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By the proposition there is a point-finite, open cover ¢ of X\{a} consisting
ts.
o c%r?pf;et ii?ductive assumption, every Ve ¥  has a point-finite family % V) of
i ints in V.
dop?’lu: e;’ :el';ﬁrztlbg{gllo(V): Vev). It is easy to see that & is a .point:ﬁnite
family of clopen sets separating points, so the proof of the theorem is finished.

Remark 1. In [2], Example 5-1, it is shown that under some set theoretical
assumption, there is a compact space, which is not an E-C, but has a point-countable
separating family of open F,-sets.

Remark 2. In [2], the proof of Theorem 4.3 and in [6], Proposition 3, was
observed, that every strong E-C is scattered, so we obtain the following corollaries:

COROLLARY 1. A compact subspace of a Z-product of intervals is a strong E-C if
and only if it is scattered.

COROLLARY 2. An E-C is a strong E-C if and only if it is scattered.

CoROLLARY 3: If X is a compact space admiting a point-countable, separating
family of open F,-sets, then X is a strong E-C if and only if it is scattered.

Remark 3. Let us notice that we can formulate the proposition in the fol-
lowing way: .

If X is a scattered compact space and & is a family of closed subsets of X such
that every point belongs to less than X,-many sets in &, where %, is a regular
number, then there are {#.: se S} such that U {#,: se S} = F, |F /<y, for
every se§ and the family {{ &,: se S} is point finite.

The author is very grateful to R. Pol for some valuable remarks.

Added in proof. Recently M. Talagrand has shown, without additional set theoretical
assumptions, that there is a compact subspace of a Z-product of the real line which is not
Eberlein compact.

)
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Finite points of filters in infinite dimensional vector spaces
by

Arthur D. Grainger (Baton Rouge, La.)

Abstract, Let E be an infinite dimensional vector spé.ce over K, the scalar field. For any sub-
set A4 of *£, the nonstandard extension of E, define Fin(A) as follows: z e Fin(4) if and only if
Az ¢ A for each infinitesimal A of *K, the nonstandard extension of K. A subset 4 of *E is called

Fin-invariant if Fin(4) = 4. If 4 is the monad of a filter % in E then Fin(4) is called the set of
finite points of .

In this paper, we establish the existence of nontrivial, Fin-invariant sets. Next, sufficient con-
ditions are given, in terms of finite points, for a filter to induce a linear topology on some nontrivial
vector subspace of E. Finally, we use Fin-invariant sets of infinitesimals and finite points of filters
to produce a class of locally convex, topological vector spaces that are not Schwartz spaces, not
metrizable and have invariant nonstandard hulls, In particular, it is shown that the topological

vector space induced by the box topology (J. L. Kelley, General Topology, p. 107) has invariant
nonstandard hulls.

Introduction. In this paper, we study a class of sets first defined in [1], i.e., the
set Fin(4) for any subset A of *E, the nonstandard extension of a vector space E
(Definition 1.1). The two predominant themes presented here are: when is a sub-
set 4 of *E Fin-invariant (i.e., Fin(4) = 4) and when is 4 not Fin-invariant. The
latter is shown to be of importance in generalizing the concept of finite points in the
nonstandard theory of topological vector spaces. Indeed, in Sections 2 and 3,itis
shown that the properties of a filter § in a vector space E is determined by its finite
points (clements of Fin(u (%)) as well as its monad #(%) whenever Fin(u(F) # @.
In particular, sufficient conditions are given, in terms of finite points, for a filter § to
induce a linear topology on some non-trivial vector subspace of E (Proposition 3.7).

In Seetion 1, we consider the basic properties of Fin(4) for an arbitrary sub-
set A4 of *K. Also the first example of a non trivial, Fin-invariant set is given (Prop-
ositions 1.6 and 1.7). Tt appears that non trivial, Fin-invariant sets are quite abun-
dant; in fact, Fin-invariant subsets of infinitesimals can be generated easily from
entities in the “standard” world (Proposition 4.9},

The main results of this paper are found in Sections 4, 5 and 6. In Section 4,
we apply the concepts of Fin-invariant sets and finite points of filters to produce
a class of function spaces that have, as locally convex spaces, invariant nonstandard
hulls (Theorem 4.17). Ta Section 5, it is shown that these spaces are not metrizable
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(Proposition 5.2) and are not Schwartz spaces (Proposition 5.4); thus, the sufficient
conditions of [2] are not applicable. Finally, in Section 6, we provide a general
description of this class of spaces (Theorem 6.6) and we give a variety of examples
to indicate that these spaces are indeed plentiful.

Preliminaries. Throughout this paper, K will denote either the real or the complex
numbers and E will symbolize an infinite dimensional vector space over K. It is
assumed that E and K sit in a full set-theoretical structure

Br={B,| geT},

where I is the set of types. The basic framework of nonstandard analysis used here
can be found in [6] and [7]; however, we shall only consider a nonstandard struc-
ture *B that is a higher order ultrapower enlargement of Bj.

The mapping x—*x is assumed to be the identity on N, the non-negative in-
tegers, N, the positive integers, R, the reals and C, the complex numbers. Also
the extension to *C of the usual algebraic operations are denoted by the same
familiar symbols. The same is true of the extension to *R of the ordering on R.

An element 1 e *K is called an infinitesimal if and only if |A| <4 for each posi-
tive § in R and A is called finite if and only if |A| <6 for some positive d € R. If 1 € *K
is not finite then A is called infinite. An element A € *K is called near-standard if there
is an element in K, denoted by °1, such that 1—°A4 is an infinitesimal. It can be shown
that ° exists and is unique if and only if A € *K is finite. The set of all infinitesimals
in *K is denoted by u(0).

Let X be any entity of B;. We define *[X] to be the set of standard elements
of *X; i.e.,

/ *X] = {*x| xe X}.

If § is a filter on X, then the filter monad of &, (%), is defined by
u(@® =N {*F] Fe®} = N *[&.

Recall that if *B; is an enlargement of By then for each entity X of By and each
filter § on X we have u(%F) # . In fact, there is an element F of *§ for which
Feu(®) ([6], Theorem 2.1.5(a)). ‘

In most cases, £ is assumed to be a subset of the base set B, of Bp. In this
instance, E can be regarded as an external subset of *E, i.e., the map x—*x is the
identity on E. Always, however, the extension of vector addition to *I is denoted
by + (as it is in E) and the scalar multiplication operation on *K x *E takes (4, z)
to Az.

1. Fin-invariant sets. We begin with the following definition due to Henson and
Moore [1].

DeriNiTION 1.1 Let E be a vector space over K and let Ac=*E. The set
Fin(A4) =*E is defined by
Fin(4) = {z| Aze 4 for each de u(0)}.
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Note that Fin(4) == & if and only if Oe 4. Also, it is easily shown that
(1.2) Fin(4) = N {14] Le*K is infinite}
whenever 0 e 4.

ProrosiTION 1.3, If A<*E, where E is g veet
if and only if A <A for each Ae 1(0).

Proof. I 14 = 4 for cach A & (0) then {0}
If ae A then lae ld=A for Ae u(0),
then deed for aed and de u(0), i.e.

In view of the above proposition,

or space over K, then A<=Fin(4)

€ = 04 = 4 which implies Fin (4) # @.
L.e., a e Fin(4). Conversely, if Ac=Fin(4)
» Ad =4 for each Aeu(). H

we make the following definition.

DEFINITION 1.4, Let E be a vector s i
- _ pace over K. A set 4c* - g
if and only if Ad<A for each Ae 1(0). =S saturaed

’ Obser.vc th.a‘t Fi}l(,u (O))=*K is the set of all finite scalars. Consequently
Fin(u(0)) is a ring with an identity under addition and multiplication in *K and
#(0), th:e set of all infinitesimals, is a maximal ideal in Fin ((0)). This idea can be
generalized to vector spaces as follows. '

ProPOSITION 1.5, Let E be a vector space over K. If A<*E such that Oe 4
and A+A = A then Fin(d) is a module over Fin (1(0)).

Proof. Co‘nsider xye Ij’in(A). If e Fin(u(0)) then A(Bx) = (AB)x e A for
each A& u(0) since Aeu(0) implies A8 € 4(0). Hence Bx € Fin(4). Also A(x+y)
= Ax-+AyeA--A = A for each Je #(0) which implies x-+y e Fin(4). |

Tt is natural to ask when does Fin(d) = A4 for Ac*E.If 4 =*Eis a vector space
over *K then Fm‘(z.I)' = A, a fact easily derived from scalar multiplication over *K.
Surprisingly, Definition 1.1 itself generates sets with the above property.

PROPOSITION 1.6. Ler E be a complex ;

ipiex vector space. If A<*E such t
then Fin(Fin(4)) = Fin(4). Y ras e aed
' Proof. Let zeFin(4) and let Beu(0). If 2eu(0) then A(fz) = (Ap)ze 4
since Af & u(0). .Hencc Bz e Fin(4); therefore, BFin (4)=Fin(d4) for B e u(0).
0011seque11t1y, Fin(4) =Fin(Fin(4)) by Proposition 1.3.

. Let z & Fin(Fin(4)). If z ¢ Fin(4), then there exists Ao € 1(0) such that lyz ¢ 4
which implies z £ 0 and Ao # 0. Also 2y € u(0) implies v/ 2, € #(0). Consequently,
7€ Fm»(fm(ﬂ)) impl@gg N 2oz € Fin(4) which implies / Ao/ Egz) € 4 contradicting
\//10.(\/3'02) = (VagAg)z = Aoz ¢ d. Thus zeFin(4). Therefore Fin(Fin(4))
= Fin(4). &

I {1 the case of real scalacs, we must compensate for the lack of square roots of
negative numbers. This deficiency imposes a symmetric condition on A4, ie., if
we let 4 = —4 then Az e A for some A& *R implies (—1)z e 4; therefore, it can be
assumed that 0 A,

ProvositioN 1.7, Let E be a real vector space. If A<=*E such that 0 e A and
A= —A then Fin(Fin(4)) = Fin(4).

4 = Fundamenta Mathematleae T, CIV
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The proof of the above proposition, being analogous to that of Proposition 1.6,
is omitted. . . o
DerNITION 1.9, Let E be a vector space over K. A set A<=*E is said to be
. B e o iy
Fin-invariant if and only if Fin(4) o |
. Note that Fin-invariant sets are p-saturated. We shall see, in Sucllén' 4, th‘at
Fin-invariant sets play a fundamental role in generating topological veetor spaces
i i hulls.
that have invariant nonstandard i . I
‘We close this section by making the following obs‘ervatmns. If F 1#\ .V({)(llzl'
subspace of a vector space E over K, then *F is Fin-invariant. If 4 and B arc subsets
of *E such that 0 e 4 and B is Fin-invariant, then

(1.10) Fin(B N 4) = B n Fin(4) .

2. Finite points of filters. Now the other side of the qucstion‘WI‘I’l be 'C?I}S;L}cr?':;
i.e., when is Ac*E not Fin-invariant for some vector space E In fca{: c ;-f;ﬁtcgi_
examples, one set seems to clamor for attention, nalnel}r, ;L(O?, .the se {). 1) it 1 6
mals. Clearly, Fin(u(0)) # 1(0) and the fact Fhat #(0) is a ﬁlt.el m(?nac .;‘:ign; to
imply that any filter monad is not Fin-invariant. The following propos g
some comfort to this belief.

PRrROPOSITION' 2.1, Let E be a vector spdace over K and let § be u filter on 1;;’ such
that 0 € u(F). If z € Fin(u(F)) then for Fe§ there exists n € N such that z e *(nlF),

Proof. Let zeFin(u(§)) and let Fe §. Define A(.F) = »{llei:‘N] chz*};}}:
- Thus A(F) is an internal subset of *N. Also n € *N—N unphes ntze u@? c‘:m]
which implies‘ zen*F; therefore, *N—NcA(F). Now, A(F ) bc’::ng _;L? etlhén
implies A(F) has a least element n0¢*N—.—]Y. Indeed, if nye JAV——F [nen
ny—1e*N—NcA(F) and ny—1<n, contradicting the fact that n, € A(F) is
least element of A(F). Therefore noe N and ze *(n  F). H

Recall that a subset B of a vector space E is balanced if and only if AB<B
for JA|<1 (see [3], Chapter 2, Section 3, Definition 3).

PropPOSITION 2.2. Let E be a vecior space over K and let § be f’ ﬁlt.er on E; that
has a filter basis E<F of balance;i sets. If z e *E such that Fe§ implies z ¢ *(nF)
or some ne N then z e Fin(u(®)).
” Proof. Since Fed is balanced we have Oe u(%F); hence, Fin(u(®)) Q.‘
Let z € *E such that Fe § implies z € *(nF) for some 7 € N.»‘If it can be jhoyn t?mlt
Ae u(0) implies Az € *F for each Fe & then z € Fin(u(). Indcc.d, /'sz e*F I'o: cdfCl
Fe & implies Aze () {*F| Fe &} = u(§F); therefore, Aeu(0) implies Az e *F for
each Fe& which implies 1z € u(§), i.c., z & Fin(u(®). . .

" Solet 2 e pu(0)and let Fe &. First, 1 = 0 implies 0z= 0 & *F since F:w bzlltllloeq.

Assume A # 0. There exists n € N such that z e *(nF) = *n*F. Thus ¥ being balanced
implies that the following statement is true for n and F:

“if x € E such that x enF then x e fF for fe K and n<|f]".
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Hence, the following statement is true for *n and *F:
“if y e *E such that y e *p*F then y e B*F for fe*K and *n<|p” .

Therefore z € *n*F implies z e A 1*f since 0 # ) e u(
Az e *F., H

COROLLARY 2.3. Let E be a vector space over K and let § be g filter on E that has

a filter basis & < of balanced sets. If z € *E then z e Fin (u(%)) if and only if for each
Fe§ there exists ne N such that z & ¥(nF).

Proof. Propositions 2.1 and 22. B

Of course there is a filter in £ that has
of all subsets of £ that contain 0, Hopefull
filters. With that thought in mind, we mak

0) implies *n<|4~1[. Hence

a Fin-invariant monad, e, g., the filter
Y, we will consider somewhat smaller
¢ the following definitions.
DEFINITION 2.4. Let £ be 2 vector space over X and let & be a filter on E,
(i) A point ze*E is called &-finite if and only if z e Fin(u(%)).

(i) A point x e E is said to be F-absorbed if and only if for Fe &, there exists

ne N (depending on F) such that x e nF. The set of all F-absorbed points of F is
denoted by A(F).

(i) A subset B £ is said to be §-bounded if and only if for Fe §, there exists
neN (depending on F) such that BcAF for le K and n<|i). :

Note that §-bounded sets are subsets of 4(%); however, A(®) is not necessarily
&-bounded, e.g., consider the neighborhoods of zero in a topological vector space,
In fact, x & E being §-absorbed does not necessarily imply {x} is §-bounded. Also
if x € E, then *x is §-finite implies x is §-absorbed (Proposition 2.1) and if ¥ has
a basis of balanced sets, then x is &-absorbed if and only if *x is &-finite (Corollary
2.3). As expected there is a relationship between §-finite points and F-bounded

subsets of E. However, first we need to discuss *-balanced subsets of *E (hyper-
circled in [1]).

DEFINITION 2.5. Let £ be a vector space over K and let B be a subset of *E
(internal or external). The w-balanced huyll of B is the set of all elements of *E of the

form Az, wherc z e B, 1 & *K and [A] <1, Bis x-balanced if it is equal to its *-balanced
hull.

If & is the collection of all balanced subsets of £ then an internal subset B
Of * £ s %-balanced if and only if B e *4#. Tn particular, if D<= F is balanced then *D
is »-balanced. The #-balanced hull of an internal set is again internal. Tn general,
the x-balanced hull of Bc*E is the smallest x-balanced set containing B. Con-
sequently, the intersection of a collection of *.~ba]anced sets is #-balanced. In par-
ticular, if § is a filter on E that has a filter basis of balanced sets then p(%)is %-bal-
anced. The following proposition establishes the converse of the previous statement.

PROPOSITION 2.6, Let F be 4 vector space over K and let § be a filter on E.

& has a filter husis & of balanced sets if and only if u(®) is *-balanced.
401
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Proof. As stated above, if § has a filter basis of balanced sets then u(%) is
*-balanced.

Conversely, suppose x(%) is #-balanced. Let & be the collection of all balanced
hulls of elements of §. Hence & =& which implies *& <*. Also if Ve *F and if Fis
the *-balanced hull of ¥, then Fe*&. Let V,e*§ such that Vo= u(®) (see [6],
Corollary 2.1.6). Now, V, being internal and u(%) being *-balanced imply Fy, the
«-balanced hull of Vg, is a subset of u(F) and Fp € *4. Consequently, if Be§,
then the following statement is true for *B and *&:

“there exists Fe *& such that Fc*B”.

Indeed, for Be, we have Focu(F)=*B. Therefore, the following statement is
true for B and &:
“there exists Fe & such that FcB™.

Thus & is a filter basis for §. H

We can now consider the internal subsets of Fin(u(%)) for a filter § on E that
has a #-balanced monad. From Proposition 2.2, we infer that if B< E s {§-bounded,
then *BcFin(u(§)). Furthermore, the converse is also true. Tndeed, the following
proposition establishes much more.

PROPOSITION 2.7. Let E be a vector space over K and let § be a ﬁh‘ér on E such
that u(F) is *-balanced. If B<Fin(u(F)) is internal, then for Fe, there exists
ne N such that B<*(nF).

Proof. Let B<Fin(u(®) be internal, i.e., Be *#(E). By Proposition 2.6,
& has a filter basis & of balanced sets. Now for Fe & let {2 (E), R, F) designate
the following sentence:

“if X e #(E) such that X<§F for some positive 6 € R then either X<=4§F for

all positive § € R or there exists a positive 8, € R such that X<dF for 5o<d

and X&8F for 0<8<d,.”

Since F is balanced it follows that @{#(E), R, F) is true in By; therefore,
@{*P(E), *R, *F) is true in *Br. Since B<Fin(u(F)), we have B<A*F for positive,
infinite 1€ *R by (1.2). If B<A*F for each positive A& *R then Ba*F. If there
exists a positive 1, € *R such that BcA*F for Ao<A and B&A*F for 0<i<ly
then A, is finite. Indeed, if A, were infinite then 2743, would be infinite and
27%)y <A, which would imply B¢2™*Ao*F contradicting B<Fin(u(§)) <27 A*F.
In either case there exists ne N such that Bo*(nF). B

Tn particular, if B< E such that *B is a subset of Fin (1 (%)) then B is §-bounded.

One of the concerns of this paper is when does a filter § on a vector space E
induce a vector space topology on some non-trivial vector subspace of E. This
condition imposes restrictions on. § that are reflected in the shape of its monad;
therefore, the remainder of this section will explore certain properties of filter monads
that will be useful in later sections. ‘
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First we state a proposition whose

. roof, bei ‘ i
on 2.6 bs oot p ng analogous to that of Proposi-

PROPOSITION 2.8. Let E be a vecior s
' v 2. , pace over K. If § is a fil
w(@® (@ <1 (F) if and only if for Ve® there exists Fe schZ teh';z;”;'f}«’zzgl
The next proposition gives condifions for .

: a filter
of ¥ has a linear structure. ‘ § o £ so that the monad

PROPOSITION 2.9. Let E be a vector )
i  vecior space over K. If § is a filter on E such th
1() is x-balanced and u(F) F+u(®) = w(®) then W(®) is a module over Fizc(u(b)gt

. Eroqf. By Prop(?sitifm 2..6, & has a filter basis & of balanced sets. Let z & u(%)
?]n . WE jm (/,; EO)) wh ll:h implies z € *F for each Fe @ and there exists 7y e N su::h
hat [A] S [T 1t can be shown that nyz e *F for each Fe
<7 i & then Az e u(§F). Indeed
7oz € *F for each Fed implies Az = (Jn7! Ang Fowh Fes
' ! ‘ ) = " * *
since *F is *-balanced for each Fe 18".( ooz € (A PSS for cach Feg
IN]O.W" let Fed. We can infer from Proposition 2.8 that there exists F, e &
J'Srl;c ]l'“dt F::;m-,-hE,OCF where F, = F, for each ie {L,...m}. So zejz(i?)
plies ze *F, which implies » *J refor ) for
: epin(ﬂ(o)). p 0ZE*F. The‘lefme Aze u(®) for ze u(F) and

If z,z,e () then z +z,eu ¥ ¥ F). ( 13
R + = § i
a module over ‘Fin(,u(O)). ] s SHID D = k(). onseauently. k(® ls'

COROLLARY 2.10. Let E be a vector space over K. If' § is a filter such that 1

is x-balanced and = (5 -
. A¢ZZ%§_ and p(F)+u(F) = u(®) then Iu(F) = K(®) for AeFin(u(0)) such

» Proof. If 1 e Ii11n (»(0)) such that 2 ¢ u(0), then A~ & Fin (1(0)). Consequently
W < p(®) and 1 (F) < #(%) by Proposition 2.9, Hence, 2™ u(%) < (%) im lie;
W(® < An (). Therefore, Au(F) = w@E. | ) "

COROLLARY 2.11. Let E be a vector space over K and let § be a filter on E such

that (%) is x-balanced and -
neN then Be. and p (&) +u(®) = u(¥). If B<E such that nB e & for some

Proof. If nBe§ for some ne N then
‘ w(F)=*(nB) = n*B. B )
we have u(®) = n™ ' w(Fen~(n*B) = *5, v Corollay 210,

Finally, in the next two propositions we consider two filters on a vector space

llle Ob cetive is to IS¢ 8] B
? use finite points m d C'.(N]lnlllllg Whell s a QUbCOIleCUOH
one Illler |
O'F the Othcr.

/ Pn'oms.m()N 2.13. Let I be a vector space over K and let &1 be afilter on E such
that ‘f(‘??‘) is w-balanced. If' %, is another filter on E then 1(F2) = Fin(u(§,)) if and
only if for each Fe &1 there exisis ne N such that nFe 8‘2

Proof. Assume that for each Fe &, there exists ne N such that nFe 7

If ze (®,) and Fe &, then z & *(nF) for some n & N which implies z & Fin(u(§,))

by Propositions 2.6 and 2.2. Therefore /c({s?z)c:Fin(u(‘&l)).
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Conversely, assume that u(§,)cFin(u(F,)). There exists Wt.s.’“?}z suc.h t}%at
W pn(F,) ([6], Corollary 2.1.6); therefore, W< Fin (1(1))- Pr.oposn.wn 2.7 implies
that for Fe @, there exists ne N such that We*(nF) which implies *(nF) e *§,

which implies nFe §, B

) PROPOSITION 2.14. Let E be a vector space over K and let &, and &, be two
filters on E such that () is »-balanced for i =1,2. If p(§)+u(dF,) = p(§)
then Fin (u(§,)) <Fin(u(§)) f and only if w(F<h(Fa)-

Proof. Clearly u(§,)cu(®,) implies Fin(u(f,))<=Fin(u(F,). If Fin(u(F,)
=Fin(u(F,)) then p(F,) =Fin(u(F,)) by Proposition 1.3 since u(%,;) is #-balanced.
Proposition 2.13 implies that for Fe §, there exists n € N such that nF € §; there-
fore, F e §; by Corollary 2.11. Consequently ¥, =&, which implies u(F; )= pu(F,). B

3. Subadditive filters. In this section we consider filters on a vector space E that
generate topologies on E. Primarily we seek sufficient conditions, in terms of finite
points, so that a filter on E will generate a linear topology on some non-trivial vector
subspace of E. This requirement limits the kinds of filters we can examine. In par-
ticular, the filter we consider must have a translation-invariant property, i.e., neigh-
borhoods of points are obtained by translations of elements of the filter. Also we
would like any generated topology to be Hausdorfl. To be more specific, let £ be
a vector space over K and let #(0) denote the ultra filter of all subsets of £ that
contain 0.

DEerFNITION 3.1. Let E be a vector space over K and let § be a filter on E.
% is said to be subadditive if and only if § <% (0) and the following conditions hold:

1) If x € E such that x # 0 then there exists Fe & such that x ¢ F.
2) For Fe§, there exists F; e § such that Fy+F < F.

Proposition 2.8 implies that a filter § on a vector space E is subadditive if and
only if 0 e u(¥), u(F)+u(® = pu(F) and x € E such that *x e u(F) implies x = 0.
Also, it is easily shown that if & is a subadditive filter on E then there exists an unique
Hausdorff topology # on E such that § = 115(0),' the #-neighborhoods of 0, and
vector addition is 8-continuous. We will refer to #§ as the topology generated by .
The topology 0 is not necessarily a group topology on E since the map x— —x may
not be 8-continuous. However, if u(§) = —u(§) then (E,0) is a Hausdor(l topo-
logical group.

PROPOSITION 3.2. Let E be a vector space over K, let § be a subadditive filter
~on E and let 8 be the topology on E generated by §. (E, D) is a topological vector space
if and only if p(®) is *-balanced and *x e Fin(u(F)) for each x e L.

Proof. 0 is a vector space topology if and only if § has a filter basis & of bal-
anced, absorbing sets so that for Fe & there exists F, € & such that F, +F, cF
([3], Theorem 1, p. 81). Therefore the proposition follows from Proposition 2.6,
Corollary 2.3 and Definition 3.1. B
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Using Proposition 1.5 together with Proposition 2.6, Corollary 2.3 and Defi-
nition 3.1, we obtain an immediate generalization of Proposition 3.2 which is
stated without proof.

PROPOSITION 3.3, Let E be a vector space over K, let § be a subadditive filter
on E and ler § be the topology on E generated by §. If M) is x-balanced, then A(F)
(Definition 2.1) Is a vector subspace of E and 0 induces a linear zopology’ 0 on A(F)
such that § 4, the trace of § on. A(R), is the collection of 0-neighborhoods of 0 in A(®).

Now consider an arbitrary subadditive filter & on a vector space E. For Fe &
let F¢ denote the balanced core of F, i.e., F¢ is the largest (with respect to set in:
clusion) balanced subset of F. Note that F is not empty, for Fe &, since 0 e F, and
Fcis said to be non-trivial if and only if there existsx & Fg such thatx # 0. Ciearly
the collection {F,| Fe T} generates a filter, denoted by &c, that contains .
Also §¢ # %(0) if and only if each Fc is non-trivial for Fe §.

Using Proposition 2.1 and 2.2 we obtain the following inclusions:

A@F)<FP(F)=A(F),

_where A(Fc) and A4(F) are the absorbed points of §. and § respectively and FP(®)
1s the set of all standard F-finite points of E, i.e., x e FP(F) if and only if
*x e Fin(u(&)) (see Definition 2.4). Observe that FP(F) is a vector subspace of E by
Propositions 2.8 and 1.5 since & is subadditive.

PROPOSITION 3.5. Let E be d vector space over K. If § is a subadditive filter
on E then A(Fc) = FP(F).

Proof. Let xe E such that *xe Fin (1(®) and let Feg. If P e u(0) such
j[hat 0<fthen A*x & u(F) =*F for 1 e *K such that [4] < . Consequently, the follow-
ing statement is true for *x, *F and *K:

(3.4)

“there exists fe*K such that 0<f and A*xe*F for Ae*K such that
[Al<p”

Passing this condition back to x, F and K we infer there exists f e K such that
0<f and Ax e F for |A|<f. Therefore, if n e N such that n~'<p, then n~'x e F,
which implies x e nF,. Consequently, x € A(Fc) since Fe § was arbitrary.

The proposition follows from (3.4) and the above argument. M

If a subadditive filter ¥, on a vector space E, is to induce a linear topology on
some non-trivial vector subspace E, of E then E,c FP (%) which implies Fin(u(§))
must have a non zero standard point. In general, Fin (1(®)) having a non zero stan-
dard point does not necessarily imply & induces a linear topology on some non-

trivial subspace of FP(F). However, the picture changes if we assume u(%) is
p-saturated (Definition 1.4).

LEMMA 3.6. Let E be a vector space over K and let & be a subadditive filter on E
such that u(%) is w-saturated. If x € E such that x # 0 and *x e Fin(u(g)), then
A*x e u(F) if and only if Le u(0).
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Proof. If A e u(0) then A¥x & u(F) since *x € Fin(u(g)). Conversely, let Ae *K
such that A*x e u(§). Thus, A is not infinite. Indeed, if 1 were infinite then A*x e u (%)
would imply *x = A7*(A*x) e u(¥), since 271 would be infinitesimal and u(F) is
p-saturated, contradicting *x ¢ u(%) since § is subadditive and x # 0. Therefore 4
is finite which implies °4 € K exists. Since 02— e pu(0) we infer

0g %y = A¥x+(PA—A)*x & p(F)+ (@) = n(®

which implies ®Ax = 0. Consequently, 0 = 0, since x # 0, which implies 1 € x(0). W

PROPOSITION 3.7. Let E be a vector space over K and let § be a subadditive
filter on E. If p(®) is p-saturated then % induces a linear topology on some non-trivial
vector subspace of E if and only if there exists anon zero x & E such that *x & Fin(u(§)).

Proof. If § induces a linear topology on a non-trivial vector subspace E, of E
then *x e Fin(u(§)) for any x € E,. Conversely, assume that there exists a non zero
x e E such that *x € Fin(u(®). Let E, = {ix] Ae K} and let 0 be the topology
on E, induced by §. From Lemma 3.6 we infer the map A—/Ax of K onto Ej is a linear
homeomorphism with respect to 6 (see [7], Theorem 4.2.7). Therefore 0 is a linear
topology on E,. H

4. Invariant nonstandard hulls and Property 1. We now apply the concepts of
the previous sections to produce a class of locally convex spaces that have invariant
nonstandard hulls. In view of the work of Henson and Moore [2], it is shown, under
an appropriate hypothesis, that these spaces are not metrizable and are not Schwarz
spaces (Propositions 5.2 and 5.4). Since function spaces are used to define this class
of spaces, we begin by establishing the necessary notation.

Unless stated otherwise, I will denote an infinite set and 4(I) is the collection
of all finite subsets of I (we assume @ € 4() also). In this section E is K7, the vector
space of all K-valued functions on I. For x € E define

@1, s() ={iel| x(i) # 0}

and let E, = K7, the set of all x & E for which s(x) is finite, i.e., s(x) & 4(I). Hence,
@ € A(I) implies E, is a proper vector subspace of E.

The ith projection is symbolized by =, i.e., 7;; E—K for which 7,(x) = x(i)
for x e E and i e I. Also, for i e I, define ¢, € E, as follows: ¢(i) = 1 and e,(j) =0
for j e I such thatj # i. Clearly, {e;] ie I} is a Hamel basis for £, Furthermore, if
z € E,, then

(4.2)

N

= Z nf2e; .

ies(z)

Let e symbolize the function defined as follows: e(i) = 1 for each ie I Let
A(E) be the set of all x e E for which 0<ny(x) for each ie I and let 2(E,) denote
the set of all z e E, such that O0<my(2) for ies(z). Note that A(E) and E, are
disjoint sets.

For this and the remaining sections the set-theoretical structure B, will have
B, = I'u C as its base set (see preliminaries). Thus E and E, must not be considered
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as external subsets of *E since the entities K* and K" are elements of B(5,0yy- However,
we will identify 7 with the external subset *[I] = {*i| ie I} of *I; therefore, the
notation *I-I represents the elements of *I that are not in *[7]. In general, the index
set J will not have an algebraic structure. So, if X; and X, are subsets of I, then

X=X, ={icllic X, and i¢ X,}.

DErRINITION 4.3. Let [ be an infinite set and let E = K. For xe E define

[x]=E as follows: ze [x] if and only if |n,(2)|<|n,(x)| for each iel ¥ AcE is
nonempty then let

8(A) = {[x]] xe4}.

Now we are ready to define a new class of linear spaces that have invariant
non-standard hulls, The idea is to give conditions on a non-empty set 4 <K so that
& (A4) will induce a linear topology on E, that has the desired property.

DEFINITION 4.4. Let I be an infinite set and let £ = K. A set A< E is said to
satisfy Property 1 if and only if 4 # &, AcA(E) and the following conditions
hold:

L. For x,yed, there exists zed such that m(z)<min(my(x), n(y)) for
each iel

2. For x e A, there exists y, ze 4 such that (20 <my(x) and w(2) < (my(x))
for each iel.

3. For 6>0 and ie [ there exists x € 4 for which 7,(x)<é.

4. If ze E such that for each x e A4, there exists 1€ K (depending on x) for
which |r,(z)| <An(x) for each iel, then s(z2) is finite, i.e., s(z) e A(]).

5. If 1e*I—1, then there exists x e 4 such that =,(*x) e u(0).

PROPOSITION 4.5. Let I be an infinite set, let E = K* and let Ey = K. If
A< E satisfies Property 1 then &(A) is a filter basis for a subadditive filter & on E such
that () is *-balanced and z e E, if and only if *z e Fin(u(%)).

Proof. Conditions 1, 2 and 3 of Definition 4.4 imply & (4) is a filter basis for
a subadditive filter & on E. Also u(%) is »-balanced by Proposition 2.6 since &(A4)
is a collection of balanced convex sets. Finally, it follows from Corollary 2.3,
A< (E) and Condition 4 of Definition 4.4 that z € E, if and only if*z e Fin(u(%)). ®

PROPOSITION 4.6, Let 1 be an infinite set, let E = K* and let Ey = K. If
A E satisfies Property 1, then the subadditive filter § on E generated by & (A) induces
a Hausdorff, locally convex linear 1opology 0 on Ey such that §y,, the trace of §
on Iy, is the filter of 0-neighborhoods of 0 in E,.

Proof. Propositions 4.5, 3.3 and the fact that &(4) is a collection of balanced
convex sets. H

Remark. The topology 0 of Proposition 4.6 will sometimes be called the linear
topology induced on E, by A4, whenever A< E satisfies Property 1.
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1t will be shown that if A< E satisfies Property 1, then (E,, 0), where 0 is the
linear topology induced on E, by A4, has an invariant nonstandard hull (The-
orem 4.17). However, before considering the nonstandard hull of (o, 0),' we.: must
examine the finite points of §, the filter on E generated by &(A). To aid in this
examination we now introduce an interesting collection of *K-subsets.

DErINITION 4.7. Let I be an infinite set, let £ = K' and let B< E be nonempty.
For 1e *I, define v(B)<*K as follows: Aev/B) if and only if |A]<{m,(*x)| for
each x € B.

For A<E satisfying Property 1 and §, the filter on £ generated by &(A), the
following propositions show that the monad of § and the finite points of § are com-
pletely determined by the collection {v,(4)| ¢& *I}. It is also shown thr}t ?,(A) .has
the peculiar property of being Fin-invariant when ¢e *I—I and not Fin-invariant
when ¢ e I. Finally, observe that v(A4) is *-balanced for each 1€ */.

PROPOSITION 4.8. Let I be an infinite set, let E = K" and let A< E satisfy Prop-
erty 1. If iel, then v,(4) = p(0). ‘

Proof. For i el, let z € v,(4) and let § € K such that 0<6. By Condition 3 of
Property 1, there exists x e 4 for which 7;(x)<8. Hence *m,(*x)<§ which implies
|z| <& since |z| < *m,(*x); therefore, z € u(0) since §>0 was arbitrary. Consequently
vi(A) = p(0). _

Conversely, if z e p(0) then |z| <*m;(*x) for each x & 4 since 7,(x)>0 for each
x € A. Hence z € v,(4) by Definition 4.7. Thus v, (4) = u(0). &

ProposSITION 4.9. Let I be an infinite set, let E = K* and let A<E satisfy
Property 1. If ve *I—1I then v(A)=p(0) and v(4) is Fin-invariant, i.e., Fin(v(4))
= v(4). ~ ‘

Proof. Let ¢ *I—1. Condition 5 of Definition 4.4 implies there exists x, & 4
such that m,(*x,) € u(0). So Aev(4) implies |A|<m(*x,), which implies A & u(0).
Hence v(4)cu(0). Also v(4)cFin(v(4)) since v(d) is x-balanced (Prop-
osition 1.3). ’

Let Ae Fin(v,(4)) and let x € 4 which implies 0<m(*x).

Assume 7,(*x) € u(0); therefore,

(4.10) m(*x) 4 € v (A)

by Definition ’1.1. By Condition 2 of Property 1, there exists ze.d such that
n(2)<(my(x))* for each iel which implies m,(*z)<(m,(*x))* for each x e *I. In
particular, m,(*z)<(m,(*x))?. From (4.10) we infer
|m(*x) Al < (*2) (Ttt("‘x))2
which implies
A< (m(5x)) " (m () = m,(*x) .

Therefore, if x e 4 for which =,(*x) € 4(0), then |A| <m(*x).
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If x e A such that m(*x) ¢ u(0) then there exists & e K such that 0<§ < (*x)

which implies
[ <7, (*x0) <O <, (*x)

since xp € 4 for which m,(*x,) € u(0).

In either case, x € 4 implies |A|<m,(*x) which implies ie v,(4). Consequently
Fin(v(4)) = v,(4) since 1 e Fin(v,(4)) was arbitrary. B

It can be shown that if 4 satisfies Property | then for any ¢ € *I there exists
A, € *K for which 0<2, and wev(A4) for |u|<A,. This fact is a consequence of
{*x| x e A} being an external subset of some -finite subset of *A.

PROPOSITION 4.11, Let I be an infinite set and let E = K'. For AcE satisfying
Property 1, let § be the filter on E generated by &(A). If z € *E then z & w(®) if and
only if n(z) € v(d) for each 1e *I.

Proof. If ze *E then z e *[x] for each x & A if and only if |z,(2)| <=, (*x) for
each 1 e*] and each xe 4.

PROPOSITION 4.12. Let I be an infinite set and let E = K*. For AcE satisfying
Property 1, let § be the filter on E generated by E(A). If ze*E then z e Fin(u(®)
if and only if’ m(z) € Fin(v(A)) for each 1e*L.

Proof. If ze *E, then z e Fin(ﬂ(?y)) if and only if 1z e u(§) for each A e p(0)
if and -only if Am(2) = m(Az) ev,(4) for each Aepu(0) and each te*I (Prop-
osition 4.11). Consequently z e Fin(u(%)) if and only if m(z) e Fin(v,(4)) for each
te*l B

Proposition 4.12 was predictable; however, the cartesian product of the external
family {Fin(v(4))| t€*I}, where AcE satisfies Property 1, contains too many
external *K-valued functions on *I. The following proposition offers a deeper
insight into the nature of the finite points generated by &(A).

PrOPOSITION 4.13. Let 1 be an infinite set and let E = K'. For AcE satisfying
Property 1, let § be the filter on E generated by &(A). If z € *E then z e Fin(u(F))
if and only if there exists a finite set Se A(I) such that *1,(2) € Fin(v(A)) for ie S
and n(z) € v(A4) for te*I[—S.

Proof. Let ze*E. If there exists Se4(J) such that *u(z) e Fin(v(4)) for
ie S and n(2) € v(A) for ¢ & *I— S then Proposition 4.12 implies z € Fin (u(®) since
v,(4) is x-balanced for each : e *I (see Proposition 1.3).

Conversely, assume ze Fin(u (%)) which implies 7(2) & Fin(v,(A)) for each
t&*I by Proposition 4.12. Hence n,(z) € Fin(u(0)) for each ¢ & *I since v,(4) =u(0)
for each 1 ™I (Propositions 4.8 and 4.9). Therefore, %(w,(2)) € K exists for each
te*

Define y € E as follows: m(y) = °(*n(2)) for each iel -

Let x & A. There exists n e N for which z € *(n[x]) = *[nx] by Proposition 2.1.
So,

(7D <7, (*(nx)) = nm,(*x) for each te*I
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4 which implies .
[1(2)| < *(nm (%)) <*((n+ Dmy(x))  for each iel.

Thus

)] = (@) <@+ Drx) for each iel.

Consequently s() is finite, i.e., s(») € 4(I) by Condition 4 of Property | since x € 4
was arbitrary. . .

We infer, from Proposition 4.8, that *m(z) & u(0) = v(4) fo'r iel—s(y) since
0 = my(y) = °(*n,(2)) for ieI—s(y). Also Proposition 4.9 implies

n(2) € Fin(v,(4)) = v(4)

for 1 e *I—I. Therefore if we let S= s(y) then Sed(l), *ny(z)e Fin(v,(4)) for te §
and m(2) e v(A) for 1&*[—S since *[—S = (¥[-T) v ([-5). W

PROPOSITION 4.14. Let I be an infinite set, let E = K* and let Ey = K©. For
A E satisfying Property 1 let § be the filter on E generated by 8(A). If z & Fin(r(¥)
then there exists x € E, such that z—*x e u(%).

Proof. Let zeFin(u(g)); therefore, there exists a finite set S'e A(J) such
that *,(z) € Fin(v,(4)) for ie S and n(2) & v,(4) for s € *I— S by Proposition 4.13.
Now Proposition 4.8 implies Fin(v,(4)) = Fin(u(0)) for ie §; hence, °(*m,(2))
exists for ie S. ‘ i

Define x e E, as follows: m,(x) = °(*n,(z)) for ie S and m,(x) = 0 for /e [—S§.
Consequently 7,(*x) = °(n(2)) for te*S = § and n(*x) = 0 for t&*/-S.

Proposition 4.8 implies o

n(z—*x) = n(2)—m,(*2) € u(0) = v(4) for 1eS.
Also for te *I—S. we have
ﬂ:z(z—*x) = Tc;(z)_nl(*)_;) = nz(z) € VL(A) .

Therefore n,(z—*x) e v(4) for each ie*I which implies z—*xe u(§) by Prop-
osition 4.11. H :

Let A< E satisfy Property 1. We now prove the nonstandard hulls of (E,, 0),
where 6 is the linear topology induced on E, by 4, are invariant. The basic theory
of nonstandard hulls of locally convex spaces is developed in [2]; a few definitions
and details will be reproduced here for convenience. Although the following discus-
sion is valid for any Hausdorff linear space, we will confine our attentions to (£, 0).

The monad of the filter #,(0) of 0-neighborhoods of 0 in £, is denoted by uy(0).
An element p of *E, is called 0-near-standard if there exists x ¢ E, such that
p—*x € py(0), p is called 8-pre-near standard if for each V & ,(0) there exists x & Ey
for which p e *x+*V and p is called 0-finite if p & Fin(uy(0)). The sets of 0-near-
standard and @-pre-near-standard points of *E, are symbolized by nsy(*E£,) and
pnsy(*E,) respectively. These subsets of *E, are related by

(4.15) 1e(0) =n84(*Ep) = pnsy(*Ep) = Fin (No(o)) .
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The collection {*V n Fin(uy(0))] Ve n(0))} is a filter base for a locally convex
linear topology & on Fin(u(0)) under which pns,(*E,) and 1y(0) are closed sets.
The nonstandard hull of (Ey, 0) with respect to the enlargement *B;. is the Hausdorff
quotient space

(4.16) (B, 0) = (Fin(1(0)), 0)/p24(0) -

Let ¢: Fin(uy(0))—~ £, be the natural quotient map. The map taking x to @(*x)
is a topological vector space isomorphism of (£, 0) into (E,, 0).

The nonstandard hull (Ey,8) of (Ey, 0) contains the completion of (E,, 0)
as the image under ¢ of the set pnsy(*£,). When the nonstandard hull (B, 0) is
equal to the image of pnsy(*E,) under o, we say that the nonstandeard hulls of (E,, 0)
are invariant.,

THEOREM 4.17. Let I be an infinite set, let E = K* and let By = K®. If A<E
satisfies Property | then the nonstandard hulls of (Ey, 0), where 0 is the linear topology
induced on E, by A, are invariant.

Proof. If § is the subadditive filter on E generated by A4 then ¥, the trace
of § on E,, is the filter of 0-neighborhoods of 0 in E, which implies

15(0) = *Ey n pu (%)
and
Fin(pe(0)) = *E, n Fin(u())
since *E, is Fin-invariant,

Let z e Fin(u(0)). There exists xe E, for which z—*xeu(®) by Prop-
osition 4.14. Hence z—*x & *E, implies z—*x & ,(0). Therefore

nsy(*Eg) = Fin(11,(0))

which implies the nonstandard hulls of (E,, §) are invariant by (4.18), Corollary
2.3 and Lemma 1(iii) of [2]. M

Observe that in the proof of Theorem 4.17 it is shown

(4.18) nsg(*Ey) = pnse(*E,) ;

consequently, (£, 0) is complete ([6], Theorem 3.14.1).

5. Property 1 and uncountable index sets, We now show that if the index set [ is
uncountable then (£, 0), where 0 is a linear topology induced on E, by some
Property 1 subset of £, is not metrizable and is not a Schwartz space. Thus (£, 0),
for I uncountable, does not satisfy the sufficient conditions of Theorem 1 and The-
orem 4 in [2]. The following proposition is the corner stone of this section.

ProposrrioN 8.1. Let I be an uncountable set, let E = K* and let E, = K.
If A< E satisfies Property 1, then Be Ey is 0-bounded, where 0 Is the linear topology
induced on Ey by A, if and only if B<[y] for some y & A(Ey).


Artur


62 A.D. Grainger

Proof. Let B<E, and assume Bc[y] for some y € A(E,). Now y € W(E,)
implies 5() is finite and 0 <m,(y) for each i € s(y). Therefore, if x & A, then B<f[x],
where e N such that i

max {my(y)| i€ s(3)}<pmin{m ()] ies()}

Comnsequently B is #-bounded.
Conversely, assume that B is 8-bounded. Let

s(B) = {ieI| n(z) # 0 for some ze B}

and define y & E as follows: 7,(y) = 0 for i ¢ s(B) and n,(y) = sup|n,(z)| for i es(B).
zeB

The function y is well defined since B is 0-bounded. In fact, if x € A, then there
exists n e N such that |n,(2)|<nn(x) for each iel and each ze B; therefore,
ny)<nn,x) for each i e I. From Condition 4 of Property 1 we infer s(y) is finite.
Furthermore, y e A(E,) and B<=[y] by definition of y. B

PROPOSITION 5.2. Let I be an uncountable set, let E = K* and let E, = K@,
If A< E satisfies Property 1 then (Ey, 0) is not metrizable, where 0 is the linear topology
induced on Ey by A. .

Proof. Let S be a countable subset of J and consider ¥ = {{e;}| i € S} which
is a sequence of #-bounded subsets of E,. If B E, is #-bounded .then sp(B), the
linear subspace of E, generated by B, is finite dimensional by Proposition 5.1;
therefore, (J # is not a subset of sp(B) since () ¥ is an infinite set of linearly inde-
pendent elements. Consequently, (Ey, 6) does unot satisfy Mackey’s countability
condition ([3], Chapter 2, Section 7, Proposition 3) which implies (E,, 6) is not
metrizable. ®

Before proving (E,, 0) is not a Schwartz space, we need a technical lemma.
Recall that e is the function on I which has a constant value of 1.

Lemma 5.3. Let I be an uncountable set,let E = K” and let E, = K. If y e W(E),
then there exists Ay>0 such that .

[¥] N By &4 [e] +[p]
Proof. For ne N, let

for any pe U(E,) .

S, ={iel] n"l<n(»)}.

©0
Since I is uncountable and y e W(E) implies £ = (J S,, there exists me N for
. n=1
which S, is infinite. Let A, = m™*.
If pe W(E,), then s(p) is finite which implies there exists k € S,, such that
k ¢ s(p). Therefore, m,(y)e, e [y] N E, and

Aolm(e) +Im(p)] = m™t <m(y)

which implies m (y)e, ¢ Aole]+[p]. M
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PROPOSITION 5.4 Let I be an uncountable set, let E = K and let E, = KD,
If AcE satisfies .P;foperty 1 then (Ey, 0) is not a Schwartz space, where 0 is the Iinear
topology induced on E, by A.

Proof. By Proposition 5.1, it is sufficient to show that for x, ¥ € A there exists
Ay>0 such that

Y] n By dolx]+1q]

(see [3], Proposition 4(ii), p. 276).
. Let x,yeA. Define y, e A(E) as follows: m,(y,) = (m:(x))"*m(y) for each
iel By Lemma 5.3, there exists 1,>0 such that [¥o]  Eq£Agle] +[p] for any
p € W(Ey).
. Let g e U(E,). Define pe E as follows: n(p) = (mi(x))"1m(q) for each ie I
Hence peN(E,) which implies there exists z e [¥ol " E, and keI such that

do + D) <|my(2)] ; .

for any g & W(E,)

therefore,
(5.5) Ao M%) + (@) < [ (xX) ()]

since me(x)m(p) = my(g). .
If we define zyeE as follows: n(z;) = m(x)m(z) for each i €l, then
2 € [y] N E,. Indeed, s(zp) = s(z) and

()| <mi(yo) = (m(x)) " mfy) for ies(z)
implies

7o) = [rR)m@I<m(y) for ies(z).

However, z, ¢ 25[x]+[q] by (5.5). Consequently

1N Eo#Aolx]+[q]  for any ge A(Ey) . W

6. Examples. In this section, it is shown that Property 1 is niot as restrictive as
it appears. Indeed, if the index set 7 is uncountable and admits a first countable,
compact Hausdorff topology, then there is a plethora of sets of positive functions
satisfying Property 1. However, before giving a general description of such sets,
it is necessary to have a few facts about first countable, compact Hausdorff topologies
which we state without proof. ‘

PrOPOSUTION 6.1, Let I be an infinite set and let © be a first countable, compact
Hausdor]f topology on I. If ie I and if V is a <-closed neighborhood of i for which
V' s I then there exists a ©-continuous function x mapping I into the closed interval
[0, 1] such that x(i) = 0, x(j)>0 for je I-{i} and x(j) = 1 for je I-V.

PrOPOSITION 6.2. Let I be an infinite set. If © is a first countable, compact Haus-
dorff topology on I then there exist i€ I, {i,};= <I and a countable infinite collection
(V3 of t-closed sets such that {V.}n=1 is a basis for the filter of =-neighborhoods
of I, Vyrc V,, where V, is the t-interior of V,,, and i, & IQ/,,— Vit1Jor eachne N,
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PROPOSITION 6.3. Let I be an infinite set and let © be a first countable, compact
Hausdorff topology on I. Let i€ I and let {V,};=, be a cauntoab[e filter basis for the
t-neighborhoods of i such that V, is t-closed and V,. <V, for each ne N,. If
{i}se, <1 such that i, e V.—V,., for each ne N.,., then there exists « T-continuous
Function x: I=[0, 1] for which x(j) = 0 for je F = {i,}s%, v {i} and 0<x(j) for
jel-F.

PROPOSITION 6.4. Let I be an infinite set and let ¢ be a first countable, compact
Hausdor[f topology on I. Let y: I—[0, oo). If i € I and {i,}o ;=1 for which i ¢ {i,}nx1,
i,—i with respect to v, 0<y(i,) for ne N, and y(i,)~0 then there exist an infinite
subsequence {j}in, of {i,}i=, and a t-continuous function x: I-[0, 1] such that
x(@) =0, x(j)>0 for jeI-{i} and x(j) = y() for eagh keN,.

Satisfying the first three conditions of Property 1 (Definition 4.4) is not difficult.
However, fulfilling Condition 4 and especially condition 5 requires (K') to have an
abundance-of a certain type of functions which we now define (recall that 20(E)
is the set of all positive valued functions on I, where E = K').

DEFINITION 6.5. Let I be an infinite set, let £ = K” and let © be a topology
on I. For X, a non empty subset of I, we say that x € E is an X-funnel, with respect
to 7, if and only if x € A (E) and the function ¥ (x) € E, defined by: 7 (¥ (x)) = 7,(x)
for ie I— X and n(¥ (x)) = 0 for i € X, is t-continuous. If X = {i}, for i€ I, then
an X-funnel is called an i-funnel (or a funnel at i).

The szt of all functions in E that are S-funnels, with respect ro t, for some non
empty finite set S<l is denoted by [4(1); 7].

Remark. The existence of an X-funnel depends on the nature of X and the
topology 7 on I. .

For x, y € A(E), where E = K” for some infinite set 7, we will let x Ay denote
the function defined by:

n(xAY) = min{n(x), 7,(y)} for each iel.

Similarly, for x e A(E) let x* denote the function defined by;
[ﬁi(xz) = (ni(x))z
THEOREM 6.6. Let I be an infinite set, let E = K' and let t be a first countable,
compact Hausdorff topology on I. If A<(E) for which x Ay, x*, ¥x & A whenever

- x,y€A and [A(I); tl=A then A satisfies Property 1. .
Proof. First, 4 # & by Proposition 6.1 and Conditions 1 and2 of Property 1 are
satisfied by hypothesis. Also Condition 3 can be fulfilled by taking an i-funnel with

a sufficiently small value at i (see Proposition 6.1).
Let ze E and define z, € E by: nz,) = |n,(2)| for each ie Il Hence

for each iel.

8(z) = s(zo)

(recall that for y € E, s(y) =1 for which i s(y) if and only if 7,(y) % 0). Assume
s(z,) is infinite. By the hypothesis for v, there exist i e I and an infinite sequence
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{f}ax 1 =5(z,) of distinct points for which i ¢ {i.}s=, and i,~i, with respect to <.
It can be assumed that 7;,(2p)<1 for each ne N, and 7;,(20)—0 as n— co. From
Proposition 6.4 we infer there exist a funnel x at [ and an infinite subsequence
{/i}iy of {i,},2, such that ni(x)<1 for je I and m;(x) = 7;(20) for each ke N, .

Consider [x?] and A>0. There exists m e N, for which m; (x)<A™! for m<k
since 7;,(zo)—0. Therefore

(7 (x))2 <A™t T (xX) = A7 m(z0)  for m<k

since n.,(‘x)s.I for jeI implies (m,(x))*<m(x) for je I. So,

Ay (%) = Am;, (0)? <my(z0)  for m<k

which implies z, ¢ A[x*]. Consequently Condition 4 of Property 1 is satisfied.

Now, consider *I. Since 7 is compact we have that each point of *I is 7-near-
standard ([7], Theorem 4.1.13), i.e., for ¢ € * there exists i € I for which ;e (D),
where (1() is the monad of the filter of 7-neighborhoods of 7. Let ¢ € */—J and let
iel such that ¢e u(i). By Proposition 6.1, there exists a 7-continuous function
x: 7-[0, 1] that takes the value 0 only at i. Hence

*x [uD]=u(0) N ¥0, 1]
which implies
0<*x(1) = m,(*x) € u(0)
(see [7], Theorem 4.2.7).
We fulfill Condition 5 of Property 1 by defining x, ¢ [A( ); ] as follows:
my(xo) = mi(x) for je I—{i} and m,(x,) = 1. B
For the remainder of this section, we will assume that 7 is an uncéuntable infinite
set and 7 is a first countable, compact Hausdorff topology on I with no isolated points.
Also, E and E, will retain their usual meaning, i.e., £ = K* and Ey, = KO,
EXAMPLE |. Let 4 = (E), the set of all positive functions on I. Clearly A(E)
fulfills the hypothesis of Theorem 6.6, i.e., 9(£) satisfies Property 1. Also it is well
known that since  is uncountable, the linear topology induced on E, by A(E) is
strictly weaker than the strongest possible locally convex linear topology on E,.
Since & (A) generates the “box” topology on E (see [4], problem ¥, p. 107), we shall
denote its induced topology on E, by 6"
ExsampLE2. Let 4 = [4([); =]; therefore, 4 satisfies Property 1 by Theorem 6.6.
We shall see, in subsequent examples, that the linear topology induced on E, by
[4(J); <] is strictly weaker than 0" of Example 1. We symbolize this topology by 6.

ExaMPLE 3. By Proposition 6.2, there exists a collection

[i: {iu}:o=1: {Vn}:;l
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such that ie J, {i,};z, <] and {V,};=, is a basias for the filter of -t-neighborhoocols
of i for which ¥, is t-closed, V., < Io/,, and i, e V,—V,,, for each ne N, where V,
is the z-interior of V,. Let )
X = {iyy=g v {i}
and define 4 [X]<UA(E) as follows: x e A[X] if and only if x.is a Q-funnel with
respect to 7, where @<= X U § for some finite subset S of L. It is e'asﬂy shown that
A[X] fulfills the hypothesis of Theorem 6.6; therefore, AlX ]‘satlsﬁes Property 1
Proposition 6.3 implies the existence of a 7-continuous functlo.n x: I->[Q, 1] lhcﬂ':
assumes the value of 0 only on the set X. Therefore the function Xo, defined by:
mi(xo) = my(x) for je I—X, mxo) = 1 and 7, (x;) = 1 forn €N, is an X-funnel
ich implies x, € A(X]. _

Whlcilf ;zn:f an S -?unne(l f]or some finite subset S of I then there exists j, € X for v.vluch
Jjo ¢ 8. Thus by choosing a sufficient 7-neighborhood of jq, \ye can produce a.n mde):
Jj & I'for which 7;(x) <m(y). We therefore conclude that the linear topology 0 induced
on E, by A[X] is strictly stronger than 0/ of Example 2. . .

On the other hand, there exists another collection [k, {kybrm1s {Utnzil
satisfying the conclusion of Proposition 6.2 for which k # i (I is uncountable).
Consequently if F = {k,}%%, U {k} then each F-funnel is not an element of A [I'Y ]
and each X-funnel is not an element of 4 [F] since U, n X and V, n F are finite
subsets of I for some ne N, .Thus we infer, (1)if 0, is the linear topo]ogybinduced on E,
by A [F] then 6 and 0, are not compatible, (2) 0 is strictly weaker than 0” of Example 1.

EXAMPLE 4. In this example, it is shown that there exists a sequence {4, }n=;
of sets satisfying Property 1 for which 0, is strictly weaker than 0,,, where 0,
is the linear topology induced on E, by A4,, for meN,. N

Let [i, {in}ims, {Vuhozi] satisfy the conclusion of Proposition 6.2 (see
Example 3). Define the collection

{{i(m,n)}::c;ll me N+}

of subsequences of {i,}r=; inductively as follows: let i(;,y = i, for ne N, and for
: o s

meNy, leti 1, = iman for n€ Ny, Observe that {itm+1,mIn=1 1s a subsequence

Of {im,my}ne1 for which

: . ©
(67) {’(m,n)}'?‘: 1= {I(m + 1,")}"': 1

is an infinite subset of I since the elements of {i,};=, are distinct.
For me N, let
Xy = {i(mm)}:f;t Y {l}

and consider 4 [X,,] cA(E) defined as follows: x € 4[X,,] if and only if xis a Q-fu-
nnel with respect to 7, where Q< X, u S for some finite set S=/. As shown in
Example 3, each A[X,] satisfies Property 1 for meN,. Also X,,., <X, i{nplics
Al X i1l AlX,] for each meN,. However, the X, -funnels, which exist by
Proposition 6.3, are not elements of A[X,, ] for each m e N, since X,,—~ X, +1
is an infinite subset of I by (6.7) for me N, .

icm

Finite points of filters in infinite dimensional vector spaces 67

Consequently, we have that ,,,, is strictly weaker than 0, for each me N, ,
where 0, is the linear topology induced on Ey by A[X,,]. Also note that 8 is strictly
weaker than 0, and 6, is strictly weaker than 8 for each me N, , where 6° and §°
are the linear topologies of Examples 1 and 2 respectively.

Remark. If 7 is a metrizable, compact Hausdorff topology on I then it is possible
to use the metric ¢ on 7 to generate a non negative, t-continuous function on 7 that
vanishes only on F when Fis a proper t-closed subset of I ; €.g, let x(1) = o(i, F),
the distance from 7 to F, for each ie ], Therefore, it is possible to obtain funnels
on some pretty bizarre sets (for example, let I = [0, 1] and consider the Cantor set).
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