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which has the homotopy type of a 2 dimensional complex with fundamental group
isomorphic to G and which does not satisfy FIR. If 1}he group G does not satisfy FIR,
then it appears to be much more difficult to construct such a space.

Added in proof. Martha Smith has shown the author a proof by using M. S. Montgom-
ery’s Left and vight inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), pp. 539-540
that all groups have property C. ‘
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Superextensions and Lefschetz fixed point structures
by

M. van de Vel (Amsterdam)

Abstract. The superextension of a sufficiently connected normal T;-space admits both a con-
vexoid structure and a semi-complex structure, and it consequently satisfies the Lefschetz fixed
point property.

0. Introduction. The concept of supercompactness — a strong compactness
property ~ arose naturally from investigations of de Groot and Aarts on internal
characterizations of complete regularity (cf. [1]).

Superextensions are supercompact extensions of topological spaces, constructed
in much the same way as Wallman compactifications, but replacing “filters” by
“linked systems”. This results in a functorial procedure transformating topological
spaces into surprisingly nice compact spaces (cf. e.g. A. Verbeek [21], J. van Mill [19]).
We first recall some definitions (Verbeek [21], Van Mill [18]):

Let & be a collection of subsets of a set X, A linked system in & is a collection
M= such that any two members of # meet. A maximal linked system in & —
briefly: an mls — is a linked system not properly contained in another linked
system in &.

Let X now be a topological space and let & be a closed subbase of X. The
superextension of X relutive to &, Ag(X), is the topological space'defined on the set
of all mls’s in & by the closed subbase

g* ={C*| Ce&},

where C* denotes the set of all mls’s in & containing C as a member. If & equals
the set of «ll closed subsets of X, then Ax(X) = A(X) is called the superextension
of X. Bach superextension of X is obviously a Ty-space,

A topological space X is supercompact provided that there is a closed sub-
base & of X such that each linked system . in & satisfies

N{M Mestt} 3.
In addition, this subbase & is said to be binary. If & is an arbitrary closed subbase

of X, then the corresponding subbase & " of A,(X) is binary, and Ag(X) is super-
compact. Observe that a supercompact space is compact by Alexander’s lemma.


Artur


28 M. V'a.n de Vel

A subbase & of X is a T;-subbase if for each ¢ & and for each xe X—§
there exists a T'e & such that xeT'and Tn S = @. If & is a Ty-subbase of X,
then the collection {Se &| x &S} is obviously an mls for each xe X.

A subbase & of X is called normal if for each disjoint pair Sy, S, € & there
exist S}, S35 such that §;cX-S;, ShcX—S;, and SjuUS; = X. If & is
a normal T-subbase, then A,(X) is Hausdorff (Van Mill [18]) and &£ is obviously
normal and T, again. '

We shall need the following two basical results on superextensions.

0.1. THEOREM. If & is a T,~subbase of a Ty-space X, then the mapping i: X— A,(X)
defined on xe X by

i(x) ={Se&#| xe8},

is an embedding. If & is binary moreover, then this map is a homeomorphism of X
with Ag(X).

(Cf. Verbeek [21] p. 44-46.)

0.2. TuEorREM. Let X and Y be T,-spaces, let & be a T,-subbase of X, and
let I be a normal Ty-subbase-of Y. If f: X— Y is a mapping such that T <&,
then f can be extended to a continuous mapping A(f): Ao (X)—A5(Y), which is surjec-
tive if f is.

(Cf. Verbeek [21] p. 56.) It follows from 0.1 and 0.2 that a T’;-space with a nor-
mal binary Ty-subbase is a retract of its superextension.

Our main result will be the following theorem.

0.3. THEOREM. Let X be a normal Ty-space with a finite number of components.
Then the following assertions are true.

(i) AM(X) has finitely many components, each of which is acyclic with respect
to Cech homolagy over a field;

(i) A(X) is a Lefschetz space and even a metric ANR if X is compact metric;

(iil) if X is connected, then 2(X) has the fixed point property for continuous
mappings.

A proof is given in Section 3, together with a proof of some related results.
Preparatory work is done in Section I (order-theoretic structures on superextensions)
and in Section 2 (convex sets in superextensions).

The author is indebted to J. van Mill for suggesting some of the problems on
which this paper is based.

1. Partial orderings on superextensions.
1.1. DEFNiTIONS. If X is a topological space, and if 4, A4 € A(X), then the set

M, K) = {PeM(X)| M NP}

is called the interval between M and A" (cf. Brouwer and Schrijver [4]).

v
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For each triple .#, &, # € A(X) there exists another mls
g(uﬂ,./V,W)=(Jlmﬂ)u(ﬂnﬂ)u(@nuﬂ)

(cf. Verbeek [21]). Observe that g(u, 4", 2 el(#, ).

We shall also need the concept of a hyperspace H(X) of a topological space X.
Recall that the points of H(X) are the nonempty closed subsets of X, and that the
topology of H(X) is generated by the (open) base consisting of all sets of type

3

n
0000500 ={de H(X)| A= YO, and A n 0, % @ for all i = 1, s 1}
1=1

where Oy, ..., O, are open subsets of X (Michael [11]).

1.2, Tneorem. Let X be a topological space. Then

(1) the mapping g: A(X)3—~A(X) is tontinuous;

(ii) for each pair M, & € A(X) the restricted mapping

g, &'y =) AX)=A(X)

is a retraction of A(X) onto I(M, N);

(iii) the interval mapping I: J(X)*~H(A(X)) is continuous.

Proof. For each closed set Cc X,

g7HC™) = (C*x CHxA(X) U (UX)x C*xCH) U (C* xA(X)x CF),
proving (i). If e I(#, &), then M A V' =P and consequently,

(MAN)YON AP U(P A McP.

By maximality of the former, g (#, #, %) = 2. In order to see (iii), observe first
that for each pair #, A4 & 1(X),

O # I, N) = (T Ted AN},

whence I(.#, A7) & H(A(X)). Next observe that I(#, 4) is the image of the map
g(M, ¥, =) by (ii). Statement (iii) is then a consequence of the following general
result, the terminology of which is adapted from Smithson [12]:

1.3, Lemma. Let X, Y, Z be ropological spaces of which Y is compact, and let
J2 Xx Y=Z be continuous. Then the assignment
F(x) = image of f(x, =), xe X,

yields a continious multifunction F. X—Z.
Notice that, if the sets #(x) are closed for each x € X, then F becomes a contintuous
mapping X->H(Z).
Proof. Fis lower semi-continuous: let O <Z be an open set meeting the image
of f(x, —~): Y—Z. Then f(x,y) € O for some y € Y. By the continuity of f, there

\
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exist open sets 0,cX, O,<Y such that

xe0, ye0,, [f(0;x0,)<=0.

Hence F(x") N O # @ for x' € O;.
F is upper semi-continuous. In fact, let O <Z be open and let F(x)=O. For
each y e Y there exist open sets P,cX, Q,=Y such that

yeQ,, f(P,x0Q)<=0.

By the compactness of Y, there exists a finite covering of Y of type

{Q)'l’ MRS QY"} 2

xePy,

where y;,..,y,€ Y.

Let P = () P,,. Then f(Px Y)cO, whence F(x)=O for each x'e P. ®
i=1

1.4. CONSTRUCTION. Let X be a space and let 4 € A(X). A binary relation <,
(or, briefly: <) is defined of A(X) as follows:

P<a it 1M, P)<I(M,2), P,2el(X).

This is obviously a quasi ordering. It will turn out to be a partial ordering on
A(X), which has first been introduced by J. van Mill (unpublished).

1.5. THEOREM. Let X be a normal Ty-space and let 4 € A(X). Then

() the associated quasi-order. < 4 is a topological partial ordering;

(ii) if % is a nonempty linked collection of closed subsets of X and if

A4=0{C*| Ce®)
is conmected, then the ordering < 4 is dense on A;
(iii) for each pair Ny, N 5 € A(X), the largest mls in A(X) satisfying
PL Ny and PN,
is P =g(M, N s N).

Some auxiliary results will be used repeatedly. We therefore number them for
later reference.

(1.5;1) If X is an arbitrary space and if M, N, P € M(X) then P € I(M , N)
iff I(M, P)<I(M, N).

The “if”-part is obvious. Assume that # e I(#, #). Then 4 ~ N =@ and,
for each 2e (M ,P), M N P<=9. Hence, M "Nl NP2 proving that
(M, P I(M, N). :

(1.5;2) If X is an arbitrary space and if M, P, 2 .1(X), then P = 2 whenever
(M, P) = I(M, 3).

If I(#t,P) = I(M, 2), then PecI(M,I) and 2eI(M,P), yielding # n 2
<P, M Pl Hence £ NP =M N2 and it easily follows that g (4, 2, 2)
=& N 2. By mazimality of the former linked system, # = 2.
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Using (1.5; 2) the quasi-ordering <, is easily seen to be a partial ordering.
By (1.5; 1); the set of predecessors of .4 € A(X) equals I (A, A). Hence the graph
of the (inverse) relation >, equals the graph (in A(X)*) of the continuous multi-
function I(#, —). The space X being normal T}, A(X) is a regular space, and hence
the graph of I(.#, —) is closed (Smithson [12] p. 35). Tt easily follows that the graph
of the partial ordering < 4 is closed in A(X) x 1(X), and hence that < .« 18 a topo-

logical ordering on A(X) (Ward [22] p. 92). This proves the first statement of
Theorem 1.5.

For a proof of (ii) we need the following facts:
(1.5;3) If X is an arbitrary space and if Pel(M, V), then
IM, P)n 12, &) = {2},
In fact, let Zel(M,P) (P, &), where P e I(M, A47). Then
MANP, MANPcR, PN,
In particular, &4 N N =l N PR, and using the above inclusions,
g(M N, P) =R .
By the retraction property of g(/#, &, ), g(M, N, P) = P and hence & = 2.
(1.5;4) Let X be an arbitrary space. If P, P, € I(M, N), then
KM, P)OIPy, M) D ff Poel(M,P) and P e [(P,, /).
The “if"-part is obvious. Assume that there is an mls
Rel(M,P)NIPy, ).
Then M NP <@ and @, N N <, and consequently the L;ollection
‘ (M APYo(Pyn N
is linked. We then obtain two extended linked systems
P =PIV (P, AN (MNP,
T'=(l"P)( Py NV (P, AN
Let 29" and 977 be mls’s. Then
S ellH,P)n (P, /),
Tel(H,?)n (P, N,

Pl M, N),
P oel(H,N),

and applying (1.5;3), & = &, and J = &,. In particular,
MNP <P, PynNP,
showing that 2, e I(#, #,) and 2, e I(#,, N).
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(i) can now be seen as follows. Let €= H(X) be a nonempty linked collection
such thatthe space 4 = () {C™| Ce %} is connected. Let 2, 2e A. Then¥ =P n 2
and consequently I(#, 2) = A. By Theorem 1.2 (ii), I(?, 9) is a retract of A(X) and
hence of A4. It follows that /(#, 2) is a connected T -space. Assume now that
P< 42and P # 2. Then there exists a point Z € I(#, 2)—{2, 2}. Applying(1.5; 1),
(P, ) cI(A, 2), whence # and P are in (M, 2). Also, Zel(M, R) ~ (P, 2),
and applying (1.5;4), € I(A, #). This shows that < A< 49.

We finally prove the following result which includes statement (iii) of the
theorem, in view of (1.5;1): :

(1.5;5) Let X be an arbitrary space. Then for each triple M, N |, N 5 € A(X),

I(‘/IZN/V])nI('/”:JVZ) =I(J/:g(‘ﬂvmlsm2))'
We put .
‘/V0=g(‘/l{s'/V1:-/V2)s A=](‘/%1'A/‘1).n1("”:'/‘/2)‘
For each e 4 we have M N N cP and_4 N N ,cP, and in particular,
'/”m-/V1C-@m-/V1C9(g,-/Ko:JV1),
showing that £ and g(£, &y, A'{) are in I(#, V). Moreover, the set
I(M:g(”:'/‘/():ml))n](gsml)
is nonempty since it contains g(#, 47, A#;). Applying (1.5; 4) yields that
Pell,g(P, Ny, N)).
‘We now show that g(2, &y, &) = N, yielding one half of (1.5; 5). In fact, the
sets N ANy and Ng N Ay are contained in g(&P, Ay, 47;). Now,
PN o=(@MN)OPAMANY)U(@P AN NN
SN )U(M NN
since M N N3P and M O N =P Also, Ny N N DNy AN, by the con-
struction of A",. Hence
9(9”,-/Vm/V1)3(¢”("-/V1)U(~//{ﬁ-4/2)u('/’/1m-/Vz)= Ao,

yielding the desired result.
To prove the other half of (1.5;5), observe that Ay = g(#, &', /5) € 4,
and applying (1.5; 2),
I, No)=I(M, V), I(M, N)<I(M, N,). &

We shall need one other result on the order-theoretic structure of A(X).
1.6. LemMA. Let X be an arbitrary space and let M, N P e MX). Then

MNPN O N oP.
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Proof. Assume first that # A P<.4 and let N e A, If N¢ # and N ¢ 2,
then by maximality of .# and # there exist Me .4 and Pe £ such that

MNAnN=@ PAN=@.
Hence (MUP)AN=@. But MUPe N ZcA, contradicting that 4 is
linked. .

Assume next that & . # U P, and let Te A 2. For each Ne #, either
NnM#@ for al Me.#, or, NAP +# @ for all Pe?. Hence NN T # &,
and by the maximality of 4, Te #. ®

1.7. COROLLARY. Let X be an arbitrary space, and let M, N/ € A(X). Then
{2 <42 =N {N*| New—.at}.

Proof. #'< 42 means, by definition, # N 2N, or, N U 2 by
Lemma 1.6. The latter statement is equivalent to 4 —# 9. Hence N < 42 iff
2eN{N*| NeV/—tt). W

2. Convex subsets of superextensions.

2.1. DERINITION. Let X be a topological space. A nonempty closed subset ¥
of A(X) is said to be convex if there is a nonempty (linked) collection % of closed
subsets of X, such that ¥ = () {C*| Ce®}.

Several examples of convex sets have already been met with, e.g. an interval
I(M, V') (= set of <, ~predecessors of A ), and the set of <, -successors of A~
(cf. Corollary 1.7). Observe that for each Pe (X)),

{Z} =0 {P*| Per}
is convex, and that A(X) = X* is convex. We let K(A(X)) denote the space of all
convex subsets of 1(X) endowed with the subspace topology of the hyperspace
H(L(X)). ‘

2.2. LemMA. Let X be a normal Ty-space and let Y be a nonempty closed subset
of A(X). Then the following assertions are equivalent.

(i) Y is a convex set,

(i) for each pair of mlss P, P, e Y, I(P,, P5)< Y,

(i) for each 4 & A(X) with associated ordering <4 on A(X),
the set Y has « smallest element with respect to < M-

Proof of (i)==(i). Let Y<A(X) be convex, say, ¥ = () {C*| Ce %}, where
%= H(X)is linked, and let #,, #, € Y. Then ¥ =2, N Z,,and hence I(?,, #,)= Y.

Proof of (ii)=(iii). Let . e A(X) with an associated ordering <., on A(X),
and let #,, 2, e Y. Then

Py =g(M,?,,P)el(P,P)=Y,
whence 2, < 4 #; and 2, < 4P, in Y, proving that <, is filtered below on ¥.
Since Y is compact and since < is a topological ordering (cf. Theorem 1.5 (1)),
Y has at Jeast one minimal element, which must therefore be the smallest in Y.
3 — Fundamenta Mathematicae T. CIV
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Proof of (iii)=>(i). Assume that ¥ has a unique minimal element with respect
to the ordering <4 on A(X), associated to each .4 € A(X). This minimal element
is denoted by (M, Yy, M eA(X). L Y = A(X), then Y is convex. Let ¥ # A(X),
and let 4 & A(X)— Y. For eachZ €Y we have (M, Y>< 4 &P, whence by Corollary
17, Ye() {N*| Ne{M, Yy—M}, whereas A is not in the latter set. Applying
this for each .# € A(X)—Y yields

Y= () (N*| Ne(l, Yo~ , M el(X)— Y} eK(A(X)). B

Interpreting intervals in a superextension as line segments in a topological
vector space, statement (i) of the above lemma yields a motivation for the term
“convex set”.

Lemma 2.2 is used to prove the following theorem, which will be our main tool
in deriving several new and known properties of superextensions. We use the no-
tation, introduced in the proof of 2.2.

2.3. THEOREM. Let X be a normal Ty-space. Then the mapping

p: X)) x K(A(X))=4(X),

defined by p(M, A) = (M, A), is continuous.

Proof. Let 4 e K(A(X)), say 4 = (] {C*| Ce ¥} for some nonempty linked
system ¥ = H(X), and let .# € A(X). Then the following collection is easily seen
to be linked:

P, A =C0{Mec#| MnC#D for all Ce%}.

In [20], J. van Mill has proved that this collection is a pre-mls, i.e. it is contained
in exactly one mls, which we denote by p"(#, 4). Since Gep' (M, Hp' (A, 4),
we find that p"/(#, A) € A and hence that {4, A>< 4p"(#, 4). On the other hand,
we have for each # e 4 that ¥ <=2, whence

M P{Med) MnC+ S for all CeGrep”( 4, A),

whence p"(# , A)< 4 P. Applying this for Z =M, 4) yields that p"(#4, A4)
= (M, Ay =p(M, 4).

Using this explicit formula for {.#, 4>, we can now prove that p is continuous.
Let 4eK(A(X)) and e A(X) again, and let GeX be a closed set. Then
p(#, A e G*, iff Gep(H#, ), iff G meets all members of the pre-mls p'(., A).
This is in turn equivalent to the following statement: {G} w % is linked
(i.e. Gt n A # @) and for each M e .4 with MTnd+3, Mn G s J. Hence,
p(M,A) ¢ G iff Gt 4 =@, or, there exists an Me A with MYnd+0
and MnG =6@.

We claim that the latter alternative is equivalent to the statement that A#G™"
and M4 ¢G*.

In fact, assume first that for some Me 4, M*NnA#@and MnG= 0.
If AcG*, then M¥ A G™ # @ and hence M n G 5 I, contradiction. Also,
M ¢ Gt since G does not meet M e A.

icm

Superextensions and Lefschetz fixed point structures 35

Assumenextthat 4 ¢ G* and that .# ¢ G*. Then there is an mls A ¢ A—G*
and an M €  not meeting G. Choose Ne A" suchthat N n G = &. Since A € A
% v {N} is linked and, a fortiori, ¥ U {M U N} is linked. Moreover, M U Ne «é
and G~ (M v N) = @, proving the desired equivalence. ’ ‘

We have now obtained the following formula:

-6t = MX) X [AUX) =G> K@Axy) u
U (A ~-GN % (A =G, 2> n K@),
which is an open subset of A(X)xK(A(X)). Hence, p is continuous. W
We shall need ‘two more results on K(1(X)).

2.4, THeorREM, Let X be a normal T,-space. Then the set K(A(X)) is closed in
the hyperspace of A(X).

Proof. Let Ye H(A(X))—K(A(X)). By compactness of ¥, each topological
ordering on Y admits at least one minimal element. Since Y is nonconvex, and
apply.ing Lemma 2.2(iii), there is an . € A(X) such that the correspoﬁding partial
ordering < admits two different minimal elements in Y, say P,, P#,. Apply-
ing (1.5;5) and (1.5; 1), the set

I(‘/Il,g(./l{,g’l,g’z))=](-//,g1)ﬁ1(-fﬂs?2)
={2eA(X)| 2S 4P, 2< 4 P,}

does not meet Y. Since X is normal Ty, A(X) is Hausdorff and hence normal. We can
then find disjoint open sets O, P<A(X) such that

]("”’ g('ﬂ: gi:r@z))‘:f”
By the continuity of the composed mapping (cf. Theorem 1.2(i) and (iii))

Y<=0.

a(utt,~,~) ICH4,-)
| )* E25 00 =S B0 X)),
there exist (disjoint) open neighborhoods O;, 0, O of &, and 2, respectively,
n 1 ’ '3 ’
such th.at for all 2, €0,, Pye0,, I(M, g(M, P, P))=P. We now show that
the neighborhood <0, O, 0,> of ¥ does not meet K(A(X)). In fact, let
Y'e{0,0,0,). Then Y'<cOuU 0, U 0, = O and there exist (different) mls’s

PLeY N0, PeX' nO0,.

Hence I(.#, g(#, P}, P;)) is contained in P and it therefore does not meet ¥'.
Applying Theorem 1.5(iii), there is no element in ¥’ which is smaller than both 2]
and 25 under the relation <. It follows that ¥’ is mot convex. M
2.5. THEOREM. Let X be normal and T, and let Y= A(X) be convex and connected.
Then the subspace K(A(X)) ~ H(Y) of H(A(X)) is densely ordered by inclusion.
Proof. Let A<B be two different convex subsets of Y<A(X). Choose
M € B—A, and let A € A be the smallest element w.r.t. < . In particular, MoFE N

Applying Theorem 1.5(ii), the ordering < is dense on Y, and hence there is
3%

AX
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a P e Y such that M < 4P < 4 N. Observe that P ¢ 4, but 2 € I(A, /)= B by
Lemma 2.2(ii). Using Corollary 1.7, the set D = {2e A(X)| #< 42} is convex.
We then have that B n De K(A(X)) and AcBn DcB.

Moreover, A # Bn D since Pe(Bn D)-A4,
MeB—(Bn D) A

3. The fixed point property and related results. Our first result is on the acyclicity
of the components of a superextension. Acyclicity is always meant with respect to
the Cech homology functor, H = (H,),en, over a field. Recall that H is defined on
a compact space X by H(X) = lim H(%), where % ranges over the finite open co-
verings of X, and H on the right stands for simplicial homology over the given field.

3.1. THEOREM. Let X be a normal T,-space with a finite number of components.
Then A(X) has a finite number of components, each of which is acyclic. If X is con-
nected moreover, then A(X) is acyclic. If X is a compact locally conmected metric
spdce, then the componenis of A(X) are contractible.

Proof. Let X be normal T; with a finite number of components, & say. As
was shown by Verbeek in [21] p. 109, A(X) has exactly A(k) components, where A(k)
is the (finite) number of mls’s existing on the discrete space {1, ..., k}. Actually,
Verbeek’s proof shows even more. Let n: X—{1,..,k} be the decomposition
map of X. Then there is an induced map (cf. Theorem 0.2)

AR) = T2 A =A{1, ., KA1, ..o, (R}

of which the following properties are derived in [21]:

(i) @ is the decomposition map of A(X) (whence Z~'(1), ..., &~ *(A(k)) are the
components of 1(X));

(ii) for each mls # e A{l, ...k}, TN A) = {n XS)| Se A} (whence
each component of A(X) is a convex set).

Let C<A(X) be a component. Since H(A(X)) and H(C) are compact
(Michael [11]), and since C is convex and connected, it follows from Theorems 2.4
and 2.5 that K(A(X)) n H(C) is a compact space which is densely ordered by
inclusion. Hence (Ward [22]), each maximal linearly ordered set in K(A(X)) n H(C)
is compact and connected. Let J be such a set. As we observed in 2.1, K(A(X)) n H(C)
contains C as well as all singletons in C. By the maximality of J, there exists a # e C
with {#}eJ, and CeJ. Finally, each finite open covering of a linearly ordered
continuum can be refined by a finite covering of open intervals which admits no
proper subcovering. Such a cover is easily seen to be a chain, which is acyclic under
simplicial homology. It follows that J is acyclic.

Let p*: € xJ—A(X) be the restriction of the “nearest point map” p, introduced
in Theorem 2.3. Since each member of J is a convex subset of C, it follows that p* maps
into C. Also, by the construction of p, we have that

and Bn D # B since

p*(—, C) = identity map of C,
p*(—, {#}) = constant map onto P e C.
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Dealing with compact T, spaces C, J, the projection ¢: CxJ—C onto first
coordinates is a closed mapping. Its fiber, J, is acyclic, and hence ¢ is a Vietoris
mapping, inducing an isomorphism H(g) of H(C xJ) with H (C) (cf. e.g. Begle [2]).

Next, consider the mappings #,, hy: C-»CxJ, which are defined by
ho(M) = (M, C) and hy(M) = (M, {#}). Then ghy = ghy, and since H(q) is an
isomorphism, H(ho) = H(h,). Consequently,

H(p*hg) = H(p*)H(hy) = H(p¥)H(h,) = H(p*hy).

But H(p*hy) = H(p*(—, C)) is the identity homomorphism of H(C), whereas
H(p*hy) = H(p*(—, {#})) factors through the Cech homology of a one-point
space. In these circumstances, C must be acyclic.

If X is normal, connected and T;, then A(X) is connected since A1) = 1.
Applying the above argument on C = A(X) yields that A(X) is acyclic.

Finally, assume that X is a compact, locally connected, metric space. Then A(X)
is metrizable (Verbeek [21]) and X is normal T with a finite number of components.
Hence the components of 1(X) are convex by the argument at the beginning of this
proof. Let C be a component of A(X), let J< K(L(X)) n H(C) be a maximal linearly
ordered subspace, and let p*: CxJ-C be the mapping considered previously.

A(X) being metrizable, H(A(X)) can be given the Hausdorff metric, and in
particular, J is metrizable. Hence J is homeomorphic to the unit interval (Ward [22])
and the mapping p* becomes an ordinary contraction of C onto a point of C. B

3.2, GENERALITIES. We shall now work towards the Lefschetz fixed point
property of superextensions. For this purpose, some explanation of terminology
is in order.

Let X be a compact space. A continuous selfmap f: X— X induces a sequence
of endomorphisms H,(f): H,(X)~H,(X), ne N. If H(X) is finitely generated,
that is, if all the vectorspaces H,(X) are zero except for a finite number of them, which
are finite-dimensional, then the trace of f is defined to be

() = T (= H()

where trH,( /') denotes the algebraic trace of the endomorphism H,( f). The space X is
called a Lefschetz space (Browder [6]) if each selfmap of X with non-zero trace has
a fixed point. This property is called the Lefschetz fixed point property.

The following types of Lefschetz spaces will be met with hereafter: convexoid
spaces  (cf. Leray [10]) and, more generally, retracts of convexoid spaces
(cf. Deleanu [7]), which include the compact metric ANR’s; spaces with an
SC-structure (Browder [5]) which include the compact ANR’s, and spaces with
a WSC-structure (Thompson [15]). ‘

Defining these concepts explicitely would lead us too far, and we refer the inter-
ested reader to the bibliography. We like to draw attention onto the following facts:
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(3.2;1) The only relationship between the above classes of spaces (except
for the one mentioned already) seems to be the implication SC=>WSC.
(cf. Thompson [15]).

(3.2; 2) Retracts of spaces with a WSC-structure again carry a WSC-structure
(cf. Thompson [16], or Van de Vel [17]). A similar result on SC-structures seems to
hold for metric spaces only (cf. Thompson [1én.

3.3. LemMA. Let X be a normal T,-space. Then

(i) each comvex subset of A(X) is a retract of A(X),

(ii) A(X) is locally convex, i.e. each point has a neighborhood base consisting
of convex sets.

Statement (i) is a reformulation of a result in J. van Mill [20]. Actually, we
have the necessary tools available for a short proof:

Proof of (i). Define a map g: A(X)—A(X) by g(#) = p(M, A), where 4 is
a fixed convex set'and p is the mapping introduced in Theorem 2.3. By the construc-
tion of p, g is a retraction of A(X) onto 4.

Proof of (if). The collection of all sets of type

© 0% = {#] McO for some M e #),

yields an open subbase for A(X) (Verbeek [21]). If 4 € A(X) and if O is a neighbor-
hood of #, then there exist open sets Oy, ..., 0,=X such that

O« X open,

Me() OfcO.
=1

Foreachi =1, .., n, there exists an M; € 4 with M;=0;. By normality of X there
exist closed sets P;, Q;= X such that

M;cX—P,=Q;=0;.

Hence ) Q' is a convex neighborhood of .# contained in O. M

i=1

We can now obtain our main result.

3.4. THEOREM. Let X be a normal T'y-space with a finite number of components.
Then A(X) is a Lefschetz space. In fact, A(X) is convexoid, and it carries an SC-struc-
ture. If X is connected moreover, then A(X) has the fixed point property.

Proof. A(X) has a finite number of (acyclic) components by Theorem 3.1. In
particular, these components are open.

Let AcA(X) be a convex set contained in some component C of A(X). By
Lemma 3.3 (i), 4 is a retract of 1(X) and hence of C. Therefore, 4 is acyclic. Let % de-

_note the collection of all convex sets contained in some component of A(X). All
members of & are acyclic by the above argument, and % is closed under the forma-
tion of finite nonempty intersections. By Lemma 3.3(ii), using the fact that the
A(X)-components are open, each point of A(X) has a base of neighborhoods which
are a member of the collection %. It easily follows that A(X) is convexoid.
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The above argument also shows that the interiors of members of ¥ form an
open base on A(X). Hence, each finite open covering of A(X) can be refined by
a finite covering consisting of members of %, whose interiors still cover A(X). Using
the techniques exposed in Van de Vel [17], it can be seen that A(X) is an le-space
(Begle [3]), and it therefore carries an SC-structure (Browder [5D).

If X is connected, normal and T}, then A(X) is an acyclic Lefschetz space, and
hence it has the fixed point property. B

3.5. THEOREM. Let X be « compact locally connected metric space. Then A(X) is
a metric ANR. If X is connected, then A(X) is an AR.

Proof. This is a modification of the above proof. By Theorem 3.1, A(X) has
a finite number of components, each of which is contractible. These components
are open. Let % again denote the set of all convex sets contained in some component
of A(X). Then all members of % are contractible, and the interiors of members

of % form an open base. Let % be an open covering of A(X). Then % can be refined
by a closed cover Z<% such that

int(2) = {int(D)| De D)

is still a covering of A(X). Using the fact that finite nonempty intersections in & are
contractible, it easily follows that each partial realization of a polyhedron into
int(%) can be extended to a full realization into 9 (and hence into %). Noticing
that 1(X) is metrizable (Verbeek [21]), it follows that A(X) is a metric ANR
(Dugundji [8]).

If X is connected moreover, then A(X) is contractible, and hence it is
a metric AR, B

A different proof for the second part of Theorem 3.5 can be found in
Yan Mill [19].
We finally derive some interesting consequences of the above results.

3.6. COROLLARY. Let X be u normal Ty-space. Then A(X) has trivial n-th homo-
topy groups for each n>0.

Proof. Let #>0. The n-sphere S" is a compact connected metric space and
hence A(S™) is contractible. Let f: S"—A(X) be continuous. Since (X) is normal Ty,

J extends to a continuous mapping

AP AS™—A(A(X))
(cl. Theorem 0.2). The extension is with respect to the embeddings
i AX0)=2(AX)), 7 S"A(S")

(¢f. Theorem 0.1). Since A(S™) is contractible, j extends to a continuous mapping

J' B 2(S™), where E"! denotes the unit (n+1)-cell. Finally, the canonical
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closed subbase of A(X) is binary, normal and T, and hence there is a retraction
r: A(A(X))—A(X). 1t follows from the commutativity of the diagram

Etis s 1 a0

\. 7 i N
™ i AN l \rL
A8 L 2(100) > 4(x0)

that 7 o A(f) oj': E"**—A(X) extends f. Hence (Spanier [13] p. 43), the nth homo-
topy group =,(A(X)) =0. ®

3.7. CorOLLARY. Let X be a compact Hausdorff space with a finite number of
components, carrying a normal binary Tl-subbﬁtse. Then X is a Lefschetz space. In
fact, X is a retract of a convexoid space, and it carries a WSC-structure. Moreover,
the components of X are acyclic.

Proof. As we noticed in the introduction, X is a retract of A(X). In view
of (3.2;2), X also carries a WSC-structure. If r: A(X)~X is a retraction and if
Cc X is a component, then there is a component D<= A(X) with the property that
r(D) = C, and hence C is acyclic. & .

3.8. COROLLARY. Let X be a completely regular Ty-space with a finite number of
components. The collection & of all zerosets in X is a normal Ty-(sub-) base of X
and A.4(X) is a Lefschetz space with finitely many components, each of which is acyclic.

Proof. The first part of the corollary can be found in Gillman and Jerison [9],
p- 38. Notice that &" is a normal binary T)-subbase of 1,(X), whence A,(X) is
aretract of 1(X). In particular, 1,(X) has a finite number of components, and apply-
ing Corollary 3.7 yields the desired result. B

3.9. COROLLARY. Let f: X—Y be a continuous closed surjection between normal
connected Ty-spaces. Then the induced mapping A(f): AX)=A(Y) is a Vietoris
mapping.

Proof. In [21] p. 56, the extension A(f) is constructed as follows. If .# & A(X),
then A(f)(#) is the unique mls of ¥ containing the linked system (pre-mls)

{N| NcY is closed and f~Y(N)e 4} .

Using the fact that fis surjective and closed, it can easily been proved that for each
N e A(Y),

MOTHA) =0 SN Ne sy,

which is a convex set in 1(X). Since X is connected, A( YY) is acyclic, being
a retract of the acyclic A(X). Moreover, A(f) is onto (cf. Theorem 0.2) and closed,
i.e. A(f) is a Vietoris mapping (Begle [2]). W

4. Concluding remarks. The acyclity of superextensions — Theorem 3.1 — and
the ANR property of superextensions of metric continua — Theorem 3.5, due
originally to J. van Mill [19] — yield a solution to different problerns posed in
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Verbeek’s dissertation ([21] p. 142). We also like to draw attention onto Corollary 3.7,
giving a surprising connection between purely analytic conditions (the existence

of a certain closed subbasc e.g.) and highly sophisticated structures of an algebraic
nature involving Cech homology,

Proceeding as in the proof of Corollary 3.7, it can be deduced from Theorem 3.5
that a metric continuum carrying a normal binary Ty-subbase is a metric AR. Tt is
then natural to ask which class of compact metric AR admit normal binary T';-sub-
bases. At present state this is only known for compact trees, [4], and their prod-
uets, [21]. It may be of interest to notice that compact metric spaces have binary
subbases, & result which has recently been proved by Strok and Szymanski, [14].

Finally, it appears that superextensions can take the role of the Hilbert cube,
or of topological vector spaces (or rather of its compact convex sets). As an example,
it can easily been derived from Theorem 3.5 that a compact locally connected metric
space is an ANR ifl it is a neighborhood retract of its superextension.

In this respect, certain similarities between suverextensions and vectorspaces,
which appear in this paper, are not pure coincidence.
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Jinitely (countably) many sets in %. It is called o-point-finite if U =

Some remarks on Eberlein compacts
by

K. Alster (Warszawa)

Abstract. We give a positive answer to a problem of Y. Benyamini, M. E. Rudin, P. Simon
and M. Wage by showing that a compact subspace of a £-product of intervals is a strong Eberlein
compact if and only if it is scattered,

A compact space is called an Eberlein compact (E-C), if it is homeomorphic to
a weakly compact subset of a Banach space.

The main structure theorem for E-C is due to Amir and J. Lindenstrauss [11:

A compact space is an E-C if and only if it is homeomorphic to a compact subset X
of the product of intervals, where X has the Droperty, that for each ¢>0 and fe X
the set {yeTI': f(y)2s} is finite. ‘

H. P. Rosenthal observed, that X is B-C if and only if it has a o-point-finite
separating family of open F,-subsets.

An E-C X is called stromg (see [2], [6] and [4]) if it embeds in the Cartesian
product of intervals ™ in such a way that x(y) =0 or x(y) =1 for all xe X and
vel and |{y: x(y) # 0} <No. Equivalently X is a strong E-C if and only if it has
a point-finite separating family of clopen sets.

Let us recall that a family % of subsets of X is called separating, if given any
xsy in X, then there is an Ue% such that either xe U and y¢UoryeUand x¢ U.

The family % is called point-finite (point-countable), if each x belongs to at most
o

%«,, where
1

n=
cach %, is point-finite.
A space X is scattered if every closed subset of X has an isolated point.
Let us put X = X', x©+ is the set of accumulation points of the set X*

and X* = X® for a limit ordinal A.
pea

All undefined terms are from [3].
The aim of this note is to prove the following:
THrOREM. [f X is a scattered, compact space, which has a point-countable separating

Jamily of open F,-sets, it is the same as to say that X is a compact subset of a Z-product

of intervals, then it is a strong B-C.
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