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Jinitely (countably) many sets in %. It is called o-point-finite if U =

Some remarks on Eberlein compacts
by

K. Alster (Warszawa)

Abstract. We give a positive answer to a problem of Y. Benyamini, M. E. Rudin, P. Simon
and M. Wage by showing that a compact subspace of a £-product of intervals is a strong Eberlein
compact if and only if it is scattered,

A compact space is called an Eberlein compact (E-C), if it is homeomorphic to
a weakly compact subset of a Banach space.

The main structure theorem for E-C is due to Amir and J. Lindenstrauss [11:

A compact space is an E-C if and only if it is homeomorphic to a compact subset X
of the product of intervals, where X has the Droperty, that for each ¢>0 and fe X
the set {yeTI': f(y)2s} is finite. ‘

H. P. Rosenthal observed, that X is B-C if and only if it has a o-point-finite
separating family of open F,-subsets.

An E-C X is called stromg (see [2], [6] and [4]) if it embeds in the Cartesian
product of intervals ™ in such a way that x(y) =0 or x(y) =1 for all xe X and
vel and |{y: x(y) # 0} <No. Equivalently X is a strong E-C if and only if it has
a point-finite separating family of clopen sets.

Let us recall that a family % of subsets of X is called separating, if given any
xsy in X, then there is an Ue% such that either xe U and y¢UoryeUand x¢ U.

The family % is called point-finite (point-countable), if each x belongs to at most
o

%«,, where
1

n=
cach %, is point-finite.
A space X is scattered if every closed subset of X has an isolated point.
Let us put X = X', x©+ is the set of accumulation points of the set X*

and X* = X® for a limit ordinal A.
pea

All undefined terms are from [3].
The aim of this note is to prove the following:
THrOREM. [f X is a scattered, compact space, which has a point-countable separating

Jamily of open F,-sets, it is the same as to say that X is a compact subset of a Z-product

of intervals, then it is a strong B-C.
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This theorem gives a positive answer to the problem formulated by Y. Benya-
mini, M. E. Rudin, M. Wage ([2], Problem 6) and P. Simon ([6]) (sec also [4],
p. 109).

The proof of the theorem will be derived from the following:

PROPOSITION. [If U is a point-countable family of scattered open dand compact
subsets of a space X then there exists a point-finite family ¥ of open and
compact subsets such, that ¥ refines U and % = UV

Proof. We shall prove the proposition by the transfinite induction with respect
to the cardinality of %.

If |%] = 8y, (%] denotes the cardinality of %), then # = {U,: n = 1,2, ..}.
It is enough to put

n—1
and V,=UNUU,.
1

m=

m Vi=1U,
Let us assume that the proposition holds, if |%| <N, and suppdse, that
0-2‘1 = {Uﬁ.: [)’<60“} ]

where w, denotes the initial ordinal number of cardinality N,.
If Fis a compact scattered set then put

FP where 1<|F®| <y, if F# &,
@ Z(F)_{Q),ifF=Qf.

If # is a family of compact and scattered sets, then put
?3) ZW)y=U{ZWinWyn..aW): WieW fori=1,2,...,n}.

We define an increasing sequence {#,: f<w,} of subfamilies of % by the follow-
ing formulas:

@ U= {Up p<n} U {Uew: UnZ@,) # 0},

and

where 75 =y+1

(5) U, = U {%: B<nu} if n is a limit ordinal number.
It is easy to see that

(6) . v {%p: p<w,} =% .
Notice, that |Z(%,)|<|%,|<7. N, where # denotes the cardinality of #, 8O

[Ued: UnZ(U,) # DI<iiNg,

because % is point-countable. From the last fact it follows that

)] . %5 <Py for ‘
Now let us put

8) W= Ug\Uy for

f<w,.

B<aw,.
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By (6), (5) and (8) we infer that

©) Uy peod =
and by (7) and (8) that
(10) W<y, for <o, .

Applying the inductive assumption to %7, we can find a point-finite family ¥~
of open and compact sets, which refines %" s such that ’
(n U“//,,=U"///,,.

Put

(12) V= U{¥p f<w,).
:[t is easy to see that ¥ refines 4. By (9) and (11) we infer that U= .
In order to prove that ¥ is point-finite, it is enough to show that, if

(13) W,e W, where Bi<By<...<f,<...

then (} W, = @.

n=1

. o0
Suppose to contrary that there is x e N W,. Put

n=1

. (14) Cn = d Wl'
. i=1

H o, is such that Z(C,) = C{*, then there is m such that for eVery n=m o, = o, ;.
From the definition of m it follows that

Woiz 0Z(Wi N .o Wad2ZWin Ao W, ) @,

§0 Wy42€%p, 4o, contradicting W, ,,ew fmep Where B..>B,., 28 +1.

' Proof of the theorem. We shall prove the theorem by the transfinite induction
with respect to the ordinal number « defined by ’

(15) Z(X) = X9,

T o = 0, then X is finite, so Theorem holds. Let us suppose, that the theorem
holds for every fi<a and that Z(X) = X®,

It is casy Lo see, that we can assume without loss of generality, that |Z(X)] = 1.
Put Z(X) == {a}.

Let ' be a point-countable separating family of open and F,-sets in X.

Since X is zero-dimensional (see [5], Th. 8.5.4), so we can assume, replacing
eventually ' by another family, that # is a family of clopen sets. )

I {Hes#': aeH} = {H;: n=1,2,..} then % = {He#: a¢H} L
U {X\H,: n=1,2,..} is an open, point-countable cover of X\{a} consisting of
compact sets.
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By the proposition there is a point-finite, open cover ¢ of X\{a} consisting
ts.
o c%r?pf;et ii?ductive assumption, every Ve ¥  has a point-finite family % V) of
i ints in V.
dop?’lu: e;’ :el';ﬁrztlbg{gllo(V): Vev). It is easy to see that & is a .point:ﬁnite
family of clopen sets separating points, so the proof of the theorem is finished.

Remark 1. In [2], Example 5-1, it is shown that under some set theoretical
assumption, there is a compact space, which is not an E-C, but has a point-countable
separating family of open F,-sets.

Remark 2. In [2], the proof of Theorem 4.3 and in [6], Proposition 3, was
observed, that every strong E-C is scattered, so we obtain the following corollaries:

COROLLARY 1. A compact subspace of a Z-product of intervals is a strong E-C if
and only if it is scattered.

COROLLARY 2. An E-C is a strong E-C if and only if it is scattered.

CoROLLARY 3: If X is a compact space admiting a point-countable, separating
family of open F,-sets, then X is a strong E-C if and only if it is scattered.

Remark 3. Let us notice that we can formulate the proposition in the fol-
lowing way: .

If X is a scattered compact space and & is a family of closed subsets of X such
that every point belongs to less than X,-many sets in &, where %, is a regular
number, then there are {#.: se S} such that U {#,: se S} = F, |F /<y, for
every se§ and the family {{ &,: se S} is point finite.

The author is very grateful to R. Pol for some valuable remarks.

Added in proof. Recently M. Talagrand has shown, without additional set theoretical
assumptions, that there is a compact subspace of a Z-product of the real line which is not
Eberlein compact.

)
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Finite points of filters in infinite dimensional vector spaces
by

Arthur D. Grainger (Baton Rouge, La.)

Abstract, Let E be an infinite dimensional vector spé.ce over K, the scalar field. For any sub-
set A4 of *£, the nonstandard extension of E, define Fin(A) as follows: z e Fin(4) if and only if
Az ¢ A for each infinitesimal A of *K, the nonstandard extension of K. A subset 4 of *E is called

Fin-invariant if Fin(4) = 4. If 4 is the monad of a filter % in E then Fin(4) is called the set of
finite points of .

In this paper, we establish the existence of nontrivial, Fin-invariant sets. Next, sufficient con-
ditions are given, in terms of finite points, for a filter to induce a linear topology on some nontrivial
vector subspace of E. Finally, we use Fin-invariant sets of infinitesimals and finite points of filters
to produce a class of locally convex, topological vector spaces that are not Schwartz spaces, not
metrizable and have invariant nonstandard hulls, In particular, it is shown that the topological

vector space induced by the box topology (J. L. Kelley, General Topology, p. 107) has invariant
nonstandard hulls.

Introduction. In this paper, we study a class of sets first defined in [1], i.e., the
set Fin(4) for any subset A of *E, the nonstandard extension of a vector space E
(Definition 1.1). The two predominant themes presented here are: when is a sub-
set 4 of *E Fin-invariant (i.e., Fin(4) = 4) and when is 4 not Fin-invariant. The
latter is shown to be of importance in generalizing the concept of finite points in the
nonstandard theory of topological vector spaces. Indeed, in Sections 2 and 3,itis
shown that the properties of a filter § in a vector space E is determined by its finite
points (clements of Fin(u (%)) as well as its monad #(%) whenever Fin(u(F) # @.
In particular, sufficient conditions are given, in terms of finite points, for a filter § to
induce a linear topology on some non-trivial vector subspace of E (Proposition 3.7).

In Seetion 1, we consider the basic properties of Fin(4) for an arbitrary sub-
set A4 of *K. Also the first example of a non trivial, Fin-invariant set is given (Prop-
ositions 1.6 and 1.7). Tt appears that non trivial, Fin-invariant sets are quite abun-
dant; in fact, Fin-invariant subsets of infinitesimals can be generated easily from
entities in the “standard” world (Proposition 4.9},

The main results of this paper are found in Sections 4, 5 and 6. In Section 4,
we apply the concepts of Fin-invariant sets and finite points of filters to produce
a class of function spaces that have, as locally convex spaces, invariant nonstandard
hulls (Theorem 4.17). Ta Section 5, it is shown that these spaces are not metrizable
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