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Dedicated to Professor Karol Borsuk for his 70th birthday

Abstract. A fine shape category (s is defined; The shape category C introduced by Borsuk is
a quotient category of Gy, G and Cj are not isomorphic. It is proved that Cj is isomorphic to the
proper homotopy category of complements of compacta in the Hilbert cube and to a certain full
subcategory of the proper shape category introduced by Ball and Sher.

1. Introduction. The concept of shape for compacta was first introduced by
K. Borsuk [2], T. Chapman [4] defined a weak proper homotopy category of comp-
lements of compacta in the Hilbert cube Q and proved that this category is isomorphic
to Borsuk’s shape category. As D. A. Edwards [6] asserted, it is natural to introduce
a new shape category corresponding to a proper homotopy category of complements
of compacta in Q. D. A. Edwards called it a strong shape category, but this termin-
ology was already used by Borsuk [3] for a different concept, so we call it a fine shape
category.

In this paper, first we shall define a fine shape category after a manner of Borsuk’s
fundamental sequences, and prove the equivalence to the proper homotopy category
of complements of compacta in Q. Next, we shall give another characterization
of this category in terms of the proper shape category introdnced by Ball and
Sher [1].

Throughout the paper all spaces are metrizable and maps are continuous.
AR and ANR mean those for metric spaces.

2. Fine shape category. Let X be a compactum. We denote by & (X) the family
of AR’s M containing X as a subset. Let Ry, (= [0, c0)) be the space of non negative
reals. For compacta X, Y and for Med(X), Ned(Y), a continuous map
F: MxR,—N is said to be a fundamental map from X to Y in M, N if for every
neighborhood ¥ of ¥ in N there exist a neighborhood U of X in M and a number .
to & R, such that

(1.1) F(Ux [ty, )=V -
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We write F: X—Y in M, N. Two fundamental maps F, G: X—Y in M, N are said
to be fine homotopic (notation: F ? G) if there exists a homotopy H: M X R, X [N

such that
(1.2) H(p,0)=F(p), H(p,1)=G(p) for peMxR,,

(1.3) _ for every neighborhood V" of Y in N there exist a neighborhood U of X in M
and a number 7o e R, such that H(Ux [, o) x [)= V.

Note that the relation of the fine homotopy of fundamental maps from X to Y
in M, N is an equivalence relation. We-call the equivalence classes the fine homotopy
classes. The fine homotopy class represented by F is denoted by [F].

Suppose that fundamental maps F: X—Y in M, N and Gi ¥—Z in N, P are
given, where Z is a compactum and P € o/ (Z). A composition G « F of F and @ is
a fundamental map from X to Z in M, P defined by

(1.4) GxF(x,f) = G(F(x,n,7) for (x,)e MxR,.
The identity fundamentalrmap ldy » from X to X in M, M is defined by
(L5 . Idy y(x,)=x for (x,H)eMxR,.

Let M, M'e #(X) and let ¢: M—M' and ¥: M'—M be maps such that
@1X = Y| X = 1y (= theidentity on X). Define @: M'x R, —M’ and ¥: M’ X R —M
by &(x, ) = ¢(x), (x,)e MxR,, and ¥(x,7) = Y(x), (x,) e M xR,. Ob-
viously
(1.6) ®: XX in M,M' and

.7 e o Id

¥ XX | in MM,
and Px¥ ~ Tdy ae -

Let M, M' e o/(X) and N, N’ e #(Y). Fundamental maps F: X—¥ in M,N
and G: X—Y in M', N’ are said to be equivalent (notation: F = G) if there exist
maps ¢: M—>M' and y: N'—N such that ¢|X = 14 and ¥|Y = 1y and

1.8 ~
(1.8) F=yGo,

where @: Mx R,—M'x R, is defined by ®(x, 1) = (¢ (x), 1) for (x, e MxR...
It is easy to see that the relation “=" is an equivalence. The equivalence class is said
to be the f-class. ‘

Obviously we obtain a category % s if we consider the collections consisting of
every compactum as objects and the f-classes as morphisms. We call @ + the fine
shape category.

Let X, Y be compacta and Me .o (X), Neol(Y). We say that X is fine equiv-
alent to Y or simply f-equivalent to Y rel. M » IV if there cxist fundamental maps
F: X—=Yin M, N and G: Y—X in N, M such that

(1.9 G*F?I'dx’M and I~."=|=G?Idy’N.
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If only the first relation in (1.9) holds, then Y is said to be f-dominate X rel. M, N.
By (1.6), (1.7) (or Borsuk [3, Chap. III]) the relations of the f-equivalence and the
J-domination do not depend on the choice of AR’s Meo/(X) and Ne & (Y).
Thus we can say that X is f-equivalent to Y (resp. f-dominates Y) if for every (or
cquivalently some) AR’s Me o (X) and Ne s/ (Y) X is f-equivalent to ¥ (resp.
f-dominates Y) rel. M, N.

By the fine shape Shy(X) of a compactum X we understand the collection
consisting of all compacta ¥ which are f-equivalent to X. If X f-dominates Y,
then we write Sh (X)2Sh(Y).

In the above construction of %, if we replace fundamental maps by funda-
mental sequences and finc homotopies by fundamental homotopies, then the shape
category % in the sense of Borsuk [3], Chap. VII, is obtained. (Exactly, % is a quotient
category of Borsuk’s shape category under a certain equivalence like the relation “=".
Cf. Borsuk [3], p. 55). :

Let X, Y be compacta and M e o/ (X), Nes/(Y). Every fundamental map
Fi X—Yin M, N determines a fundamental sequence fr = {/;, X, ¥}, yas follows
(see for notations Borsuk [3], Chap. VIII).

(1.10) i i F(x,k) for xeMand k=0,1,2,..

That fp = { f,} forms a fundamental sequence follows from the property (1.1) of
a fundamental map F. Conversely, a fundamental sequence f = {f;, X, Y}M_N
defines a fundamental map F: X—Y in M, N such that f and fr are fundamentally
homotopic. Such an F is constructed from f = { /;} by applying repeatedly Borsuk’s
homotopy extension theorem such that for some neighborhood basis {U;: k= 0,1,
2,.}of Xin M

F(x, k) = fi{x) for
Also, if F and G are fundamental maps from X to Y in M, N such that F = G

then fr and f; are fundamentally homotopic by (1.3). Thus we have

LemMA 1. There exists a covariant functor @ from €, onto € such that
OX) =X for a compactum X and O([F)) = [[s] for a fundamental map.F,
where [F) is the f-class of F. e

By the example in the next section it is known that @ is not an isomorphism.

COROLLARY 1. For compacta X and Y, Sh(X)z Shp(¥) (resp. Sh(X) = Shy(¥))
implies Sh(X)2Sh(Y) (resp. Sh(X) = Sh(Y)), where Sh(X) is the shape of X in the
sense of Borsulk [3].

We do not know whether Sh(X)=Sh(Y) implies Sh(X)=Sh(Y). -

xelU, k=0,1,2,.. -

3. Main theorems. A closed subset X of a metrizable space M is said to be
unstable in M (Sher [111, p. 346) if there exists a homotopy H: M x I—M such that

(3.1)  H(y,0) =y for ye M and H(y,)e M—X for yeM-and 0<z<1.
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By Lemma 4.1 of Chapman [4] it is known that every Z-set in the Hilbert cube Q
is unstable in Q. Also, it is shown by [8], Theorem 1, that every metrizable space X is
unstably imbedded into an AR M(X) with dim M(X) = dimX+1 and w(M(X))
= w(X). :

For a compactum X, we denote by . (X) the family of compact AR’s M con-
taining X as an unstable subset. The following was proved in [7], Lemma 3.

LEMMA 2. Let X be a compactum and M, M’ € 4 (X). Then there exists a map
&1 M—M' such that
(3.2) (X =1y and EM-X)=M'-X.

If €, 11 M—M’ satisfy condition (3.2), then there exists a homotopy H: M x I-M’
such that
H(y,0)=£() - and H(y,1)=1(y) for yeM,
(3.3) Hx,t)=x for xeX,
H(M-X)x)cM'-X .

This is shown by an argument similar to Lemma 2.1 of Sher [11].

Suppose that proper maps f: M—X—N— Y and f': M'"~X—N'~Y are given,
where M, M’ e #(X) and N, N' e #(Y). Then f is said to be equivalent to f’
(notation: /"= ;") if there exist maps £: M—M"' and #: N'—N such that &|X = 1y,
EM—-X)eM'—X,3|Y = lyand n(N'— ¥)cN—Y,and f ~ nf’¢éiM—-Xin N- Y,

p

where = means properly homotopic. From Lemma 2 it follows that the relation “="
P

is an equivalence relation. The equivalence class is said to be the p-class.

Now, we shall define a category 2 as follows. The collection of objects in £
consists of all compacta. For compacta X and ¥ morphisms from X to Y consist
of the p-classes of all proper maps of M—X into N—Y, where M e . (X) and
Ne #(Y).

" THEOREM 1. There exists a category isomorphism & : P—E , such that ®(X) = X
Jor every compactum X. .

Next, let us remind the proper shape category €, introduced by Ball and Sher [1].
For a locally compact separable metrizable space X, we denote by # (X) the family
of locally compact AR’s M containing X as a closed subset. Let X and ¥ be locally
compact separable metrizable spaces and let M & #(X), N € B(Y). A proper funda-
mental net f = {f3: le A}, A a directed set, from X to Y in M, N (denoted by
{f, X, Y}p ») is 2 family of maps f;: M—N indexed by A provided that for every
closed neighborhood ¥ of Y in N, there exist a closed neighborhood U of X in M
and an index Age A such that for every Az,

(34) LU Sf U .
p

Two proper fundamental nets {f, X, Yiuy and {g,X, Y}y y, where
Sf={fiited} and g = {g,: peQ}, are said to be properly homotopic (denoted

icm

On fine shape theory : 33

by f nz ), if for every closed neighborhood ¥ of ¥, there exists a closed neighborhood
U of X and indices 1, € 4, po e such that if AZlg, B, |

(3.5) LU pﬁ gJU in V. \

Let M, M' e #(X) and N, N’ € B(Y). Proper fundamental nets {Fr X, YIu
and {g, X, ¥}y, v are said to be equivalent (notation: f = g) if there exist maps
@: M—M' and {y: N'=N such that ¢|X = 1y, |Y = 1y and

CON f g9,

where g is the proper fundamental net of X to Y in M, N consisting of maps
¥9,0, g, € g- The relation “="*is an equivalence. The equivalence class is said to be
the pn-class. We obtain the proper shape category %, if we consider the collection
of every locally compact separable metrizable spaces as objects and the pn-classes
as morphisms.

THEOREM 2. Let % » be the full subcategory of €, whose objects consist of spaces
of the form X'x R,., where X is any compactum. Then there exists a category isomor-
phism T €,—@, such that T(X) = Xx R, for every object X of ;.

The proofs of Theorems 1 and 2 are given in the next section.

COROLLARY 2. For compacta X and Y the followings are equivalent.

(1) Sh(X) = Sh(Y).

(2) Shy(X) = Shy(¥).

(3) Sh,(X'x R,) = Sh,(¥YxR,).

. Here Sh,(Z) means the proper shape of Z in the sense. of Bull and Sher [1].

The equivalence of (1) and (2) is a consequence of Chapman ([4], Theorem 2)
and Theorem 1. Also, the equivalence of (2) and (3) follows from Theorem 2.

ExAMPLE. Let X be a one point space and let S be a dyadic solenoid (a solenoid
to the sequence 2, 2, ...; cf. [3, p. 154]). Since S is connected, |Morg X, S)| = 1,
where Mor,(X, §) means the set of morphisms from X to Y in the category % and |Z|
is the cardinal number of Z. On the ather hand [Mory (X, S)| = ¢. Because, by
Theorem 1 and [7], Example 2, it is easy to prove that [Morg (X,<)| is equal to the
cardinal number of the arc-components of S and the latter equals ¢. Therefore %
and %, are different. The functor @ defined in Lemma 1 is onto but not an iso-
morphism,

4. Proofs of theorems.
Proof of Theorem 1. We need the following lemma.
LeMMA 3. Let M be a space and X an u71stable subset of M. Then there exists
an imbedding j: M—X—M x R, such that j(M—X) is a strong deformation retract
of MXR,. ‘

3 — Fundamenta Mathematicae T. CV
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Proof. Since X is unstable in M, there exists a homotopy &: M x J-» M such
that ’

@1 e 0 =x, xeM, and EMx(0,1DeM—-X.

Choose a map a: M—I such that a™%(0) = X. Put X = {(x, 1fa(x): xe M—X}.
Then K is ‘a closed subset of M'x R, . Since the map j: M—X—K defined by
J) = (x, 1ja(x)) for xe M—X is a homeomorphism ont?, it is enough to prove
that K is a strong deformation retract of M'x R... Define a map r: M x R,—K and
a homotopy h: M X Ry xI->Mx R, by

4.2) rix, ) = (x, lax)),
= (1=t G 1+ 1), 1o (t— ()1 +1))
- 0<i<fu(x), xe M—-X,
= (E(x, 1140, 1a(éCx, 1/14+D)), (x,0)eXxRy ;

h(x,t,8) = (x, s(l1—t-a())fa(x)+1), 1>1ja(x), sel, xe M—X,
= (f(x, s(1—t-a ()1 J}t), (1/0:(6()6,(1-t-zx(x))/l+t))—~t)s+t),
‘ 0<t<1fa(x), sel, xe M—X,

= ({(x,s/1+t),(1/a(f(x, 1/1+t))-_~1)s"+t), (x,2,9)eXx R, x1.

t21la(x), xe M-X,

Obviously r is a retraction, A(x,?,0) = (x,# and A(x,?¢,1) = r(x,?) for
(x,) e MxR,, and h(x, 1ja(x), s) = (x, 1/u(x)) for xe M—X and sel This
completes the proof. :

Let X and Y be compacta and let M e A4 (X) and Ne #(Y). Since X and ¥
are unstable in M and N respectively, there exist homotopies ¢: M x I—M and
#: NxI—-N such that

@3 E(x,0) =x xeM, and ¢Mx(0,leM-X,
(4.4) 7,00 =y, yeN, and n(¥x(@,1)=N-Y.

Let f: M—X—N—Y be a proper map. Consider the subset K = {(x, 1/ae(x)):
xeM—X} of MxR; and a homeomorphism j: M—~X—K defined by j(x)

= (x, la(x)), xe M—X. Let it N—Y—N be the inclusion. Define a map

@(f): MxR,—N by
4.5) o(f) =ifj r,

‘where r is the strong deformation retraction from M x R, into K defined in Lemma 3
(cf. (4.2)). Obviously o(f) is a fundamental map from X to Y in M, N. Let
g: M—X—N—Y be a proper map. Then :

“6 Fxg Hadonly i olf) = ().
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Indeed, if H: (M—X)xI-N—Y is a proper homotopy connecting f and g, then
the map H': MxR, xI>N defined by H'(x, t,8) = iH(j"'r(x, 9),5), (x,1,s)
e Mx R, x1, is a fine homotopy connecting ©(f) and ¢(g). Conversely, suppose
o(f) Jg @(g) and let H: Mx R, xJ—N be a fine homotopy connecting ¢ (f) and

®(g). Define a map H': Mx R, x I-N—¥ by
@7 H'(x,1,5) = n(H(x, 1, 5), s(1 -)1+1) for (x,t,5)e MxR, xI.
Note that iH" is a fine homotopy connecting ¢ (f ) and ¢ (g), where  is the inclusion
N—Y—N. Moreover it is easy to prove that H'|KxI: KxI—-N—Y is a proper
map. The map H'": (M-X)xI—-N—Y defined by H"(x, 5) = H'(j(x), s),
(x, e (M-X)x1I, gives a proper homotopy connecting f and g. :
Finally, let F: X~ Y in M, N be a fundamental map. We shall prove that
(4.8)  there exists a proper map f: M—X—N— Y such that o(f) =~ F. . .
. I
Define F's MxR,—N—Y by|
F(x,0) = n(F(x, 9, 1/1+2) for (x,9 eMxR, .

Notethat iF’ ';: Fand F'|K: K—N- Yis aproper map. Let us define f: M— XN — ¥
by f(x) = F'j(x), xe M—X. Then f is a proper map. To prove o(f) = F, it is
enough to prove that ¢ (/) ? iF’. Since @(f) = iF'r, we have ¢ (f) ? iF’. A fine
homotopy connecting iF’ and iF'r is given by iF'h, where h is the homotopy
defined in (4.2).

~To complete the proof of Theorem 1, for a morphism ¢ from X to ¥ in the cat-
egory &, take a proper map f: M—X—N—Y representing £ Define &(&) as the

JS-class determined by the~map'<p( f)i MxR,—»NxR,. It is obvious that & is. .
a functor. (4.6) and (4.8) show that & is an isomorphism. This completes the proof..

Proof of Theorem 2. Let X'and ¥ be compacta and let M and N be compact
AR’s containing X and Y respectively. Throughout the proof we use the following,
notations. »

J = the set of non negative integers,

4 = the set of all increasing functions 6: J—J,

{Ui: ieJ} = a neighborhood basis of X in M such that each U, is closed and
UoUq for ied, -

{Vi: ieJ} = a neighborhood basis of ¥ in N such that each ¥, is open and
VioViyy for iel,

Us U Usiyx[i, i-+1] for e 4,
ieJ

i

VJ = U V‘;(;)X[l‘g l+]] for 5EA.
ieJ

Note that {U,: 6 € 4} and {V;: 6 € 4} form neighborhood bases of X'x R,
and Yx R, in MxR, and NxR,, respectively. For 3, & e 4, if ()< &'(i) for

3 .
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each i eJ, we write 6. Obviously 4 forms a directed set under the relation <.
Note that

(4.9) if 6<d’ then U;o U, and Vo V.

For each 6§ e‘A, let 952 R,—R, be a map defined by

(4.10) e:() = t—D(6G+D)-8@)+6(), isr<i+l, iel.

Let F be a fundamental map from X to Y in M, N. We shall define a proper
fundamental net W (F) = {/5: 8 € 4} as follows. By the definition of a fundamental
map (cf. (1.1)), we can find a dpe 4 such that

(4.11) F(Usoy % [86(0), 0))=V;  for iel.
Define f5: Mx R,,—;MXR+ for 6 e4 by
(4.12) Sax, ) = (F(x, 5pslt), 1) for (x,H)e MxR,,

‘where Opd is the composition of & and &g, that is, 55 6(i) = 55(6 (D)), 1€ J (see (4.9)
for gsps). Put Y (F) = {fs: ded}).

(4.13) Y (F)is a proper fundamental net from X x R, to YX R, in Mx R, , NX R,
and its proper fundamental class does not depend on the choice of a Jj
satisfying (4.11).

Indeed, let W be a neighborhood of ¥Yx R, in Nx R, . There exists a §, € 4 such
that Vs, W. Let 626,, d e 4. Define H: U, ;,x =V (= W) by

H(x, t,8) (F(x, (1~ 0sp o)+ 5055 80), 1) for (x,1,5) € Uspsx 1.

- Then H is a proper homotopy connecting f5|Us, 5, and fy,|Us, 5,- Therefore y (F)
. forms a proper fundamental net. The latter half of (4.13) is proved similarly. Next,
we shall prove

(4.14) if F and G are fundamental maps from X to Y in M, N then F ek
Y(F) = ~ V(@)
Indeed, let F % Gandlet L: M x R, x =N be a fine homotopy connecting F and G,
In the light of (1.3) we can find a §; € 4 such that
Sp28p, 6206 and  L(Usx [6.(), @) xI)cV, for iel.

Let W be any neighborhood of ¥x R, in Nx R+ By (4 12) and (4.13) there exists
a dy e 4 such that

Tl Usp o ffa]Ua,_ao in W, 6268, .

955 Usy 50 f 9ilUsp s i W, 626,
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Define &: Uj, 5, X I—W by

E(x, t,8) = (F(x, (1 —3S)Qﬁp$o(l)+3sQ‘,L60(t))’ 1) 0<s<i,
= (L(% 4, 5(8), 35 1), 1), i<s<3,
= (G(x, B5=2)2s, so()+(B =305, (1), 1), 3<I<1, (x, D€ Upy g,

Then & is a proper homotopy connecting f5,|Us. 5, and g5Us, 5,-
Conversely, suppose that (F) =~ /(G). Consider the neighborhood W, = V4
U Vyx[i,i+1] of YxR, in Nx R... Since 1//(F) V¥ (G), there exists a dy e 4
such that
SelUs, -;)“-—’ 9slUsy In Wy, 6,6'26,.

Let H: Uy, x I-+W, be a proper homotopy connecting f5,|Us, and ¢ 5,|Us,. Since His
a proper map, there exists a dy e 4 such that 65> 65, dg, 6, and %

.(4.15) H((Usy 0 Mx [84(1), 00))x I =¥, x[i, 0)  for ieJ.

Let g: Nx R,.—N be the projection. Since V; is an ANR, by making use of Borsuk’s
homotopy extension theorem repeatedly ¢H is extended to a homotopy H': 't Mx
X R, % I-sN such that

H'(x, 1,0) = qf5,(x, 1), H'(x,t,1) = ggs(x, 1) for (x,)e Mx Ry,
(416 H'(Usey % [64(i), 0)xI)=¥;  for " iel.
Define L: M'x R, xI->N by
L(x,t,8) = F(x, (1-38)t+350,, (1)) » 0<s5<%,
= H'(x, t,35~1), 3<s<3}, (x,H)e MxR,,
= G(x, Bs=2)t+(3—35)0s (D) > E<5<L .

By (4.15) and (4.16), L(Us,y % [84(), ) x T}V for each ieJ. Hence L is a fine
homotopy connecting F and G. This completes the proof of (4.14).
Finally, we shall prove that
(4.17)  for every proper fundamental net f from X'x R, to ¥Yx R, in MxR,,
NXR, 1he1e exists a fundamental map G: X—Y in M, N such that
14 (G)

Let f = {fi: € A}, fy: MxR,—NxR,, where A is a directed set. There exist
a lge A and a Jy e 4 such that

(4.18) SFalUsq = fiolUs, in Wy for every Az 5. -
p
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where W, = |J) ¥;x[i,i+1]. Since f;,|Us, is proper theré exists a 6, € 4, §,=d,,
ie
such that
J10(Use 0 M x [6,(i), 0))=V;x[i,00) for ielJ.

By applying Borsuk’s homotopy extension theorem repeatedly we can extend gf;,|Us,
to a fundamental map G: X—Y in M, N such that :

GUs,yx [6,()), @)=V, for iel,
where g is the projection: Nx R,—N. It remains to prove that ¥(G) =~ /. Remind
that !
(4.19) Y(G) = {gs: ded}, gs(x,0) = (G(x, 0s55(2),7) for (x, He MxR,.

Let W be any neighborhood of YxR, in NxR,. We may assume that
W = V3, § e A. There exist indices A, € A and 3,, §; e 4 such that 4,24, 8,28,
and

fi.]U&3 pngIUas in V3, Az,
95|Us, f 95)Usy In Vi, 620,.
By (4.18) there is a proper homotopy H: U, x =W, connecting fal U,;Q and f; lo[.U S0

Since H is proper and (U, n M'x [0, i]) x I is compact, we can find 8, 55 € 4 such
that

(4.20) ¢ H((U,y 0 Mx[0,i)xI)<[0, 63 ()] for ieJ,
4.21) TH((Us, 0 Mx [84(), 0))xI)n[0,i] =@ for ieJ,
where ¢’ is the projec\tion: NxR,—R,. From (4.21) '

4.22) gH((Us, n Mx [84(3), @))x )<V, for ied.

By (4.20), (4.21) and (4.22)
(4.23) gH(Us, 55041y % [650 (), 85 8(i+1)] xI)a Vi for ieJ,
G H(Usy syyi41y X [05(D), Sp(i+DIx D <[i, by 511(“‘ Dl for ieJ.
Let us define indices &4, 65 €4 as follows.
84(f) = Max(8,6588, 8g(i+1), 55 5,,05M5,,(1+1)) for ied,
85(i) = 688, 0y()) for ied.
Define L: Us,x I-V; by ’
qL(x, f,S) = qfh(x, (1—35)t+35965(t)): 0<S<%s
= QH(X, (35—1)9650))’ %<S<%,
= Qflo(x: (BS_Z.)QEGB(U‘*'G —35)(’65(’3)) 3 %QS\{I, (x: t) € U64 X7 .

On fine shape theory . 39
qL(x, 1, 9) = g3 (x, (1=39)1+4350,,(1),  0<s<d,
qH(x, Bs=Ds(0),  4<5<3, (x, )€ Up,x1,
@s=D1+B =39 Fox, 05x(D), <5<

It is easy to sec that L is a proper homotopy connecting f;,|U;, and g5,]Us,
(cf. (4.19)). This implies ¥ (G) = f and completes the proof of (4.17)."
P

Now, to complete the proof of Theorem 2, for a morphism ¢ from X to Y'in €,
take a fundamental map F: X— Yin M, N representing . Define 7 (£) as the pn-class
determined by the proper fundamental net W(F) XxR,—YxR, in MxR,,
Nx R, . Obviously ¥ is a functor from ¥, to %,. (4.14) and (4.17) show that ‘I’ is
a category isomorphism. This completes the p1oof

Finally, we have the following theorem.

THEOREM 3. Let X, X' be compacta and let ¥, Y' be metrizable spaces. If
Sh(X)=Sh(X") and Sh(Y)>Sh(Y"), then Sh(Xx ¥)>Sh(X'x Y*), where Sh @)

]

I

I

_is the shape of a metrizable space Z in the sense of Fox.

This theorem can be proved similarly as [9], Theorem 1, so we shall omit the
proof. We do not know whether Sh, can be replaced by Sh in Theorem 3.

ProBLEM. For compacta X and ¥, does Sh(X)> Sh(Y)imply Sh (X)>Sh,(¥)?
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