icm

An application of nonstandard
analysis to category theory

by

Harry Gonshor (New Brunswick, N. J.)

Abstract. In this paper we introduce a novel application of category theory, namely, to the
theory of triples in category theory. In particular, we show that the category of compact Hausdorff
space is tripleable over sets. The technique makes use of second enlargements.

1. Introduction. Nonstandard analysis has had applications to many different
areas of mathematics. In this paper, we introduce a novel application, namely, to
the theory of triples in category theory. Specifically, we shall prove a main result
of [5]. Namely; that the category of compact Hausdorff spaces is tripleable over
sets. )

The methods of nonstandard analysis are especially suitable for the study of
the category of compact Hausdorff spaces. For example, instead of dealing with
ultrafilters on the set of ultrafilters, we deal with points in a second enlargement.
Actually, it was especially the discovery of Theorem 5 that clinched the view that
nonstandard analysis is the “right” approach. This was further vindicated by the
proof of Lemma 5 in the main theorem.

A large part of this paper can be read with a minimum of familiarity of category
theory. In fact, the main result which gives a strange characterization of compact
Hausdorff spaces in terms of second enlargements will be stated in a form which
makes no mention of category theory. This is done in section 5 which can be read
independently of the rest of the paper. Hopefully the result is of some interest in
this form although the main interest lics in its connection with [5].

The basic refercnces in category theory are [17 where the basic results were first
proved, and [2], an expository survey. Incidentally, the lucid style of the author and
the nature of the material makes [2] surprisingly easy to read in spite of its being
in a language foreign to many readers. [2] contains excellent examples for motivating
this subject which are difficult to find elsewhere.

As stated before, in order to read this paper it is not necessary to be familiar
with [1] or [2] in advance, in fact, a nonstandard analyst who is interested can use
the example studied in this paper as motivation for reading [1] or [2] afterwards.
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2. The Stone-Cech compactification. It is well-known that to every set S there
corresponds a compact Hausdorff space 5 containing S with the property that for
every compact Hausdorff space X, every map from S into X can be uniquely extended
to a continuous map from fS into X. In fact 5S is the space of ultrafilters on S and §
is regarded as a subset of §S by identifying each point p of S with the unique ultra-
filter containing (p). In the langnage of category theory one says that the functor f
from sets to compact Hausdorff spaces is left adjoint to the forgetful functor from
compact Hausdorff spaces to sets.

Here, we study the adjoint situation by nonstandard methods. Consider an
enlargement of a structure containing .S. Then it is classical by now that AS can be
obtained as a quotient space of S*. In fact for xe §* let e(x) = {4=S: x e 4*}.
Then e(x) is an ultrafilter and e is a many-one epic map. When several sets are being
simultaneously considered we shall use the notation °S. If sets of the form 4* are
taken as a base for a topology on S* then the quotient topology with respect to e is
the usual topology on BS. A direct proof that .§* is compact using transfer and
a suitable concurrent relation is also well-known. Here we give a proof using second
enlargements. First, we prove a lemma of independent interest.

LemMA. Let S** be an enlargement of S*. Then the monad m(x) of a point x e S*
is given as: {y: VAcS(xe A*—y e A**)}.

Remark. This says that x and y correspond to the same ultrafilter on . Note
that the implication may be replaced by an, equivalence.

Proof. This is obvious by definition of monad.

THEOREM 1. S* is compact.

The proof is now trivial. Since S** is an enlargement of S every point y e S**
corresponds to an ultrafilter on S. If x € §* corresponds to the same ultrafilter then
¥y € m(x). Thus every point is nearstandard. '

Since BS is a quotient of S*, BS is also compact.

The same lemma may also be used to show that S is Hausdorff. $* is, of course,
not Hausdorff. In fact, if e(x) = e(y) then x and y have the same monads.

e extends to an epic map from S** to (BS)*. Thenif x € §*, e[m )] = mle()].
(This uses the fact that e(x) = e(y) implies that x and y are contained in the same
open sets.) Now e(x) # e(y) implies by the lemma that m(x) A m(y) = @. Hence
m[e(xj] nmle(y)] = e[m(x)] N e[m(y)] = D. The last statement follows from the
fact m(x) and m(y) are complete inverse images with respect to e.

The possibility of defining AS by nonstandard methods goes back almost to the
beginning of the study of nonstandard analysis (e.g. see [3] and [4]). Here, we are
primarily interested in the rest of the adjoint situation. We show next the convenient
fact that from a nonstandard viewpoint f operates on maps essentially by transfer.

f 7
Let S—>7. Then f induces a map BS—BT in the following manner. Let F be an
element of BS. Then Bf(F) = {4: f~1(4) € F}. This is the same as saying that
Bf (F) is generated bythe sets of the form f'(4) with 4 & F, Equivalently, this defi-
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nition can be expressed topologically by saying that Bf is the unique continuous
extension of the composition S—-*T-—;ﬁT where i is the usual embedding.
THEOREM 2. The Sollowing diagram is commutative

s* 3 g

I Vbr

T* 5 BT
er

Proof. Let xeS*, Suppose A4 e (Bf)eg(x). Then YA e eq(x), hence
xe [F AT Now Vx[x f "N A) s (x) e A] is obviously ture, so by transfer we
obtain: Vx[xe [ Y(A)]*—f *(x) € A*]. Therefore 4 e erf*(x). Since an ultrafilter
cannot properly contain another ultrafilter this completes the proof.

The above result shows that Bf can be defined in a nonstandard way; namely,
as the quotient map induced from J*. We next show that the functorial properties
of B can be obtained directly by nonstandard means (i-e. without using properties
of ultrafilters).

We say that x, y € $* are indiscernible written x~,if (V4 e $)[x e A*eorye 4¥].
Then ¢ can be regarded as the map which takes each element of §* into its equivalence
class under ~, and X as the quotient set. It is sometimes convenient to extend this
relation to elements of different enlargements, ¢.g. the lemma says that the monad.
of a point p in §* is the set of all points equivalent to p. (as enlargements of ).

Consider a second enlargement of a structure containing a small category of
sets. (Very few sets are really necessary at one time. e, g. to state the functorial
properties of transfer precisely three sets will suffice.) It is easy to see by transfer

that the operator which takes each set § into its enlargement S* and the map Si;T
. . . AT
to its extension S*=T* is a functor,

I*
THEOREM 3. S*—T™* is contimious.

Proof. We use second enlargements. First, we show that f* preserves the equiv-
alence relation defined above. (Although this follows from Theorem 2 we prefer
to avoid dealing with ultrafilters). Suppose x~y and S*(x) € B* where B=T. Then
xe(f7THBY) = [f~1(B)]*. Hence ye [f'B)* = (f *)~'(B*). Thus f*(y) € B*.
Since this is valid for all B we obtain SHX) ~fH(y).

We now apply this to the second enlargement S**£>T**. If xe.S*, then
m) = (yeS*: yox) and similarly if xeT* then m(x) = (y e T**: Y~x),
Hence if /*(x,) = x,, by the above result J**[m(x)]em(x,). Therefore £* is con-
tinuous,

From the fact that f* preserves the equivalence relation it follows that * in-
duces a continuous map from f£S into AT and that f is a functor.

Now let C be a compact Hausdorff space and C* an enlargement of C regarded
as a set.

THEOREM 4. The standard point map st from C* onio C is continuous.
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Note. The topology on C* is independent of the topology on C although the
standard point map, of course, depends on the latter topology.

Proof. Suppose st(x)e U where U is open in C. C_P:)OSC V open so that
st(x)e Ve VU, Since st(x)eV, x& V*; V* If ye V then st‘( y? € Ve U.
Therefore {y: y e V*} is an open set containing x which is mapped into U

Since x~p->st(x) = st(y), st induces a continuous map from pC lomo C.
From the point of view of ultrafilters it is immediate that this is the map which takes
each ultrafilter into the point it converges to.

We can now easily show that BS has the universal property. Let'C be a compact
Hausdorff space and let f be a map from S into C. Since S is dense in BS there is at
most one continuous extension of finto a map from S into C. On the other hand by
Theorems 3 and 4 st. f is continuous and clearly extends f.

3. The triple associated with B. Having shown that satisfies .the ?equired uni-
versal property, we are ready to study the associated triple. (A trlgle is also called
a standard construction or a monad. For nonstandard analysts it is, of course,
advisable to avoid the latter term for this concept!) We begin with a result which can
be understood without any prior knowledge of the concept of a triple. "I‘his result,
which states how a certain mapping on ultrafilters translates to a mapping on en-
largements, illustrates the advantages of nonstandard methods.

Tet F be an ultrafilter on BS. Then we define an element pFe S as follows:
A€ uFiff (G: 4 e G)e F(uaswill be pointed out later is an ingredient of the triple.)
We also define a map g’ from S** into S* as follows: Let x & S** and choose
y € S* such that x~y. Then u'x = y. (The existence of a choice for y causes a certain
inconvenience. e. g. We do not make ' into a functor. However, this is not a serious
problem. We now show that ' is essentially the same as p. Precisely we have

THEOREM 5.

s= % s 5 sy
w wy

commutes.
SE AN '

(2]

Proof. Let xe §** and 4 e egu'x. Then p'x e A*. Hence x € A** since p'x is
indiscernible with x. Now let H be the set of all ultrafilters containing 4. Then
e, A*¥ = H. By transfer e.d** = H* Hence enxe H* Therefore H e ¢pseqx.
Finally, by definition of , 4 € peggeg.x. Since 4 was arbitrary in e;u’ x this completes
the proof. )

The lack of a one-one correspondence between S* and S is a slight nuisance
which is accentuated in a second enlargement. We cannot simply say that p' = g
although with abusé of terminology this is essentially what Theorem 5 says.

There is one point of caution required in studying second enlargements. A set S as
a subset of S* gets enlarged to an elementary extension *S of S. Although *$ is
elementarily equivalent to S* they may not even have the same cardinality. The
embedding in S** is necessarily different, in fact, S* N *S = S. (As an illustrative
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example, when one takes an ultrapower of an ‘ultrapower of the integers with
respect to a nonprincipal ultrafilter on a countable set (these are not enlargements)
then $** is a cofinal extension of $* but an end extension of *S.)

Nevertheless it is still possible to get by with an abuse of terminology e.g. 2 map
from S** to *$ may be regarded as a map from S** to §* if the image in *S is
replaced by an indescirnable element in S*. This is possible since what really matters
is the image under ~.

Although Theorem 5 can be understood without the concept of a triple the
latter is meeded to appreciate the significance of x and hence of u'. A triple on
a category C consists of three ingredients. A functor Ffrom C into C, a natural trans-
formation # from the identity into F and a natural transformation u from F2? into F,
satisfying the axioms - Fy = y-nF = 1 and W Fu = p- pF. A pair of adjoint functors
gives rise to a triple. For the details see [1] or [2]. Here it will suffice to say what the
ingredients become in our special case. Fis f regarded as a functor from sets to sets
or more precisely f followed by the forgetful functor. #s is the inclusion S—pBS. ps is
the map BBS—pS defined earlier. u can also be defined as the unique continuous
extension of the identity map BS—SS to BBS—BS.

It is now possible to prove a theorem which bears the same relationship to
Theorem 5 that Theorem 3 bears to Theorem 2, i.e., we can get u directly by non-
standard methods.

With abuse of terminology FS = S* and 45 is the inclusion S—»S*. Tt is also
easy to sec that i’ is continuous. In fact (&)~ 14* = A**, This fact together with the
continuity of the horizontal maps in the diagram for Theorem 5 leads to an alterna-
tive proof of Theorem 5 (using only the continuity of u rather than its explicit
definition). The routine details are left to the reader. .

Tt is also possible to show directly by nonstandard means that F, #, and u satisfy
the axioms for a triple without using the fact that they arise out of a pair of adjoint
functors. Since one of the axioms requires a third enlargement compounding the
nuisance referred to earlier and since the details are tedious though straightforward
and finally since this is outside our main development anyway we leave the proof to
the interested reader. C

4. The Eilenberg-Moorxe category associated with B. It was shown in [1] that
a triple gives rise to a pair of udjoint functors. In fact given a category E with a triple

¢
{7, 1, 1} we define a new category D as follows: The objects are maps FA—+A such

. 3 o o . f
that (1) &y = | and (2)¢-F¢ == & p. The morphisms are maps A4—-B such that

J¢ = EFf. Then a pair of adjoint functors can be defined on € and D which induces

the given triple. A category which arises in such a manner from the category of sets
is said to be tripleable over sets.

The category D seems to be highly contrived at first. This is the point where [2],
especially Chapter 4, is highly recommended for the examples which are a help in
appreciating the significance of D. We include an example here for motivation.,
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The category of universal algebras of a given type is a canonical example:
A universal algebra gives rise to a triple as follows. Given a set S, FS is the set of
words generated by S, %S is the inclusion of S into FS, and uS corresponds to the
simplification of a word on words on S to a word on S. For example for abelian
groups if § = {x,y} then FS[{mx+ny}: m,neZ] and for a typical element x

of FES e.g. 5(2x+3y)+4(3x+5y), ux = 22x+35y. A map FS-€->S is essentially an
algebra structure on S. Condition (1) says that a trivial word is mapped into itself.
Condition (2) is a compatibility condition which says that the two following ways
of evaluating a word on a word give the same answer. First simplify and then evaluate,
evaluate the inside words first ad then evaluate the outside word on the answers
obtained. The morphisms correspond to homomorphisms.

This heuristically illustrates the fact that the category D arising from the triple
is precisely the given category. Thus the triple can be regarded as being a concise
way of giving the operations and relations that define a type of an algebra and an

object FSiS as a concise way of giving an algebra of the given type. ({ combines all
the operations at once. Note also that the relations are built in e.g. FS is different
for groups and for abelian groups.

The main result of [5] is that the category of compact Hausdorff spaces also arises
as such a category D. This is a precise way of expressing a heuristic fact familiar from
general topology, namely that the category of compact Hausdorff spaces although
apparently topologically defined, behaves very much like a category of algebras.

By Theorems 2 and 5 the category D can be expressed in an especially succinct

manner. The objects are maps S*E>S which are constant on indiscernibles. (Note
that this is the same as a map fS—S.) (1) says that ¢ is a retraction, i.e. the identity
on 'S. (2) says roughly that if xe S** and yeS* is indiscernible with x then
E(y) = &:&%(x). (The latter statement requires some caution in line with previous
remarks. Strictly speaking £* maps S** into *S, thus &-£*(x) makes no sense. How-
ever, since £ is constant on indiscernibles, & can also be regarded as a map from *$
into S more precisely, in the next section we shall replace £:&*) by &:v-&* where v

maps an element of *S into an indiscernible in S*. The morphisms are maps S—>T'
satisfying f&€ = &-f*.

5. The Main Theorem. We can now state the main result in a form which does
not use concepts in category theory. Let S** be a second enlargement of S. For the
benefit of readers who joined us in this section we recall the definition that x is
indiscernible with y (written x~y) iff (VA4 €S) (x e 4* iff y € 4*). This definition
can be extended to apply to elements of different enlargements, in particular to
elements of S** and S* and to elements of S* and the enlargement *$ of S in §**
(note that S* s *S). We now fix two mappings u and v where y maps each element
in $** to an indiscernible in S* and v maps each element in *S to an indiscernible
in S* the choice of the mappings does not matter. We can now state the main
theorem.
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MAIN THEOREM. Let C**
space: Then the standard part ml;; L;t.s fccoflrijmenéi‘riim?laz{v; fompact Hawdory

(1) x~y—stx = sty, N

(2) xe Costx = x,

() if x& C** then st-u(x) = st-y-st*(x),

Conversely for any set S, any map ¢ from S* atisfyi 1
is the standard point mep of ayuniqlue ];07:12;)5&'1‘ t;!ju‘;z’tolgj;): l:ilfffulfleb(:;: gpm}’er"es

Proof. Since indiscernibles are, in parti i in 1t '
is constant on indiscernibles. Conditio: (rzl)lcitsl]:ii’v(izzll.ﬂ;lg: (ci:(l)lrllctili]t?oszr?; Olpf n'sets it*
feug;l‘ let p 1{; thc. s;mndlard part of x (note that C** is an enlargement of C)) ;inJ::eE ,u(jc is
indiscernible with x then stu(x) = p. Now lef ining
be open so that pe Wa Wy, Silfce Wis slczlgg,aéz(() %31 Sce tW(;OIIl-;::::l:gbp ?:nd iy
sth(W**) = * W. Therefore vst*( W) W*. Now x e W sin'ce is ’thy tr ?m;fer’
part 9f X Hence x e W**, Thus vst*(x) € We V. Since Vis an zﬁbitrare Son
containing p we have that stvst*(x) = p. Hence stp(x) = styst*(x) Y open set

We ;now proceed to the converse. Uniqueness is clear, since it is w'ell known that
a set A is closed iff st(4*) = 4. Thus the topology is uniquely determined b tlz:
mapping. The proof of existence is harder although we know what the topolo st
be (if there is such a topology). We define: A is closed iff (4% = 4 (orz uilem:ft
because of (2), £(4*)<d). First, this is a topology on S, £(p*) =q€(r; e—n )
.Hencc ¢ is closed. ¢(X*)=X. Hence X is closed. Suppose 4 and B /’1—‘ 5
e, {(4*)=A and ¢(B*)<B. Then e closed.

€[4 U BI* = E[4* U B¥] = £(4%) U {(B)*=d U B.

Thus A L B is closed, Now assume 4, is closed for i

, . 3 4, or all «, i.e., £(4¥) =4, for all a.
Tl?en E[(N4,) "].cf‘[ﬂA’:,]c NEU*) = NA4,. Therefore 4, is clgsed. Note that
this argument fails for arbitrary unions (as it should!) since the first inclusion goes

the wrong way. It is immediate that 14 *| = =
oo [{p}*] = £{p} = {p}. Thus we have a Ty to-

Lomma L. E(A*) is closed,
Note. This is the first time we need condition 3.
| Proof. Let xg[cf(A*)]*. We must show that &£(x) e £(4%). Now ¢ maps A*
onto ‘zf(A *) (by definition). Hence by transfer &% maps A** onto *[£(4*)]. Since
gcz*[é;(;t*)]* there cxists r @ 4 such that &*r = x. Then v&*r~x. Hence by (1)
Ve(x) = ¢x. Now by (3) &x = EvE*(¥) = Eu(r). red** impli

Honte ) = éu(r). r implies that u(r) e 4*.

Lemma 2. e(A%) is the closure of A.
] N_otc. Though this is not needed in the sequel. It is mentioned because it is
immediate,

*Pr.oof. Suppose A<B where B is closed. Then é(A*)c:f(B”:) = B. Hence
¢(4%) is the smallest closed set containing A.
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We let m(p) be the monad of p in the topology. We will show eventually that
m(p) = E"1{p}, i.e., ¢ is the standard point map. We first show one direction (the
easier one).

Levmma 3. ¢ Y{P}em(P).

Proof. Let p e U where U is open. Then e(U*)= U’ by the way the topology
is defined. Since U'* is the complement of U* it follows that £(x) € U—x e U*.
Hence ¢ {p}cU* Since U is arbitrary open containing p, & {p}em(p).

LemMMA 4. S is compact.

Proof. Every point x € $* is contained in E71¢(x). Hence x is nearstandard
by Lemma 3, in fact, x € m&(x).

Remark. It is curious that compactness is much easier to prove than Haus-
dorffness in our situation. This is unusual in topology.

LemMa 5. m(P)c&™H{P}.

 Note. It follows immediately from this lemma that monads are disjoint, hence
the space is Hausdorff. Thus this lemma is enough to complete the proof of the
theorem. ) :

Remark. This lemma uses the full force of second enlargements with con-

" dition (3). It is important to note that the proof of this lemma which is the deepest
part of the theorem is notatranslation of a proof found in [5] buta proof discovered
directly by nonstandard methods which takes advantage of the convenient non-
standard characterizations in Theorems 2 and 5.

Proof. Suppose g € m(p). Then for every open set U such that p e U it follows
that g U*. Hence g¢ U*—»p ¢ U, ie., g& U'*—pe U’. This may be stated as fol-

“lows: for any closed set C, g € C*—p e C. Now let g € A* where 4 is standard (not
assumed to be closed). Then & (A4*) is closed by Lemma 1. Also 4 =£(4*). Hence g € 4*
< [£(4%)]*. Therefore p € £(A*). Let 4,, 45, ..., 4, be a finite collection of sets such
that 4%, 43, ..., A¥ containg. Theng & ATn 45 N ... 0 Af = (404, 0o A)*
Hence pe £(A4; N Ay 0o A)* = E(AT N 45 (... 0 A)). Therefore the following
relation in X* is concurrent: R[A, s} where 4 is a subset of S, g € 4%, se 4* and
&(s) = p. Since S** is an enlargement of S* there is an element 7 such that, for
all A=S ge A*—teA** and £(z) = p. Then g~p(r). Hence &g = Eu(t) = &H&*(h)
by (3). Further this equals £v(P) by the above which is P since v is, of course, the
identity on S. Finally £P = P. Hence g € £~ *{P}. This completes the proof of the
lemma and the theorem.

6. Further remarks. The main theorem shows that compact Hausdorff spaces
may be regarded as maps S*—.S satisfying certain axioms. This does not quite give
the main result mentioned in section 4 since the theorem refers to objects only.
However; that is the hardest part. By the way the category D was defined, the mor-
phisms correspond to maps which commute with the standard point map. It is well-
known that these are exactly the continuous maps. Furthermore it is easy to see that
the pair of adjoint functors referred to in the beginning of Section 4 (not defined there
but found in [1] or [2]) are essentially the same as f§ and the forgetful. This is
left to the interested reader.
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T.hese results can be extended to the category of compact Hausdorff algebras
of a given type. For example, instead of the Stone-Cech compactification of a set we
have the Bohr compactification of a discrete group. Indescirnability takes on
complicated form in that case. Essentially, it is necessary to extend ~ to a congruence
relation. The analogue of the main theorem works because the requirement that the
standard point mapping be a homomorphism is equivalent to the requirement that
an algebra be a topological algebra.

In conclusion it appears that the blend of category theory and nonstandard
analysis leads to interesting possibilities and is worth farther exploration.

a more
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