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Metrization, paracompactness, and real-valued functions II

by

'

J. A. Guthrie and Michael Henry (Morgantown, W. Va.)

Abstract. Regarding collections of real-valued functions, the following hierarchy is shown:
partition of unity — relatively complete — equicontinuous — evenly continuous, and conditions
are given to show when the arrows are reversible. Some of the results are used to obtain the follow~
ing theorem: A topological space X is pseudometrizable iff X has the weak topology induced by
a g-equicontinuous family of real-valued functions. Characterizations of paracompact spaces are
also given.

In classical analysis, as well as in general topology, the concept of an equicon-
tinuous family of real-valued functions has been studied extensively and several
interesting results have been proved. No doubt, this has served to stimulate investi-
gations concerning collections of real functions affixed with various properties, and
notable consequences have followed. For example, Michael [6] characterized para-
compact spaces by appealing to the notion of a partition of unity. And in [5], Kelley
generalized equicontinuity by introducing the concept of an evenly continuous
family and obtained several results pertaining to function spaces.

Tt is the purpose of this paper to investigate the relationships among these con-
cepts and how they, in turn, relate to relatively complete collections of real functions,
a property that was studied in [3] and [8]. It will be shown that the implication
djagram partition of unity — relatively complete — equicontinuous — evenly con-
tinuous holds, and examples and conditions will be given to show under what circum-
stances the arrows are reversible. Furthermore, a functional characterization of
pseudometrizable spaces will be given, and this result will be used to determine when
open covers are precisely normal covers, yielding equivalent conditions for para-
compaciness weaker than those involving partitions of unity.

In the following definitions and theorems, # = {f,: a e 4} will denote a family
of continuous real-valued functions defined on a topological space X. Then

(a) & is a partition of unity if each oo X—[0,1], for each xe X f(x) # 0
for only finitely many « € 4, and for each x¢& X, S {flx): acd} =1

(b) F is relatively complete if for each B A, the real functions inf{f;(x): feB}
and sup{ f4(x): fe B} are continuous.
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(c) F is equicontinuous at a point x € X iff given £>0, there is a nbd U of x
such that | £,()—f(x)| <& for every ye U and for every a € A.

(&) & is evenly continuous at a point x € X iff for each real number y and each
-£>0, there is a nbd ¥ of x and a § >0 such that | f,(a) —y| <& whenever | f,(x)—y| <,
for every ae V and for every a e 4.

(e) & is pointwise bounded iff for each x € X, there is a real number M such
that | f,(x)|<M for every ae A.

Our original proofs of Theorem | and Theorem 4 were by means of nets. We
are indebted to Professor R. Pol for suggesting the simpler method of proof used
here.

For brevity, let us say that & is equicontinuous (evenly continuous) iff & is
equicontinuous (evenly continuous) at each x e X.

THEOREM 1. 4 collection F of real-valued functions is relatively complete iff F is
equicontinuous and pointwise bounded.

Proof. Assume that & is relatively complete. It is clear that & is bounded at
each x since inf{f(x): a € A}<f(x)<sup{ fi(x): « e 4} for each y e 4. We now
show that & is equicontinuous.

Let xe X and e>0 be given. Choose 1/2"<e. For each integer m define

m+1 m+2
Ay = {a: aed and E;Jr—lé.fa(x)< 2n+1} :

Note that {J 4,,, = 4, and since & is bounded at x, 4,, # @ for only finitely
m

many m. For each A,, # @, we have_ that

Snm = Su'p{f;(: o eAmn}
and

lmn = inf{fm: OCEA,,",}

are continuous since # is relatively complete.

Set
_ 1 m+3 [ m :
’/V,,(X) - Q l:smn (_ o0, E;,].T) n lmn] (5,,].’{: Oo)j! .

Clearly W,(x) is open, and x € W,(x). For each ye W,(x), | fi(x)—fy n<1j2"<e
for each « e 4. Thus & is equicontinuous.

Now assume that & is equicontinuous and pointwise bounded. Let x e X,
Bc A, and let £>0. Since & is pointwise bounded, m = sup{fu(x): B e B} exists.
By equicontinuity, there is a nbd U of x such that S —Se<f ) <fy(x)+%e for
every ye U and for every y € B. Hence, f,(x)—+e<f,(y)<m+%e, and this implies
thatfy(x)—%s<sup{fﬂ(y): B e B}<m+e for every y e U and for every y € B. Thus,
m—e<sup{fp(3): e B} <m+e and sup {fs: BeB} is continuous at x. Similarly,
inf{f;: e B} can be shown to be continuous, so & is relatively complete.
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THEOREM 2. Let F = {f,: a.e A} be a collection of continuous real-valued func-
tions, and consider the following statements:

(1) & is a partition of unity.

(2) & is relatively complete.

(3) & is equicontinuous.

@) & is evenly continuous.

Then (1)~(2)~(3)—(4) and without additional hypotheses, none of the arrows is
reversible. )

Proof. ()=(2): By Theorem 1, it is sufficient to show that a partition of
unity & is equicontinuous since, a priori, & is pointwise bounded. So let x € X and
let £>0. Now pick an integer 1 such that 1/n<e. The collection { / *([1/n, 1]): € 4}
is locally finite and hence there is a nbd V of x such that f(V)<[0, 1/n) whenever
o 5 Gy, e, 0. Find nbds ¥, such that f,(F)c(f,(x)—&,fu(x)+2) and note

that the nbd U = () ¥;) n ¥ of x satisfies the requirement that | £,(y) —/(x)| <&
i=1

for every y e U and for every ¢ € 4.
(2)-(3): This is Theorem 1.
(3)—(4): This was proved by Kelley [5, p. 237].
The following examples will show that none of the arrows are reversible.
ExaMPLE A. There is a relatively complete collection # of functions from R
into [0, 1] that is not a partition of unity.
For each y e R define

1 if  x<y-—1,
LX) = 3y—x if y—l<x<y,
0 if y<x.

The method of proof used in Example 4 of [3] can be applied here to show that
F = {f,: ye R} is relatively complete. The set {740, 1]: y € R} is not point
finite so 4 is not a partition of unity.
ExAMPLE B. There is an equicontinuous family # that is not relatively complete.
Let & = {f,: n=1,2,..} where f(x) = n.
ExampLe C. There is an evenly continuous family & that is not equicontinuous.
Let & = [f,: n = 1,2,..} where f,(x) = nx. Then & is not equicontinuous
at any xe R. For if xe R and (x—§, x+3) is any nbd of x, let y = x+8/2, let
n>g/28 and observe that

AN =L = |ny—nx|>¢e/20:26 = ¢.

However, & is evenly continuous at each x € R. To see this, let x e R, letye R,
and let é>0. Since there are at most finitely many n with | f,(x)—y| <e, choose
8 = ¢ and use continuity to find the required nbd V.
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THEOREM 3. Let & be a collection of continuous real-valued functions. Then the
Jfollowing are equivalent:

(1) & is relatively complete.

(2) & is equicontinuous and poiniwise bounded.

() & is evenly continuous and pointwise bounded.

Proof. Theorem 1, and Theorem 23 of [5, p. 237].

We now turn our attention towards investigating the question of when the
aforementioned collections of real functions exist, given a space X, and what impact
they have on X when their existence is hypothesized. Theorem 4 is the pseudometric
analogue of Theorem 4 in [3], and will be utilized to determine when X is para-
compact.

THEOREM 4. A topological space X is pseudometrizable iff X has the weak topology
induced by a o-relatively complete collection.

Proof. Assume X is pseudometrizable with 4 a bounded pseudometric. For
each x e X, define d,: X—R by d(y) = d(x, y), and observe that F = {d,: xe X}
has the desired properties.

For the converse, assume X has the weak topology induced by the o-relatively
complete collection # = |J &,. For each n note that

dy(x,3) = sup{| f()—f (D): fe F,}

is a pseudometric for X. Define d,(x, y) = min{l, dy(x, )} and let

d(x,y) = Z,ldn(x:y)'f".

We assert that d is a pseudometric for X that generates . That is, we will
show that = J; where &, is the topology generated by d.

To show 7 =7 it is sufficient to establish the continuity of each d,, for then
the continuity of d, and the continuity of the identity map i: (X, 9)~(X, F &) will
follow. So, let (x;, yo) and £>0 be given. Since &, is equicontinuous by Theorem 3,
there exist neighborhoods N(x5) and N(yo) of x, and y,, respectively, satisfying

T (S (xo)~4e,f (xo)+3e)  and  f(N(o))=(f (o) —ke,f (yo)-+46)
for each fe #,. Hence, for every (x, y) € N(xp)x N(y,) we have
|d,(x, ¥) = dy(x0, o)l = [sup{| £ (X)=f (D: fe F,}—sup{l f(x)— £ (Do)l : f& 7.}
< sup{|| S )~/ )| =1 f (ko) —f (po)l|: f€ F,}
< sup{I[f )~ )l +1F (D =f ()ll: &€ F,}
<

tet+le=c¢.

Thus, d, is continuous and ;=7
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To prove that 7" <=7, it is sufficient to show that for every », each f'e &, is
continuous relative to 77,. Let x, € X and &>0 be given. Choose § = min{}, 1¢}
and note that if d(x, x,)<8, then d,(x, xo)<d(x, x,)<8<1. Hence,

[f ) =f (xo)l < sup{|f (x)—f (xo)l: fe F,}

= dn(x’ X0)<8 -

Thus, f is continuous, and I =4 ,. The proof is complete.

Evidently, the pointwise boundedness of & in Theorem 4 is not important,
because Theorem 5 shows that equicontinuity alone is sufficient.

THEOREM 5. 4 topological space X is pseudomerrizable iff X has the weak topology
induced by a o-equicontinuous collection.

Proof. Suppose X has the weak topology induced by a o-equicontinuous
collection |J {f,,: « € 4,}. Let i: R—(0, 1) be any nonexpansive homeomorphism
and note that each {ho f,,: a e 4,} is equicontinuous, pointwise bounded, and hence
relatively complete by Theorem 1. Since the weak topology induced by
U {hofi: o€ d,} coincides with the weak topology induced by {J [f,: @€ 4,},
the result follows from Theorem 4. ’

COROLLARY. A Ty-space X is metrizable iff X has the weak topology induced
by a o-equicontinuous collection. .

We recall two definitions before stating the next theorem. A subset 4 of a space X
is a cozero set if there exists a continuous real-valued function f: X—R such that
A =f"YR~{0]. A collection # = {B,| e A} is hereditarily closure-preserving
if {C,| o€ A} is closure-preserving whenever C,< B, for every a.

THEOREM 6. Let & be a family of continuous functions from a space X into [0, 1].
If the cozero sets of the functions in F form a hereditarily closure-preserving collection,
then & is relatively complete.

Proof. Let & = {f,: o.e B} be a subset of #. If B is finite, we are done. So
assume |B|>N,. Let F = sup{f,: o eB} and let G, be the cozero set of f,. Let
xo € X. Clearly, F(x,) is defined since f,(xo) € [0, 1] for each «. For every £>0,
there exists f, € ¥ such that F(x,)—f,(x,)<%e. But f, is continuous at x, so there
exists a nbdU of x, such that |f(»)—f(xo)|<%e for each yeU. Hence,
F(p) = F(xg)—e. Define D, = fi! ([F(xo)+¢, 1]). Then D, is a closed subset of G,
and {J D, is closed. Let V' = X— |J D,. Then xo & ¥V and if y e V, f(»)<F(x,)+e

aeh aeB

for each «, so F(»)<F(xg)+e Thus, U V' is a nbd of x, such that
F(U 0 V)= (Fxg) &, F(xo)+2) . 1

Now we will show that f = in{{f,: «e B} is also continuous. Cleariy;s\xo)
is defined for each x, € X. Let >0 be given. If £ (x;) = 0, then there exists f € G
such that fj(x,) <%e, and since f} is continuous at x, there exists a nbd U of x, such
that for each y e U, | fi(y)| <%e. Thus, f(y)<e for each y € U, so f is continuous
at x,.

2 — Fundamenta Mathematicae T. CIV
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Suppose then that f(x,) # 0. Then xo € G,, for otherwise f(xo) = 0. Let

L, = X— U 0,/ (xg)=1/n)) for n =1,2,.. Now xoeL, for each n since
xo &1 (0,1 (x)—l/n))‘CGa for each «. So for each n, choose fi,, such that

Fum(0) <f (xo)+1/n, and define U, = Fasl(f ) =1/n, f (o) +1/n)). Then x, e U,
for every n. Well-order B and define

i, = {Gmn U,nL, for oa<w,

G, for azw.

Nowlet K, = H,—H,., and notethat |J K, = Hy— () H,,andalso that xo & (| H,,.

aeB ' oaeB «eB

Suppose y # X, and y € () H,. We have thaty e () L, 80 f(¥) =S (x,) for each « and

xeB n

FON=f(x0). Also, ye () U,, so f(M)<f(xp). Thus, f(3) = f(xo). We assert that

( H, is a nbd of x,. Suppose, to the contrary, that () H, is not a nbd of x,. Then
@ acB

Xp € UT(; but x, ¢ K, for each « since H,. is a nbd of x, which misses K,. This

contradicts the hereditary closure-preserving property since K,c=G,. Hence, (| H,
agB

is a nbd of x, and £( ) H,) = f (o). This completes the proof.
aeB

COROLLARY (Burke, Engelking, Lutzer). 4 regular space is metrizable iff it has
a o-hereditarily closure preserving base.

Proof. The necessity of the condition is obvious. For the sufficiency, the space
is clearly an M;-space and thus perfectly normal. For each basic open set in
o-hereditarily closure preserving base there exists a continuous function into [0, 1]
which is nonzero precisely on the basic open set. By Theorem 6, the functions form
a o-relatively complete family and hence the space is metrizable by Theorem 4.

Example A shows that the converse of Theorem 6 fails.

Finally, we will investigate conditions under which a space is paracompact.
In [7], Morita lists several conditions for a cover of a space X to be a normal cover.
By definition, a normal sequence in X is a sequence %4, %, ... of open covers of X
such that %, star-refines %, for n = 1,2, ..., and any open cover of X which
is %, in some normal sequence in X is called a normal cover. If % is an open cover
of X, a sequence %,,%,, ... of open covers is called locally starring for @ if for
each x € X, there exists a nbd V(x) and an integer n such that St(V, %,) =% for some
G e ¥. The next theorem extends Morita’s Theorem 1.2.

THEOREM 7. Let % be an open cover of a topological space (X, 1). Then the following
statements are equivalent:

(1) & is a normal cover.

(2) There is a continuous mapping f from X into a metric space Y such that 9 is
refined by the inverse image of some open cover of Y.

() % has a partition of unity & subordinated to it.
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(&) There is a o-relatively complete collection \J { f,,: « € 4,} and a refinement
of 9 consisting of sets of the form fiz* (U, wherenUmc is open in R,

(5) There is a cr—équicontinuous collection ) { fo.: o€ A,} and a refinement
of ¥ consisting of sets of the form fiz*(U,,) wher:z U, is open in R.

(6) There is a &-evenly continuous collection \) { f,,: € A,} and a refinement
of G consisting of sets of the form f(U,y) where" U, is open in R.

Proof. (1)—(2)—(3) is part of Theorem 2.1 of [7]. (3)—(4) follows immediately
from Theorem 2 and the definition of # being subordinated to €. (4)—(5)—(6)
also follows from Theorem 2. (6)—(1): Let ¢ be an open cover of (X, 7) and let
U {fw: ®€4,} be an evenly continuous collection with the given refinement.

n
Let 7, denote the weak topology induced by U { f..: @€ A4,}. Since Theorem 5 is

obviously true when equicontinuous families are replaced by evenly continuous
ones, (X, t;) is pseudometrizable with pseudometric d, and hence the collections of
balls &, = {B(x, 1/n): xe X} of radii 1/n are locally starring for each t,-open
cover. Note that'each 4, is also a t-open cover since (X, t,) has the weak topology.
Using the technique of Arhangel’skii [2, Theorem 3.7], we can now produce a normal
cover that star-refines %, and hence ¢ is a normal cover.

The final theorem, which extends Theorem 9 of [3], is now a trivial conse-
quence of A.H. Stone’s characterization of paracompact spaces as fully normal
spaces applied to Theorem 7.

THEOREM 8. For a Ty-space X, the following are equivalent:
(1) X is paracompact.
(2) Given an open cover % of X, there is a partition of unity subordinated to it.

(3) Given an open cover % of X, there is a o-equicontinuous (o -relatively complete,
o-evenly continuous) collection \J {f,,: € A,} and a refinement of & consisting of

sets of the form fi(U,,) where U,, is open in R.
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Intersections of ANR’s
by

L. S. Husch * (Zagreb)

Abstract. Let {Fj} be a sequence of compact ANR’s such that each F; is a retract of Fiy.
K. Borsuk conjectured that the intersection of this collection is a fundamental ANR. In this note,
algebraic conditions which imply this conjecture are obtained. For example, the conjecture is verified
if the fundamental group of some Fj is Abelian or finite. A partial converse is obtained if some F; has
the homotopy type of a 2-complex,

i

Let {F,}/2, be a sequence of compact ANR’s such that F;2F,,, and there
exist retractions r;: Fy—F;,; for all i. If F, is contractible, then Borsuk [2] has
shown that () F, is a fundamental AR and conjectured that, in general, () F; is
a fundamental ANR. In this note we attempt to reduce this conjecture to an algebraic
problem and we solve the algebraic problem in many cases. If Fis a compact ANR,
then F satisfies FIR if whenever {F;}{2, is a sequence of subspaces of F with Fy = F
and there exist retractions r;! F,—~F;, for all i, then (| F; is a fundamental ANR.
If G is a group (R-module), then G satisfies FIR if whenever {G;};2, is a sequence
of subgroups (submodules) of G with G; = G and there exist retractions r;: G;— Gy
for all 7, then there exists n such that for all iZn, G; = G,.

THEOREM 1. Let {F}2, be a sequence of compact connected ANR’s such that
F\2F;, and there exist retractions ry: Fi—F;. for all i. Let x € F;. The following
are equivalent.

(A) (N Fi, x) is a pointed fundamental ANR [3].

(B) For each jz1, the induced system of groups {m,(Fy, ¥)}iy is equivalent in
the category of pro-groups to a group.

(C) For each j1, there exists n; such that if i>ny, then the inclusion induced
homomorphism m)(Fy(, X)->m(F, x) is an isomorphism.

Proof. By West [12], F, has the homotopy type of a finite n-dimensional
complex. By Theorem F of Wall [11], each F; has the homotopy type of a finite
complex of dimension < max {3, n}. It follows that F; has finite fundamental dimen-

* Research was conducted while the author was on leave at the University of Zagreb spon-
sored under an exchange program between the National Academy of Sciences (USA) and the
Yugoslav Council of Academies.


Artur




