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On spaces which have the shape of compact metric spaces
by .

Tadashi Watanabe (Yamaguchi)

Abstract. In this paper we shall discuss topological spaces which have the shape of compact
metric spaces. We shall give characterizations of such spaces and apply them to one of the questions
raised by Mardesié,

~ § 0. Intreduction. The notion of shape was originally introduced by K. Borsuk

with respect to compact metric spaces and was extended to arbitrary topological
spaces by Mardegi¢ [10] and Morita [12]. Throughout this paper we shall use the
notions of Mardesi¢ [10] and Morita [12] without any specifications.

The purpose of this paper is to discuss topological spaces which have the shape
of compact metric spaces. We say that a topological space X has compact metric
shape if there exists a compact metric space Y such that Sh(X) = Sh(Y). In this
paper we shall give characterizations of such spaces. For our purpose we shall
introduce the notions of shape density, shape length and M-condition. These three
are shape invariants,

We shall prove the following.

(1) A topological space has compact metric shape if and only if it is shape
dominated by a compact metric space.

(2) A compact space has compact metric shape if and only if shape density of
the compact space is not greater than .

(3) A compact space X has compact metric shape if and only if the set of homo-
topy classes of all continuous maps from X to P is countable for each finite simplicial
complex P. :

(4) A compact space with M-condition has compact metric shape.

(5) A compact space is strongly movable if and only if it is an ANSR.

The assertion (5) gives a solution to a question raised by Marde§ié [11].
In [3] Dydak makes assertion (5), but there is a gap in his proof. Because his proof
depends on the result of Edwards and Geoghegan [6], but their theorem is still
open for the unpointed case (cf. Dydak [4] and [5]). His proof, however, is true for
the pointed case, .

The author thanks to the referee for his valuable suggestion which helped to
simplify exposition.
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2 T. Watanabe

§ 1. Preliminaries. In this section we recapitulate basic notions and theorems
in [10] and [12].

Throughout this paper we use the-following. k(4) denotes the cardinality of
aset 4. Spaces and maps denote topological spaces and continuous functions, re-
spectively. ~, [f] and [X, Y] denote the homotopic relation, the homotopy class of
a map f, and the set of homotopy classes of all maps from a space X to a space Y,
respectively. %" and FE# denote the category of CW complexes and maps,
and the category of finite CW complexes and maps, respectively. #° €% and s FECW
denote the category of CW complexes and homotopy classes of maps, and the category
of finite CW complexes and homotopy classes of maps, respectively.

Let % be any category. Ob%, 4(X, ¥) and Mor@ denote the collection of all
objects in %, the set of all morphisms in % from an object X to an object Y, and the
collection of all morphisms in %, respectively. Pro-% denotes the pro-category of 4
(see [4] and [7]).

Let X = {X,, [p.r], 4} be an inverse system in #F# . We say that ¥ is
associated with a space X if there exist maps p,: X— X, for a € A satisfying the follow-
ing conditions:

7

(1.1 PawPe=p, for a<a’,

(1.2) for any mapfi X—Q with Q € Ob¥# there exist ¢ € 4 and a map f;: X,— Q
" such that f~f.p,,

(1.3) for ae A and for two maps f;, g,: X,»Q with QeOb¥%" such that
faPa™g.p, there exists a' € A with &' >a satisfying f,pe > g.Puar-

Here < is the directed order in 4. We say that a set {p,: a e 4}, where p,: X—X,
for a e A, is a projection from X to X if it satisfies conditions (1.1)-(1.3). These two
notions are due to Morita [12].

In [12] Morita has proved the following lemma.

LemMMA 1. For any space X there exists an inverse system in HEW associated
with X.

In [10] Marde§i¢ has proved the following lemma.

LEMMA 2. For any compact space X there exists an inverse system in HFECW
associated with X. Moreover, if X is compact metric then there exists an inverse sequence
in H#FEW associated with X.

LeMMA 3. Let {X,, Do, A} be an inverse system in FEW and ler X be the inverse

limit space of it. Then the inverse system {X,, p.], A} in HFEW is associated
with X.

In this paper Sh(X) = Sh(Y) means that a space X is shape equivalent to

a space Y in the sense of Mardegi¢ [10], and Sh(X)<Sh(Y) means that X is shape
dominated by Y.

In [12] Morita has proved the following lemma.
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LEMMA 4. Let X and ) be inverse systems in H#EW associated with a space X
and a space Y, respectively. Then Sh(X) = Sh(Y) if and only if X is isomorphic in
pro-HEW to VD, and also for shape domination.

We can easily show the following lemma.

LemMmA 5. Let X = {X,, [p.1, A} be an inverse system in H'EW, that is, an
object in pro-A’EW . If B is a cofinal subset of 4, then {Xy, [py], B} is isomorphic
in pro-ACW to X.

§ 2. Associated inverse systems. In this section we shall discuss associated
inverse systems.

Let X be a space, and let {f,: aeA} be a set of maps f,: X—0Q, with
0, Ob% W forac A. We say that { f,: a € A} is a semi-projection of Xif it satisfies
the following condition:

(2.1) for any map g: X—Q with QeOb%#  there exist ae 4 and a map
da: Q. Q such that g,f,~g.
We say that {f,: a& A} is a compact semi-projection of X if it is a semi-projection
of X and each Q, is a finite CW complex. '
By Lemmas | and 2 we obtain that

(2.2)  all projections are semi-projections, and hence all compact space have compact
semi-projections.

LeMMA 6. Let X and Y be spaces and let {f,: ae A} be a semi-projection of Y.
If Sh(X)<Sh(Y), then there is a semi-projection {g,: aed} of X. Moreover, if
{fa: a€ A} is a compact semi-projection of Y, then {g,: ae A} forms a compact
semi-projection of X.

Proof. Let f: X—Yandg: Y-»X be shapings such that gf = 1x. Let g,: X—Q,
be a map, where Q, is the range of f,, defined by [g,] =f ((FA)B

We show that {g,: ae 4} forms a semi-projection of X. To prove this fact
let h: X—Q with Qe Ob@ ¥ be any.map. Let A': Y- be a map defined by
[#'] = g(h]). Since {f,} is a semi-projection of Y there exist #€ 4 and a map
h: Q,~Q such that A'~hf,. Thus we obtain that [A] = 1([A]) = (gf ) (RD
= 7(g(UD) = FAXD = FURLED = W QLD = (Wllg,l.  This means  that
{g.: ae A} is a semi-projection of X.

This completes the proof of Lemma 6.

The following theorem is essential in this paper.

TutoreM 1. Let X be a space, and let {f,: de A} be a semi-projection of X.
Then there exist an inverse system % = { Xy, [pyy], B} in €W associated with X and
d projection {p,: be B} from X to X such that each py Is equal to some f,. Moreover,
if {f,: ae A} is a compact semi-projection of X, then we can achieve k(B)<N, % k(4).

Proof. Let Q, be the range of f, for ae 4. Let # be the category defined as
follows: Ob.# = 4, J(a,¢) = {[A]: k is a map from @, to Q. such that hfyfo}
for a, ce A, and the composition in & is equal to the composition in HEW .
1*
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We show that # has the following two properties:

(2.3) For any two objects a, ¢ of # there exist de Ob.# and morphisms
[g]le F(d,a) and [hle F£(d, o).

(24) Ifh, g: Q,~Q with Qe Ob¥# and a € Ob £ are maps such that if,~gf,,
then there exist de Ob . and a morphism [r] e #(d, d) such that hr=gr.

To prove that # has these properties let & = {X,, [g,,], U} be an inverse
system in €W associated with X and let {g,: ve U} be a projection from X to &
(see Lemma 1). To prove (2.3) let & and ¢ be arbitrary objects of . Since & is
associated with X, there exist u e U and maps i: K,—~Q,, j: K,— 0, such that ig,~f,
and jg,~f,. By (2.1) there exist de Ob.# and a map k: Q,~KX, such that f,~g,.
Let h = ik and g = jk. It is easy to show that d, [4] and [g] satisfy the required con-
ditions. Thus (2.3) holds. Next, to prove (2.4) let g, h: Q,~Q with ae Ob.# and
Q & Ob% %" be maps such that gf,~Af,. Since & is associated with X, there exist
ue U and a map m: K,~Q, such that mq,~f,. Since hmg,~gmg,, by (1.3) there
exists ve U such that hmg,,~gmg,,. By (2.1) there exist deOb# and a map
n: @,—K, such that nfy=~gq,. Let r = mgq,,n. It is easy to show that d and [r] satisfy
the required conditions. Thus (2.4) holds.

Since # has properties (2.3) and (2.4), # forms a left filtering category (see [7]).
Thus we can use the trick in Edwards and Hastings [7, pp. 6-7]. In this proof we use
the following terms: A finite diagram D over # means an ordered set (E, M), where B
is a finite subset of Ob .# and M is a finite subset of Mor .# whose domains and ranges
lie in E. Let D = (E, M) be a finite diagram over .#. We say that an object ¢, € E
is an initial object of D if M n F(e,, €) is a singleton set for ee E with e % €y
and M n F(e,e,) = O for ec E.

Let B be the set of all finite diagrams over .# with initial objects. Let us define
the order < in B as follows: D = (E, M)<D' = (E, M) if and only if EcE’
and McM'. Since £ is a left filtering category, we can easily show that (B, <)
forms a directed set.

Let I: B~A4 = Ob # be a function such that I(b) is an initial object of b for
beB. Let X, = Qi and p,: X—X, be the map fiq for be B.For b, b' € B with
b<b' let [py] be the unique morphism in b from I ") to I(b). Thus
X = {X;, [py»], B} forms an inverse system in #G . Moreover, by using (2.3)
and (24) we can easily show that {p,: & € B} forms a projection from X to X.
Hence X is associated with X.

If {fi.: @aeA}is a compact semi-projection of X, then each Q, is a finite CW
complex for a € 4. Then [Q,, Q,] is countable for each @, a' € 4. Therefore, we can
easily show that A(B)<N, x k(4).

This completes the proof of Theorem 1.

§ 3. Shape density and shape length. In this section we shall introduce concepts
of shape density and shape length.

On spaces which have the shape of compact metric spaces 5

Let X be a space. Let I(X) and SP(X) be the collection of all inverse systems
in #¢W associated with X, and the collection of all semi-projections of X, re-
spectively.

Now, we define shape density of a space X (in notation: sd(X)) and shape
length of X (in notation: sl(X)) as follows:

(3.1) sd(X) = Min{k(4): {f.: ae 4} e SP(X)},
(3-2) SI(X) = Mll’l{k(/l). {Xa’ [paa’]a A} EI(X)} N

By Lemma 1 and the definitions we can easily show the following relations;

For a space X,

(3.3) sd(X)<si(Xx),

(B4 if sd(X) <, then sd(X) = 1,

(3.5) if sl(X) <y, then sl(X) =1,

(3.6) sl(X) =1 if and only if there exists a CW complex P such that Sh(X)
= Sh(P).

For shape density we have the following theorem.

THEOREM 2. Let X and Y be spaces..If Sh(X)<Sh(Y), then sd(X)<sd(Y).

Theorem 2 is a consequence of Lemma 6.

COROLLARY 1. The notion of shape density is shape invariant.

For shape length we have the following theorem.

THEOREM 3. The notion of shape length is shape invariant.

We can easily prove Theorem 3 by using the following fact: Let X and ¥ be
spaces such that Sh(X) = Sh(¥)and let 3 be an inverse system in #%# . Then J is
associated with X if and only if 3 is associated with Y.

§ 4. Compact metric shape. In this section we shall give characterizations of
spaces having compact metric shape.

We say that a space X has compact metric shape if there exists a compact metric
space Y such that Sh(X) = Sh(Y). .

Now, wo show the following theorem.

THEOREM 4. Let X be a space. Then the following conditions are equivalent:

(A) X has compact metric shape,

(BY X is shape dominated by a compact metric space..

Proof. 1t is a trivial fact that (A) implies (B). Suppose that the condition (B)
holds. Let ¥ be a compact metric space such that Sh(X)<Sh(Y). Since Y'is compact
metric, by Lemma 2 there is a compact semi-projection { f;: ie N} of ¥, where N is
the set of all positive integers. Then by Lemma 6 there is a compact semi-projection

{9:: ie N} of X. Thus by applying Theorem 1 to {g,} we obtain an inverse system
X = {X,, [pu], A} in H#FCW associated with X such. that k(4) <No X k(N) = Ro.
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Since k(A)<8,, we can easily construct an increasing function f: N—A such
that £ (N) is a cofinal subset of 4. Let Z;= Xy and ry,141 = Praysu+ 1) for each ie N,
and let ry; = rjerFivs,ive o fj—1g for i,je N with i<j. Thus {Z;, ry, N} forms
an inverse sequence in FE# . Let Z be the inverse limit space of {Z;}. Since each Z; is
a finite CW complex, Z is a compact metric space.

We show that Sh(X) = Sh(Z). By Lemma 3, 3 = {2, [r;], N} is associated
with Z. Since f (V) is cofinal in 4, by Lemma 5 3 is isomorphic in pro-#%# to X.
Hence by Lemma 4 Sh(X) = Sh(Z). :

This completes the proof of Theorem 4.

COROLLARY 2. A space which is shape dominated by a finite CW complex has
compact metric shape.

Next, we show the following theorem.

THEOREM 5. Let X be a compact space. Then the following conditions are
equivalent:

(A) X has compact metric shape,

B sl{X)<xo,

(C) sd(X)<m

(D) [X, P] is a countable set for each finite simplicial complex P.

Proof. We show that (A) implies (B). Let ¥ be a compact metric space such
that Sh(X) = Sh(Y). Then by Theorem 3, sl(X) = sl(Y). Since Y is compact
metric, by Lemma 2 there is an inverse sequence in #°%#" associated with Y. Hence
sI(Y)<8,.

We can show by (3.3) that (B) implies (C).

We show that (C) implies (D). To do so let {f,: ae A} be a semi-projection
of X such that k(4) = sd(X)<¥,. Let @, be the range of f, for ae 4. Since X is
compact, by Lemma 2 there are an inverse system X = {X;, [pp], B} in KFECW
associated with X and a projection {p,: b € B} from X to X. Since X is associated
with X, for each aeA there exist u(d)e B and a map A,: X,—Q, such that
Ja2h,Pys- Let Q be an arbitrary finite simplicial complex, and let

K= U {[Xu(a): Q] [ZEA} >

where union means disjoint union. Since Q and all X, are finite CW complexes
and k(A)<®,, then K becomes a countable set. Now, let ¥: K—[X, Q] be the
function defined by ¥ ([r]) = [rpua] for [r] € [X ), Q1. We show that ¥ is an onto
function. To prove this fact let g: X—Q be any map. Since {f,: a € A} is a semi-
projection of X, there exist ae 4 and a map g,: Q,—Q such that g~g,f,. Then
990~ GahPuia» and hence ¥ ([g,h,]) = [g]. Thus ¥ is onto. Since X is countable,
[X, Q] is countable.

We show that (D) implies (A). Let #"; be the collection of all finite simplicial
complexes (more precisely homeomorphism classes of such complexes). Thus
k(W )<wg. Let L= U {[X, P]: Pe #}. Then by condition (D) L is countable.

icm
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Since X is compact, by Lemma 2 there exist an inverse system X = {X,.,[po], 4}
in HFEW associated with X and a projection {p,: ae A} from X to X. We can
assume that each X, is a member of 4. Then M = {[p,]: ae 4} is a subset of L.
Thus M is countable. Let @: M~ 4 be a function such that [pg,,] = mfor each me M.
Since {p,: a € A} is a projection, we can easily show that {pg(: me M} is a com-
pact semi-projection of X. Now, we can apply Theorem 1 to {pa(y: m€ M}. Then
we obtain an inverse system 3 = {Z,, [¢.], C} in #FEW associated with X such
that k(C) <8 x k(M) = 8. Since 3 is an inverse system in #'FE#" and k(C)<Ro,
in the same way as in the proof of Theorem 4 we can construct a compact metric
space Z such that Sh(X) = Sh(Z).
This completes the proof of Theorem 5.

§ 5. A condition for compact metric shape. In this section we shall introduce
M-condition (= metric condition) and discuss it’s properties.

Let X = {X,, [par], A} be an object of pro-#¢#", that is, an inverse system
in #CW. We say that X satisfies M-condition if for each ae A4 there exists a’ € 4
with &> such that for each o’ € 4 with @'’ >a there exist a* € 4 with a*>a’, a”
and a map r*“’; X, —X,. satisfying the following condition:

(.1 P Datar P otras -

If, in addition, the following condition:

(5'2) pna”ra'n" =Doa

is satisfied, then we say that X is strongly movable (see [L1]).

In [11] Marde§ié has proved that if ¥ is dominated in pro-s#'%¢#" by 9 and P is
strongly movable, then X is also strongly movable. Similarly we can prove the
following theorem.

THEOREM 6. Let X and ) be objects of pro-# €W . If X is dominated in pro-AEW
by 9 and ) satigfies M-condition, then ¥ satisfies M-condition.

We say that a space X satisfies M-condition if there is an inverse system X
in #€w associated with X such that X satisfies M-condition. N

By Lemma 4 and Theorem 6 we can easily prove the following condition.

(5.3) If a space X satisfies M-condition, then every inverse system in HEW
agsociated with X satisfies M-condition.

By Lemma 4 and Theorem 6 we can easily prove the following theorem.

THEOREM 7. Let X and Y be spaces. If Sh(X)<Sh(Y) and Y satisfies M- condition,
then X satisfies M-condition.

COROLLARY 3. The notion of M-condition is shape invariant.

The main result of this section is the following theorem.

TreoreMm 8. Let X be a compact space. If X satisfies M-condition, then there
exists a compact metric space Z with finite dimension such that Sh(X) = Sh(Z),
that is, X has compact metric shape. :
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Proof. Since X is compact, by Lemma .2 there exist an inverse system

X = {X,, [por], A} in H#FEW associated with X and a projection {p.: aed}

from X to X. Since X satisfies M-condition, by (5.3) X satisfies M-condition.

Let a, be an arbitrary element of 4. Since ¥ satisfies M-condition, there exists

- d; € A with a, >a, such that for each a'’ € 4 with a”>q, there exist a* € 4 with

a*>a,, a, and g map " X, —X,. satisfying ™ p, s~pe. This condition
implies the following condition:

v’ a’”
(54) r Doy =T PeayarPax S PgrrgnDox =Py -

We show that the singleton set {p,,} is a compact semi-projection of X. To do
so let h: X—Q with Q € Ob%#" be any map. Since X is associated with X, there
exist a, e A with a,>a, and a map h,: X,,—Q such that 4,,p,,~h Thus by
applying (5.4) to a” = a, we obtain the following: hcth,,p,,~h,,r"*p, . Thus
{pa,} forms a compact semi-projection of X.

By applying Theorem 1 to {p,,} we obtain an inverse system 3 = {Z,, [¢..], C}
in #FEH associated with X such that k(C)<R, and each Z, is equal to X,;. Then
in the same way as in the proof of Theorem 4 we can construct a compact metric
space Z such that Sh(X) = Sh(Z) and dimZ<dimX, < o0.

This completes the proof of Theorem 8.

In [2] Borsuk introduced the notion of strong movability for compact metric
spaces and proved that this notion is equivalent to the notion of FANR (= ANSR).
In [11] Mardesi¢ defined the notion of strong movability for compact spaces and
proved that his notion is equivalent to Borsuk’s for compact metric spaces. He
raised the following question: Is every strongly movable compact space an ANSR?
Recently Dydak [3] provided an answer to this question, but there is a gap in his
proof. Because the Tesult of Edwards and Geoghegan [6] on which he depends is
still open for the unpointed case (see Dydak [4] and [5]). His proof, however, holds
for pointed case. We can answer this question in the following fashion without using
Edwards and Geoghegan’s result.

COROLLARY 4. Let X be a compact space. Then X is strongly movable if and only
if it is an ANSR.

Proof. First, we assume that X is strongly movable. Then X satisfies M-con-
dition. By Theorem 8 X has compact metric shape. Since strong movability is shape
invariant, our assertion can be reduced to the compact metric case. Tn the case of
compact metric, however, our assertion has already been proved by Marde§ié¢ [11].
The converse assertion is trivial (see [11]).

This completes the proof of Corollary 4.

Remark 1. Analogously we can introduce the concepts of shape density, shape
length and M-condition for pointed spaces. Obviously we can extend all results
in this paper to the pointed case.

icm
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Remark 2. Recently K. Tsuda has proved that a compact metric space satisfies
M-condition if and only if it is an AWNR (see Bogatyi [1] for the definition of
AWNR spaces), and hence by Corollary 3 the notion of AWNR is shape invariant.

§ 6. P-like continua. In this section we shall discuss #-like continua.

Let 2 be a collection of finite connected siimplicial complexes. We say that
a continuum X (= compact connected space) is 2 -like if for each open covering %
of X there exists an onto map f: X—P with P e £ such that for each point p of P,
f~Y(p) is contained in some member of %. ‘

For #-like continua we show the following theorem.

THEOREM 9. Let X be a P-like continuum. Then there exists a P-like metric
continuum Y such that Sh(X) = Sh(Y) if and only if [X, P] is countable for each
Pe?.

Proof. Let 2 be the homeomorphism classes of complexes in . We can assume
that 2’ is a subset of #7; (see the proof of Theorem 5). Since %, is countable,
2 is also countable. Since X-is #-like, X is also #'-like. Thus by Proposition 1
of [13] there is an inverse system X = {X, [p.], A} in #EH associated with X
such that each X, is a member of #'. .

Now, we suppose that [X,P] is countable for each Pe#’. Let
K= U {[X,P]: Pe#'}. From the assumption it follows that K is countable.
Let K = {[fil: ie N}, where A is the set of integers. We can easily show, by using %,
that { f;: ie N} is a compact semi-projection of X. Then by applying Theorem 1 to
{fi: i€ N} we obtain an inverse system X' = {Xj, [g,;x], B} in #/F LW associated
with X such that each X, is a member of 2’ and k(B)<R,. Thus in the same way as
in the proof of Theorem 5 we obtain an inverse sequence {Z;, u;;, N} in €%  such
that 3 = {Z;, [u;], N} is isomorphic in pro-#%# to X' and each Z; is a member
of #'. By Proposition 2. of [13] there is an onto map §;;41: Z;41—Z; such that
84,141 22U;,141 Tor cach i. Thus we obtain an inverse sequence 3’ = {Z;, 5;;4+1, N}
in @ . Let Y be the inverse limit space of 3'. Since all bonding maps in 3’ are
onto and each Z, is a member of 2, Y is a #-like metric continuum. By Lemma 3
3" = {Z,, [s1,141], N} is associated with ¥. Since 3" = {Z,, [s;/], N} = {Z;, [uy,], N}
is isomorphic in pro-J#%# to X', by Lemma 4 Sh(X) = Sh(Y).

The converse assertion follows from Theorem 3.

This completes the proof of Theorem 9.

We say that & is monomorphic if every map f: P,~P; with P, P, € 2, which
is not null homotopic, satisfies the following condition:

(6.1) if h,g: Py—P, with Pye P are maps such that fhetfg, then hg.

For monomorphic 2 we show the following theorem.
THEOREM 10, Let & be monomorphic. Then for every P-like continuum X there
exists a P-like metric continuum Y such thar Sh(X) = Sh(Y).
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Proof. Since X is #-like, by Proposition 1 of [13] there is an inverse system
X = {X,, [Py, 4} in KFEW associated with X such that each X, is a member
of #. Now, we consider the following two cases:

(6.2) for each a € 4 there exists @' €4 with @' >« such that p,,a, is null homiotopic,

(6.3) there exists a’ € 4 such that for a;, a; € A with a;=a,>4a', paya,is not null
homotopic.

In the case of (6.2) it is obvious that X is of trivial shape. Let P be a member
of # and p, be a point of P. Let f: P—P be the map defined by f(P) = p,. Let
3 = {Z,,[g;l, N} be an inverse sequence such that Z, = P and g,y =f for
each 7, Tt is easy to show that 3 is associated with the one point space, that is,
associated with X. In the same way as in the proof of Theorem 9 we can construct
a P-like metric continuum ¥ such that Sh(X) = Sh(Y).

In the case of (6.3) let 4, = {aed: aza’} and X, = {X,, [Pur] A,}. Since 4,
is a cofinal subset of A, by Lemma 5 X, is also associated with X. Let {pa: ac 4}
be a projection from X to X,. Let B = {[p,]: a€ 4} and let f: B—~4, be a function
such that [psu] = b for each beB. We can easily by using ¥; show that
{pse: be B} is a compact semi-projection of X.

We show that k(B)<¥,. To do so let L = U {[P, X,)]: Pe #'} (see the proof
of Theorem 9 for #'). Thus L is a countable set. Let d: B—L be the function defined
by d(®) = [Pas) for each b e B. We show that d is injective. To prove this let
d(by) = d(b,) for by, by € B. Then Py ey ~=Pussy- Let @' be an element of 4 with
a"zf(by),f(;). Then we obtain that pupenPrenePa =Pe =P fe)P b0 Pa’ -
Since X, is associated with X, there exists a* € 4 with a*>a" such that pu )P s@per
P ronP Fonyer- SiNCE P 18 MONOMOrphic, Py as P sepyar THUS Proy =P rs1)aPar
D rpnarDax =P sy - Hence by = [P0l = [Pl = bz Thus dis injective. Since
L is countable, B becomes a countable set. '

Then {p;u: beB} is a compact semi-projection of X such that k(B)<N,
and each range of p, is a member of 2. Therefore, in the same way as in the proof
of Theorem 9 we can construct a #-like metric continuum Y such that Sh(X)
= Sh(Y).

This completes the proof of Theorem 10.

Let S” and CP" be n-dimensional sphere and 7-dimensional complex projective
space, respectively. Since [S”, S"] and [CP”, CP"] are monomorphic, we obtain the
following by Theorem 10.

COROLLARY 5. Every S™like or CP"-like contimuum has compact metric shape.

Remark 3. In [8] Gordh has proved Theorem 10 by using reduced inverse
systems. Theorem 10 is, however, essentially due to Gordh and Mardegi¢ [9].
Corollary 5 was proved by many authors (see Introduction of [13]).
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