[x’ c;x(): yO]I<%€’
IAxyf[a’ Y X0 y0]|<%8 H
|Axyf[x: y;x05y0]]<%6 .

Put &; = min(8le—yo|™*, Sla—x,|7?, /9). For (x,y) such that

Pe—xol €le—yol ™ 4, [y—yol €la—xo| 74, |(x~x0)(¥—7o)l € 4
and
[x—xo|<dy , |y=yol<8,

we have
9 (x, ) =g (%0, yo)l
-.'<.le3,]‘.[}€, c; xO! y0]|+|Axyf[as ¥y xo, yO]I+IAxyf[x:y’ xOsyO][<8 .

We shall use the additional notation C+x = {t+x: te C} for C=R. Obviously
|¥—2xol € le~yol "4 if and only if xe& (je—yo|™(4 L (—1-A)+x,) = 4, and

. similarly |y—yol € |¢—xo|™*4 if and onlyif y € (Ja—xo| " *(4 U (=1 A))+7,) = 4.

From the fact that gd 4 = 1 it follows that 0x04; = land g, 4, = 1. From Lemma 1

we have QyynB =1, where B = {(x,3): |(x—xo)(y—yo)l € 4}. If we put
A" = (4;xA4;) N B, then g, )4 = 1 and in virtue of the above consideration

' lim (g(x, ) —g(xo, ¥0)) =0,

(%,p)= (x0,0)
(x,y)ed’
and so g is approximately continuous at (xq, ¥p).
Now we shall study homeomorphisms g: R?.» R? with the property that for
onto

every approximately continuous function f: R*~R (4,,-approximately continuous
function and so on) the superpositionf e g is approximately continuous (4., -approxi-
mately continuous) of the same type.

Observe that the case of approximate continuity on the hyperbolas is trivial,
because if a function f: R*—R is approximately continuous on hyperbolas at every
point, then it is a constant function. So every homeomorphism is good enough to
preserve this kind of approximate continuity. We shall deal with the remaining kinds
of approximate continuity.

The one-dimensional case was studied by Bruckner in [2]. Recall the following
definition, introduced by Bruckner:

DrriNrrioN 4. We say that a homeomorphism A: R”JTOR” (where 7 is a natural

number) preserves density points if and only if, for every measurable set 4= R, and
for every point a e R, if g,4 = 1, then gu(4) = 1.
TueorREM 10. Let g: R*—>R* be a homeomorphism. For every approximately

onto
continuouy function f the function fo g is approximately continuous if and only if the

homeomorphism h = g~ preserves density points.
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Proof, Observe that a function f: R*—>R is approxindate]y continuous at every
point if and only if for every real number r the sets f (=00, M) and f~H((r, +00))
are d-open (that is, measurable and consisting only of points of density) (see for
example [3]).

1. Suppose that /s preserves density points, Let f be an arbitrary approximately
continuous function and r an arbitrary real mumber. We have

(fo @) (=0, 1) = g7/ (=00, 1)) = h{f (=0, 1))

and similarly for (r, +c0). The sets £~1((—c0,7) and f~*((r, +0)) are d-open
and ) preserves density points; so h(f (=0, )} and A(f~H((r, + o))} are also
d-open. Hence fo g is approximately continuous.

2. Suppose that & does not preserve density points. Let (xo, o) be a point of
density of a measurable set S < R? such that 4(x,, y,) is not a point of density of 4(S).
Let D be a d-open set of type F, such that (xp,y,) € D, D=S and [S—DJ, = 0.
Using the method of proof in [7], p. 26, and the n-dimensional version of the
Lusin—Menchoff theorem (see [3]), one can prove without difficulty that there exists
a function f: R*—R which is approximately continuous and fulfils the following
conditions: 0<f(x,3)<1 for (x,y)e D and f(x,y) = 0 for (x,»)¢ D. Then it
is easy to see that the set (f= g)™*((0, + c0)) = A(D)is not d-open (a point 2(x,, ¥o)
is a “bad” point), and so fog is not approximately continuous.

LeMMA 2. Let g: R*—>R* be a homeomorplusm and let h = g~ If for every
Sfunction f: R2—+R Axy-appraxzmately continuous (A,,y~appr0x1mately continuous on
the product, A.,-approximately continuous on hyperbolas) the function fog is
A,y-approximately continuous (4,,-approximately continvous on the product,
4,,-approximately continuous on hyperbolas), then the image h(P) of every straight
line which is parallel to the Ox-axis or to the Oy-axis is & straight line parallel to the
Ox-axis or to the Oy-axis.

Proof. Suppose that a homeomorphism g does not possess the property
described in the lemma. Then there exists a straight line P: y = y, such that A(P)
is neither the straight line parallel to the Ox-axis nor the straight line parallel to
the Oy-axis, or there exists a straight line Q: x = x, having the image not of the
required form. Consider the first case; the proof in the second is quite similar, There
exist two points (£, ), (&, 1) eh(P) such that & = &,, and n, # n,. Let
(x1590) = g (&1, 1) and (x5, yo) = g (£, 71,). Consider the set 4 = A({[x,, x,]; yo})-
Obviously it is a compact set. If P;, denotes the straight line containing the points
(&1, 1) and (&2, 71), then there exists a point (&, , 1) € 4 such that (&g, 7o) % (£,,11),
(805 10) # (&2, m2) and d((Eo, 16), Pya) = (ESU)PAd((f, ), Py2), where d is an ordinary

e

distance function in the plane. It is not difficult to see that there exists a circular

neighbourhood K((&;, 10), €) of (&, 7,) for which at least one from the following
equalities holds:
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K((os10)> 8) 0 h(P) O {(&, m):
K((£0,m0), &) N A(P) 1 {(€, m):
K((%o» 10, &) N A(P) 0 {(&, m):
K((Cos1m0), &) N h(PY A {(€, )

£2& and n=no}t = {(0,10)} »
=&, and n<to} = {(¢, 10)} »
&< and 1210} = {(&,10)} »
t £s8o and <o} = {(%o, 10)} -
Put

. _JI for  y=y,,
S 2) = {0 for  the remaining (x, y).

Obviously f is 4,,-approximately continuous (4,,-approximately continuous
on the product, 4. -approximately continuous on hyperbolas), but fog is not
4,,-approximately continuous (4,,-approximately continuous on the product,
4,,-approximately continuous on hyperbolas) at (&, 1,), because the set
{(€,m): dey S [0, m05 €, 1] = 1} has at (&, 5) the lower density not less than 471,

LeMMA 3. In the assumptions of the previous lemma the homeomorphism b = g~*
is of the form h(x,y) = (¢(x), ¥ (3)) or k(x,y) = (¥ (), o (x)), where o: R>R
and r: RD::’ R are also homeomorphisms.

Proof. The lemma easily follows from Lemma 2.
LemMA 4. Let ¢: RZ—TRZ be a homeomorphism and let h = g~1. If for every
onto

Sunction fi R*—>R A,,-approximately continuous (4,,-approximately continuous on
the product) the function fo g is d.,-approximately continuous (d.,-approximarely
continuous on the product), then the functions ¢ and \ described in Lemma 3 are
homeomorphisms preserving density points.

Proof. Suppose that ¢ does not preserve density points (the proof for y is
similar). By Theorem 3 in [2] there exists a point x, € R and two strictly monotonic
sequences {a,,} and {b,} such that g, <b for every n, [a,, b,] N [dy, b,] = @ for

n s m, Qm( U [a,,, b,]) = 0 and g,exp(e( U [@,, b,))>0. Suppose that these sequences

are decxe'xsmg (in the case of i 1ncreas1ng sequences the proof is similar). It is not
difficult to see that there exists a natural mumber N such that

Q:cn( L':JN ["i'an'_'%bn: ";‘bn'“i'an]) =0

(the intervals 3¢, —3b,, 3b,~%a,] are concentric with [a,, b,] and are twice as long).
For simplicity assume that N = 1.

Put
1 for x = §(a,+b,),
0 for x<%a,—4b, or x23b,—%a,,
linear and continuous in the intervals [3a,—%b,, 3(a,+5,)],
[%(”n -+ bn): %bn—'&an] ’

Sulx) = [
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Let f,(x) = max f,(x) (obsérve that for every x € R there are only a finite number

n
of functions £, which have a positive value at x). It is not difficult to see that f; is
approximately continuous at every point; it is even continuous for x # x,.
Now we shall construct an auxiliary sequence {¢,}. We have

Gucea0(U e BD)>0,

and so there exists a number #>0 and there exists a sequence {&.} which is strictly
monotonic (assume that it is decreasing: the other case is similar) such that

&~ (xo) and
|(P( 91 [a", bn]) 8l [(P(xo)! ék]li

— >n for every k.
&= (xo)

For every natural n let us choose a number ¢, such that
¥ (c)~¥(0) = fmin|&— ¢ (xo)l 5
where the minimum is taken over such k that

lp(@)—p o)l <lé&—e@l,  lo®)—exo)l <&~ (xo)l -

It is easy to see that {e,} is a monotonic sequence and ¢,—0. Suppose that ¢,>0
(the other case demands only small changes in the proof).
Put N

Jfo(x) for xe[3a,~1b,,3b,—1a,],v=¢,,

o0
0 for x¢ U Ba,—%b,,3b,~%a,] and arbitrary y,
n=1

S(x, ) = w0
0 for xe ) [$a,~1b,,3b,~%a,], <0,
n=1

linear and continuous in the linear intervals {x; [0, ¢,]}
for xe [%an—%bm %.'bn”%an] :

This function is continuous at every point (x, y) 5 (x,, 0) and it is Ay -approxi-
mately continuous on the product at (x,, 0) and so fis 4,,-approximately continuous
on the product at every point. The function fo g is not Ayy-approximately con-
tinuous at (p(xo), ¥(0)), because for ¢epla,, b,] and & 2y (c,) we have

|4y f e 919 (x0), ¥(0); £, nl[>1%, and from the construction of {¢,} it follows that
for every k

o0
|8k w0 —lp(ro) —&l; 20(x0)—£, YO+ lot) =&l A () (Blaz bal) X ey, 00Nl
=l P
4pCeo)—E, 2 -

So the homeomorphism g does not fulfil the assumptions of the lemma.
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THEOREM 11. Let g: RZ(;RR2 be a homeomorphism and let h = g~*. A function

Sog is Ay -approximately continuous on the product for every function f Ay,-approxi-
mately continuous on the product if and only if the homeomorphism h is of the form
h(x, ) = (0 (x), ¥ () or h(x,3) = (\(3), ¢(x)), where ¢: R—>R and y: R—R are

onto

homeomorphisms preserving density points.

Proof. The sufficiency is nearly obvious and the necessity follows from
Lemmas 2, 3, and 4,

We have found a necessary and sufficient condition for the class of functions
approximately continuous and 4,,-approximately continuous on the product and
(a trivial) condition for a class of functions which are approximately continuous on
hyperbolas. For the remaining classes we have only a sufficient condition (for
functions approximately continuous on the product the condition from Theorem 11 is
obviously sufficient) or only a necessary condition (in Lemmas 3 and 4). The problem
of finding a necessary and sufficient condition for these classes is open.
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