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Intersections of ANR’s
by

L. S. Husch * (Zagreb)

Abstract. Let {Fj} be a sequence of compact ANR’s such that each F; is a retract of Fiy.
K. Borsuk conjectured that the intersection of this collection is a fundamental ANR. In this note,
algebraic conditions which imply this conjecture are obtained. For example, the conjecture is verified
if the fundamental group of some Fj is Abelian or finite. A partial converse is obtained if some F; has
the homotopy type of a 2-complex,

i

Let {F,}/2, be a sequence of compact ANR’s such that F;2F,,, and there
exist retractions r;: Fy—F;,; for all i. If F, is contractible, then Borsuk [2] has
shown that () F, is a fundamental AR and conjectured that, in general, () F; is
a fundamental ANR. In this note we attempt to reduce this conjecture to an algebraic
problem and we solve the algebraic problem in many cases. If Fis a compact ANR,
then F satisfies FIR if whenever {F;}{2, is a sequence of subspaces of F with Fy = F
and there exist retractions r;! F,—~F;, for all i, then (| F; is a fundamental ANR.
If G is a group (R-module), then G satisfies FIR if whenever {G;};2, is a sequence
of subgroups (submodules) of G with G; = G and there exist retractions r;: G;— Gy
for all 7, then there exists n such that for all iZn, G; = G,.

THEOREM 1. Let {F}2, be a sequence of compact connected ANR’s such that
F\2F;, and there exist retractions ry: Fi—F;. for all i. Let x € F;. The following
are equivalent.

(A) (N Fi, x) is a pointed fundamental ANR [3].

(B) For each jz1, the induced system of groups {m,(Fy, ¥)}iy is equivalent in
the category of pro-groups to a group.

(C) For each j1, there exists n; such that if i>ny, then the inclusion induced
homomorphism m)(Fy(, X)->m(F, x) is an isomorphism.

Proof. By West [12], F, has the homotopy type of a finite n-dimensional
complex. By Theorem F of Wall [11], each F; has the homotopy type of a finite
complex of dimension < max {3, n}. It follows that F; has finite fundamental dimen-

* Research was conducted while the author was on leave at the University of Zagreb spon-
sored under an exchange program between the National Academy of Sciences (USA) and the
Yugoslav Council of Academies.
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sion [3]. Now the equivalence of (A) and (B) follows from the stability theorem of
Edwards and Geoghegan [4]. To prove the equivalence of (B) and (C) we need the
tools of pro-category théory; the reader is referred to [7] for basic definitions. We
will suppress the use of the basepoint in the notation.

(B)=(C). Fix j=1 and suppose that the system {m;(¥;)} is equivalent in pro-
groups to the group H. Thus there exist systems of homomorphisms {¢;}: {m,(F)}
—{H} and {4;}: {H}~{n(F)} such that {4} {p;} = {id} and {p;} o {1} = {id}
(id = identity function). Note that {¢;} consists of a single homomorphism
o n{F)—~H. Since @k =id, (4py)* = 4@, and, thus, At m(F)—>my(F)
is a retraction. Let p;,: m(F,)—m(F;) denote the homomorphism induced by in-
clusion. Since {4;} is a mapping of systems, j,; (image 1;) = image 4, for all izk.
Since {1;}° {@} = id, there exists n;>k such that for all i>n;, Ay = M-
Thus pm(n,(F))Simage A, = g, (image1). Since F; is a retract of F, y, is
one-to-one and, hence, image A; = 7;(F;) for all i>n;. (C) follows. The implication
(C)=>(B) is trivial.

Remark. In our applications of Theorem 1, we need to note that a pointed
fundamental ANR is a fundamental ANR.

COROLLARY 2. If F is a compact connected ANR such that for all j=1, n(F)
has property FIR, then F has property FIR.

In general, we would not expect that the converse be true since the homotopy

groups of F need not be finitely generated even as modules over Zx,(F), the integral

group ring of =,(F) [10].

ProPOSITION 3. If the group G satisfies the maximum condition on subgroups,
then G satisfies FIR. If the R-module M is Noetherian, then M satisfies FIR.

Proof. Let {G;};2, be a sequence of subgroups of G with G, = G and with
retractions r;: G;—G;,.4 for all i. Let K, be the kernel of r;r;_, ...r;; note that
K;=K;,, for all i. By the maximum condition, there exists » such that for i>n,
K; = K,. It follows then that for i>n that G; = G,. The proof of the second part
is the same.

CoroLLARY 4. If G is a finitely generated Abelian group, then G satisfies FIR.

The following theorem is essentially Theorem 10.4 of M. Moszyfiska’s [8];
we include the proof for completeness.

TuEOREM 5. If F is a compact simply-connected ANR, then F satisfies FIR.

Proof. Let {F;};Z; be a sequence of subspaces with retractions r;: F,—F;,,
and F; = F. Since F; is simply-connected, each F; is also simply-connected. Since F,
is homotopy equivalent to a compact polyhedron, the homology groups H,(F,) are
all finitely generated. For each j>0, by Corollary 4 there exists n; such that if izn;,
the inclusion induted homomorphism H;(F))—H,(F;-,) is an isomorphism. Hence,
if >n;, then the relative group Hy(F;_, F;) = 0. By the relative Hurewicz Theorem,
if >m; = max{m;: 1<k<j}, then the relative homotopy groups m,(F;_,, F}) = 0.
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Hence if i>m;, then the inclusion induced homomorphism 7 (F)—>m (F;—,) is an
isomorphism and condition (C) of Theorem 1 is satisfied.

COROLLARY 6. If F is a compact connected ANR such that n,(F) is finite, then F
satisfies FIR.

Proof. Let {F;}j2,; be a sequence of subspaces of F with F|, = F and with
retractions r;: Fy—F,,, for all i. Consider the universal covering o: F;—F,. Fix
a base point x & F, such that g(x) € (] F;. Let F, be the component of ¢™*(F;) which
contains x. Consider r,0|F,: Fi»F, . 1; by [9; p. 76] there exists a lifting #;: Fi»F, .,
such that #,(x) = x. By using standard arguments from covering space theory, it is
straightforward to show that 7, is a retraction for each i. Since 7,(F) is finite, F,is
a compact connected ANR and Theorem 5 applies; hence () F,is a pointed fundamen-
tal ANR. By Theorem 1, for each j there exists n; such that for i>n; the inclusion
induced homomorphism n,(F,)—»nj(F,_Q is an isomorphism, For j»2, n(F) is
naturally isomorphic to m;(F;) and, hence, 7,(F)—mn;(F;_;) is also an isomorphism.
Since a finite group satisfies FIR, condition (C) of Theorem 1 is satisfied.

PROPOSITION 7. Let F be a compact conmected ANR such that the homology
groups H,(F) of the universal covering space considered as Zr,(F)-modules satisfy
FIR. Then if {F)}i%; is a sequence of subspaces of F such that F; = F and there exist
retractions ry: Fy—F,.. which induce isomorphisms n,(F)—n,(Fy.,) for all i, then
N F, is a fundamental ANR.

Proof. Let F, be the universal covering space of F; and lift r; to retractions
#: F,—F,,., as in the proof of Corollary 6. By hypothesis, for each j, there exists m;
such that if iznm, then the inclusion induced homomorphisms H,-(F )= H(Fi_y)
are isomorphisms. For each j, let n; = max{m,| 1<k< j}; hence if i>mn;, the relative
groups H(F;, Fi.{) = 0 for k<j. By using the relative Hurewicz Theorem and
covering space theory as in the previous proof, we get that condition (C) of Theorem 1
is again satisfied.

THEOREM 8. Let F be a compact connected ANR such that the integral group
ring of m,(F) is Noetherian, then F satisfies FIR.

Proof. Let {/}{% be a sequence of subspaces of F with F; = F and retractions
1t Fy= Iy, for all i, Since Zm,(F) is Noetherian, then ,(F) satisfies the maximum
condition on subgroups [5] [11, p. 61] and, hence, by Proposition 3, there exists » such
that for all izn, the induced homomorphism m,(F))—m;(Fi4,) are iso:morphisms.
The retraction ryFy-sz ... ri: F=F, induces an epimorphism Zr (F)—Zny(F,).
Since Zn,(F) is Noetherian, Zr,(F,) is likewise.

Let P be a finite complex which is homotopy equivalent to F,. By considering
simplicial homology theory, the chain groups of the universal covering space of P,
C(P), are finitely generated Znm,(P)-modules. Since Zr,(P) is Noetherian, C,(P) is
also Noctherian. Thus the submodule of cycles and, hence, the homology groups H, (P)
are finitely generated Noctherian modules. By Proposition 3, H/(F,) satisfies FIR for
all 7 and the theorem now follows from Proposition, 7.
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Since the integral group ring of a commutative group is Noetherian [5], we have
the following result. :

COROLLARY 9. Let F be a compact connected ANR. such that n,(F) is commuta-
tive, then F satisfies FIR.

Let G be a group and consider the integral groupring ZG of G. Consider the
augmentation homomorphism «: ZG—Z which is induced by the trivial homo-
morphism of G to the trivial group. We can then consider Z as a ZG-module by
defining /- n = a(f) - n where f &€ ZG, n e Z and the latter multiplication is the usual
multiplication in Z.

‘We say that G has property C if, whenever M is a finitely generated projective
ZG-module such that M represents the trivial element in the projective class group,
K(ZG) [11] and the tensor product over ZG, M®z6Z = 0, then M = 0(*).

ProrositioN 10. If every finitely gemerated projective ZG-module is free,
then G has property C.

Proof. Let M be a finitely generated projective ZG-module such that
M®,cZ = 0. Then M is isomorphic to the direct sum of 7 copies of ZG where 7 is
the rank of M. Since ZG®;sZ is isomorphic to Z and @ is distributive over @,
M®zgZ is isomorphic to the direct sum of n copies of Z. Hence n = 0.

Bass [1] [11, p. 67] has shown that if G is a finitely generated free group, then
every finitely generated projective ZG-module is free.

CoroLLARY 11. If G is a finitely generated free group, then G has property C.

It is not difficult to show that a finitely generated free group also satisfies prop-
erty FIR.

PROPOSITION 12. Suppose that G is a group which satisfies condition C. If H is
a subgroup of G which is a retract of G then H also satisfies condition C.

Proof. Let M be a finitely generated projective ZH-module which represents
the trivial element in Ko(ZH) and such that M ®zyZ = 0. Since ZH<ZG, ZG can
be considered as a ZH-module. ZG® 5z M can be made into a ZG-module by
defining g(h®m) = (gh)®m for g, he ZG and m e M. Since M is projective, there
exists a finitely generated ZG-module N such that M@N is a free ZH-module. Thus

(ZGQzuM)D(ZG@ 1 N) 2ZG® 2y @1ZH)zi@1 (ZGRZH)~ @ ZG
o i= = i=1

for some integer  and, hence, ZG® ;4 M is a finitely generated projective ZG-module.
Since M represents-the trivial element of K(ZH), N can be chosen to be a free
ZH-module. Since ZG®z, N is then a free ZG-module, ZG®@ gy M is also represents
the trivial element of K (ZG).
Let «: ZH—Z be the augmentation homomorphism and let 4 be the kernel
of o. Consider the epimorphism M—M® ;57 defined by m—m@1 ; the kernel of this
map is AM = {} aym| a,6 4 and m;e M}. Since M@y Z = 0, if me M, then

(*) See "Added in proof*.
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m =y a;m; where a,e 4 and m;e M. Hence if (g@m)®1 E(ZGR MR 362,
then

(GOME1 = (gRY. a;m)®1 = 2 a{g®m)®1
=2 M) 1) = ¥ (90m)@0 = 0.

Thus (ZG®zuM)®zyZ = 0 and, by hypothesis, ZG®zuM = 0.

The retraction G—H induces a retraction r: ZG-sZH ; note that if he ZH
and g e ZG, then r(hg) = h-r(g) and, hence, r is a ZH-homomorphism. Let
K = kernel r; then ZG = ZHRXK, Hence,

0=26QuM = (ZHOK)QuM = (ZH® 1y M)®(K® 75 M)
and, thus, M = ZH®,,M = 0.

PROPOSITION 13. Let X be ¢ compact connected ANR, which is dominated by
a 2 dimensional complex and let r: X—Y be a retraction onto a subspace. Suppose
that the inclusion-induced homomorphism m,( Yy»n(X) is an isomorphism and
suppose that the relative homology groups H(X, Y) are trivial for all i. If 7,(X)
satisfies condition C, then r is a homotopy equivalence.

Proof. By West [12] and Theorem F of Wail 1 1], there exist homotopy equiv-
alences @: K—X and A: L— Y where X and L are finite 3-complexes. Let ¢, and 1,
be homotopy inverses of ¢ and 1, respectively. Let o = Ay and f = @, A; note
that o is homotopic to the identity and that o induces an isomorphism 7y (K)—m (L)
Hence, the homotopy groups of the map 7,(x) = ny(0) = 0. Clearly L satisfies
conditions D3 and F3 of Wall [11]; hence, 75(«) is a finitely generated projective
Zn,(L)-module by [I1]. By Theorem F of [11], ms(c) represents the zero element
of Ky(Zr((L)). By the relative Hurewicz theorem [9; p. 397], H (o) is isomorphic to
73() ® 7y 1y Z- Since the inclusion ¥Y< X induces isomorphisms on homology groups,
the homomorphisms H,(X)—H,(Y) induced by r are also isomorphisms for all i.
Hence Hi(r) and, thus, H(x) are isomorphic to the trivial group for all /. By Con-
dition C, m,(e) is also the trivial group. By repeating exactly the same argument, we
get that m4(w) is the trivial group. Hence o and, thus, r are homotopy equivalences.

THEOREM 14. Let F be a compact connected ANR which is dominated by a 2 dimen-
sional complex. If n\(F) satisfies conditions FIR and C, then F satisfies FIR.

Proof. Let {F}/L; be a sequence of subspaces with F, = F and retractions
s Fp=rFyp g for all 7. Since =, (F) satisfios FIR, there exists n; such that for izn,,
the inclusion induced homomorphism n,(F,, )=m,(F;) is an isomorphism. By
Corollary 4, there exists n, >n such that if i>n,, then the inclusion induced homo-
morphisms H(Fy.)—H(F,) are isomorphisms for j = 2, 3. By Theorem F of [11],
each F; has the homotopy type of a complex of dimension 3 and, hence, for
i>ny, H(F;, F..q) = 0 for all n. By Proposition 13, for each i>1n,, r; is a homotopy
equivalence. By Theorem 1, F; is a fundamental ANR.

Remarks. The author is able to show that if G is a finitely presented group
which does not satisfy condition C, then there exists a compact connected ANR
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which has the homotopy type of a 2 dimensional complex with fundamental group
isomorphic to G and which does not satisfy FIR. If 1}he group G does not satisfy FIR,
then it appears to be much more difficult to construct such a space.

Added in proof. Martha Smith has shown the author a proof by using M. S. Montgom-
ery’s Left and vight inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), pp. 539-540
that all groups have property C. ‘
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Superextensions and Lefschetz fixed point structures
by

M. van de Vel (Amsterdam)

Abstract. The superextension of a sufficiently connected normal T;-space admits both a con-
vexoid structure and a semi-complex structure, and it consequently satisfies the Lefschetz fixed
point property.

0. Introduction. The concept of supercompactness — a strong compactness
property ~ arose naturally from investigations of de Groot and Aarts on internal
characterizations of complete regularity (cf. [1]).

Superextensions are supercompact extensions of topological spaces, constructed
in much the same way as Wallman compactifications, but replacing “filters” by
“linked systems”. This results in a functorial procedure transformating topological
spaces into surprisingly nice compact spaces (cf. e.g. A. Verbeek [21], J. van Mill [19]).
We first recall some definitions (Verbeek [21], Van Mill [18]):

Let & be a collection of subsets of a set X, A linked system in & is a collection
M= such that any two members of # meet. A maximal linked system in & —
briefly: an mls — is a linked system not properly contained in another linked
system in &.

Let X now be a topological space and let & be a closed subbase of X. The
superextension of X relutive to &, Ag(X), is the topological space'defined on the set
of all mls’s in & by the closed subbase

g* ={C*| Ce&},

where C* denotes the set of all mls’s in & containing C as a member. If & equals
the set of «ll closed subsets of X, then Ax(X) = A(X) is called the superextension
of X. Bach superextension of X is obviously a Ty-space,

A topological space X is supercompact provided that there is a closed sub-
base & of X such that each linked system . in & satisfies

N{M Mestt} 3.
In addition, this subbase & is said to be binary. If & is an arbitrary closed subbase

of X, then the corresponding subbase & " of A,(X) is binary, and Ag(X) is super-
compact. Observe that a supercompact space is compact by Alexander’s lemma.
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