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as determined by x in the manner described in Section 1. See Figure 7 for a picture
of R(S,) where R is a figure eight, and Figure 8 for another example.

We can map R(S,) onto 'S, by mapping S* identically onto itself, all of the
k spirals homeomorphically onto one of themselves, and 4 onto the endpoint of that
spiral. It may be checked by means of nerves of e-covers that R(S,) is R-like. But
there can be no model for £ since, if there were, it would also be a model for &. B

.
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Decompositions in the product of a measure space
and a Polish space

by

J. Bourgain (Brussel)

Abstract. Let X, AG, 1 be a complete probability space and ¥ a Polish space with Borel field $y.
It is shown that if 4 € A@By, then {x € X; A(x) is F;} and {x € X; A(x) is Fys} are both measur-
able. Furthermore, we prove the existence of “measurable decompositions”. From those results, we
deduce a theorem on the stability of the class of the Baire-2 functions under integration.

Introduction. Assume X, pu a probability space and let .# be the o-algebra of
o-measurable subsets of X. Let ¥ be a Polish space with Borel field #y. By well
known arguments, we obtain that if 4 € 4 ®%y, then the sections A4 (x), where x is
taken in X, are of bounded Baire class. Hence . ®%y is the union of the classes &,
(x<wy), consisting of the sets A € .4 @y, such that 4 (x) is of Baire class at most ,
for each x e X, where the Baire class is defined with respect to the closed sets. Let
Fo=F,, which is stable under countable intersections. Starting from %#,, we
obtain a Baire system (#,),<,, - It is a natural question if ¥, and &, coincide for
all o< ;. We will answer if affirmatively for ¢ = 1 and o = 2.

Let # = {MxF; Me #, Fclosed in Y}. The class of the #-analytic subsets
of X'x Y will be denoted by &/ (X, Y), or simply &, if no confusion is possible.
Iet Aesf and assume 4 = = | Q(M"IkXFv!k)’ where v runs over J~ = NW.

Tn such a representation, it will be always assumed that

My X Fye # @, Mypas X Fyppy @ Myp X Fye and diamF,,<1/k,

for each ve ./ and ke N. It is easily seen that & contains .#®%Hy. s
DEFINITION 1, If AcXx Y, then A<Xx Y is defined by A(x) = A(x).
The following description of the set 4® will be useful. If y € ¥ and £>0, then

B(y, ¢) is the open ball with midpoint y and radius e. Let (»,), be a dense sequence

in Y. For every ne N and ke N we take My = n.{d n (X% B(y,,,vl/k))), wl.lere
7, is the projection on X. Then A° = U (M, X B(¥,, 1/k)). From this observation,
kn

we obtain immediately:
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PROPOSITION 2. Let AcXx Y and suppose p(n,(A)) = 0. If A() is closed
in Y for each xe€ X, then Ae MRBy.
PrOPOSITION 3. If A e, then n(A) e M.

Proof. Assume 4 = U ) (M, x Fup), then my(d) = U [\ M,y and therefore
v k v k

an .4 -analytic set. Thus 7,(4) € .#.

Clearly (3) implies the following:

PROPOSITION 4. If Aeof, then A c MRBy.

ProrosITION 5. Let Y, Z be Polish spaces and assume f: XX Y—-XXZ an
MRQBy— MRB, measurable map satisfying w, of = ny. Then f(A) e A (X,2),
for each Ae (X, Y).

Proof. Let g = 7, o f, which is # @Ay —B, measurable. Let h: X x ¥x Z—Z>
be given by A (x, ¥, 2) = (g(x, ), z). Clearly h is # @By %, —B,R%, measurable.
Hence 1™ 1(4) & #QByRB;, where 4 is the diagonal of Z2. Thus A7 (4) N (A% Z)
belongs to (X, YxZ). Therefore h™(4)n (A xZ) has a representation

U ﬂ (M % F, ]kXFv|Ic): implying
SA) = mxug(BH4) " (A% Z)) = U Q(MVI"XF‘:{") ed(X,Z).

ProrosiTiON 6. If Ae (X, Y), then there exist a subset D of Xx N and
a map ¢ X x A —-XxY, verifying the following properties: .

1. De MQB,, ,

2. ¢ is MROABy— MRBy measurable,

3. D(x) is closed in N for each x € X,

4. w0 = 1:1 and m, o @, is continuous f01 each xe X,

5. (D) =

Proof. AssumeA = U ﬂ (lekXFVlk) Forevery ke N and (51, ..., m,) e N,

let

N yoome =N 5 vy =0y, =)

Obviously
v|k>< ‘/Vv|k) = ﬂ U (]" n.. ﬂkx ‘/an..."k)

b=UnNM®
v ok ok o, e
verifies (1) and (3). The map ¢ is given by (p(.\‘, v) = (x, (VFy), where (B is
k k

a unique point of Y. Clearly n;, o ¢ = 7, and using standard arguments we obtain
that m, 0 ¢, is continuous for each xeX. Tt follows immediately that ¢ is
M @.‘%,y— M @%By measurable, Further

“e(Dy=U (P(QMvikX{v}) = U(Q»Mv]kx QFv[k) = A

completing the proof.
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Decomposition results. Let X, #, u be a complete probability space and ¥
a Polish space. m; will denote the projection on X and =, the projection on Y. The
bulk of this paper is the following proposifion, which is essentially based on the
Baire category theorem.

PROPOSITION 7. For each x € X, let "5_1 be a set of closed subsets of Y, verifying
the following condition:

(S) A closed subset of a set in G, also belongs to €., and B e C,.

Suppose Ae o (X, Y) and take C = {x e X; A(x) can be covered by countably many
elements of 6,}. Then there are sequences (Adns By in A RFy and a sequence (X),,
of subsets of X, such that: -

1. A,(x) € ¥, for each ne N and each x e X.
For each ke N:

2. (X)) = 0,

3. {xen(By); Bulx) e 4.} =Xy,

4, Xi\{xemn,(B); Bu(x)eb,} is negligible,
5. Cnm(A\NUd4,) < &)Xk.

Proof. Using Proposition 6, there is a subset D of Xx.4" and a map
@ XX N —=Xx Y satisfying the following properties:

1. De HA®By,

2. ¢ is MROBy— MO By measurable,

3. D(x) is closed in A for each x € X,

4, w09 = m; and 7w, 0 @, is continuous for each xe X,

5. (D)= A

Let (V), be a countable base for the topology of .4". By transfinite induction,
we define for each o<, a sequence (M), in . and a sequence (Vi) in A % 4
as following:

1. Let My = o = @ for each keN

2. Now assume (M), and (4,,); obtained for each o<f. Let £ € N be fixed.
Take

By = (XX VN agﬁ sz Vi€ HOB y -

Let M, be a measurable subset of
{(xeX; (@ n DY) b},
with measure the inner measure of this set. Finally, take
g = By 0 (Mg x N € MDB .

This completes the construction.


Artur


64 1. Bourgain

Tt is clear that when k e N is fixed, u(M,,) increases when o increases. Hence
there exists some ordinal n<w; so that p(M,) = (M 4+1) for each ke N. The
sequence (4,), will be the countable family {¢ (¥, 0 D)*; a<n, k &€ N}. For each
ke N, define

B = ¢(Bypi1 " (Mygx A)n DY and X, = {x e Miy; 0(Pr gv1 0 DY) €%y}

Using successively Proposition 5 and, Proposition 4, we see that (4,), and (By), are
sequences in .#®%y. We prove that the required conditions are verified.
1. Let a<n, ke N and xe X. We remark that
O W DY(x) = (120 ) ('//ka(x) N D(-’“)) .
If x¢ M,,, then
e 0 DY(x) = Be¥,.
If x e M,,, we have

@ Wia N DY(x) =

2. This follows from the property

p(M,) = /"'(Mk,n-i-l) = {x e X; O (Pp gt N Dy(x)e qu} .

¢(D N DY(x) €, .

3. If x e n,(By), then x & My, and By(x) = ¢(Py, 541 0 D)(x).
4, First, we have that My \m,(B,)<X,. Indeed, if xe Mg \n (B,), then

G = By(x) = ¢ (P nr1 0 DY (x) e ¥,

Since Mg, \m(By) € M, Mg \n;(By) is negligible. Now
Xk\{x e (By); Bu(x)e (gx} C(len\”l(Bk)) o {x € Xy; B(x) ¢ (gx} .

Because {xe€X,; B/(x)¢%.} = Xy {xeM;,; B()¢%,} =G, we obtain (4).
5. Let x € X be fixed and define I, = {k e N; x € M,,}. Obviously

Ve U U Yi(x) %(x)

a<y

for each ke N.

Therefore | V< U U Vo).

lely sy

Now suppose x & C and D(x)d¢ U U Y,(x). Clearly D(x)\ U v, # 9.

asy 1

Let (F,), be a sequence in %, with 4 (x) = U F,. Because D(x)= U (s 0 ) H(F,)

and each set (n, o @,) " (F,) is closed in .4, we obtam by the Baire categm y theorem
some re N such that (m;° @) ' (F) n (D(x)\ U ¥;) has nonempty interior in
lelyx

DN U 71

leTl,
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Take ke N satisfying

B # Ven (DN U P)e(my o 0) ' (F)
lely
Tt follows that (@ 4y O DY(X)=(my 0 0,)"H(F) and thus (P 441 N D)(X)F,.
Since (S) holds, we find ¢(®; .1 N D)'(x) € €,. On the other side, k ¢ I, implying
that x € X3. Hence, if x € C\U X, then D(x)= {J U ¥,(x) and thus 4 (x) <= {J 4,(x).
k n

assy 1

This completes the proof. “

COROLLARY 8. Assume that the class €, (x € X) satisfy the Sfollowing additional
hypothesis:

(M) If Be #QBy, then {xeX; B(x)e¥,} € H.

Suppose Ae (X, Y) and let C be as in Proposition 7. Then:
1. Ce .

2. If C = X, then exists a sequence (F,), in # By such that F,(x)e ¥, for
each n and each xe X and A< UF

Proof. We consider the sequences (4,),, (B and (X)) obtamed in Prop-
osition 7.

Let k & N be fixed. Since (M) holds, {x € n,;(B,); By(x) € ¥,} € .4 and thus also
X, e .4, by (3) and (4). It follows that X is neglegible. It is clear that

Xy (ANU4,) = Ce(X\m@\U4) v VX,
n n k
showing that C is meastirable.
Assume now C = X. For each x e n,(4\U4,), we consider a sequence (Fy),
in €, so that A(x)c= {JF;. For each ne N, take F,(x) = 4,(x) if x ¢ n(A\NU4,)
n n

and F,(x) = F; otherwise. Applying Proposition 2, we see that F, e #@%y.

Furthermore F,(x) € %, for each x e X. By construction 4= {)F,.
n

THEOREM 9. If A € M @By, then {xe X; 4(x) is F,}e M. If A(x) is an F,-set
Jfor each x € X, then there exists a sequence (Fy), in & so that A = ) F,. We conclude
n
that & = F
Proof. For each x e X, let ¥, = {F=A(x); F closed}. Clearly condition (S)
is satisfied. To show (M), take B e .#®@%y. Then
(xe X; B(x) e} = X\(my(B\B) U my(B\A)) & A .

The proof is completed by Corollary 8.

Our next objective is to show that &, = &,. To do this, we need more material.
DeFNITION 10. Let @ = U N¥, where N° = {@}. Let Ses&(X,Y) be
k=0 .

5 — Fundamenta Mathematicae T. CV
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fixed and let U () (Mypx Fyy) be a representation of S. If ce NE we take S, = S
k
if k£ = 0 and 3’ = U ﬂ (M % Fy) otherwise. We introduce for each x e X and

vk=c
ce@ a transfinite sysiem (.@,‘(c’)),‘wjl of subsets of 2¥ as following:

1. %) = {PcY; P S(x) =&},
2. DY(c) = {P<¥; for each re N, P has a countable closed covering (F)us
such that P n F, & U@ (c,r) for each ne N}

fAdcXx Y, x eXand ced,letcd (4, x) = o if4(x) ¢ U Zi(c)and otherwise

a<oy

the smallest ¢ < o, satisfying 4 (x) € 2%(c). Propositions 11 and 12 are related to that
definition.

PROPOSITION 11. For each x€ X and ce%:

1. 9%(¢) increases when o increases.

2. For each a<w,, PeD3c), Q<P = Qe.@ (). .

3. Ifa<wyand Pe DY), then there exists.an Fs-subset of Y, which contains P

and is disjoint from S/(x).

4. Conversely, if P is contained in an F,;-set, which is disjoint from Sy(x), then
Pe U 2Yo.

ae<wy

. Suppose Ae A (X, Y), then:
5. For each a<w,, {xeX; cl(d, x)<o} e #, for each ce 9.

6. If cl.(4, x)<p for each x € X, then for every r e N there is a sequence (F,),
in Fq so that cl (4 N F,, x)<p for each ne N and each xe X and Ac UE,.

Proof. 1. This follows immediately from the definition.

2. The property is true if & = 0. Using induction on «< w, , the proof is easily
completed.

3. The proofis given by induction on o< @, . The case o« = 0 is obvious. Assume
now the property true for each a<f and let Pe 2%(). Since S, = | Sie,n» We only

have to show that for each r e N the set P is contained in an F,,-set, which is disjoint
from S, (). Let (F,), be a countable closed covering of P with P n F, & ) 23(c, r)
o a<f

for each n. By induction hypothesis we have for each n e N an F_;-subset @, of ¥
satisfying P n F,= 0, and Q, N S »(x) = &. The set @ = UFNUFNG,) is

an F,;-set containing P and disjoint from S ,(x).
4. Assume P = (U F,, disjoint from S (%) and P¢ | 2%(c). We claim that

m n a<op
there are 2 sequences (7,,),, and (#,), of integers so that

P Fpy e 0 B U @36, 1y, 1,)  for each meN .

a<ay

8
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Indeed, suppose ry,...,r, and n,..,n, obtained. Since P Fiyy NN F,

. Mmim
is covered by the closed sets Fy+1,, (n € N), there must exist some r,,., € N and some
Myt € N satisfying

PnF]m h-anmmF’m*H. "m+l¢ U @x(c }1:' :rmirm+l)’

a<wmy

proving the claim. It follows that

Fing O i O By O Sty ry%) 52 & for each meN .

Clearly we can take diamF,,<1/m. Since Y is Polish, we obtain that N F,,, and

Mm

N (M(c,,lw,m)xF(p,,x,"_1,m)) (x) have nonempty intersection, contradicting the hy-
m

pothesis P n S(x) = @. By (2), this completes the proof,
5. We proceed by introduction on a<w;. We have that

1x eX; o4, x) =0} = X\n (A N S,)

is measurable. Let /?< w; and assume the property true for every a< ,B LetreN
be fixed. For each x e X, take

%, = {F<Y; F closed and A(x) n Fe |J D%c, r)}.
a<p

By (2), the sets ¢, verify condition (S) of Proposition 7. We show that condition (M)
of Corollary 8 is also satisfied. Let thus Be .#®%y. Then

{xeX,B(x)e C} = (X\m(B\B)) n U {x € X; ¢l (4 N B, x)<a},
a<p

which is measurable by induction hypothesis.
Let C" be as Proposition 7. Applying the first part of Corollary 8, we have

{xeX; d4, )<} = N Cek.

6. This follows from the second part of Corollary 8.

ProrosiTioN 12. If Aesf/ (X, Y), then the following “stabilisation property™
holds:

There exists a<cw; such that {xeX; a<cl(d, )<w,} is negligible. Hence
{xelX; c (4, )<w,}e L.

We first have to show the following lemma:

Lemma 13. Let Te A (X, Y), ce¥ and Re{xe X; (T, x)<w,} such that
{xe R, cl(T, x)<a} is negligible for each a<w;. Then there exists a sequence
(Tps Ry, 1), in A (X, V) 2Xx N with following properties:

L Re{xeX; cli,)(Tp x)<o1} (peN).

2. {x€ Ry, cleg, ) (Tp, X)<0t} is negligible for each a<w; (peN).

3. If xe R,, then cl(c’,P)(Tp, x)<clfT, x) (peN).

4. R\U R, is negligible,
P .
5‘
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Proof. Let X, = {xeX; cl(T,x) = 0}. Let re N be fixed. For each xe X
we define a family %, of closed subsets of ¥ by taking 4% = {F< Y; Fclosed and there
is a<cl(T, x) such that T(x) N Fe e, 1)} if x ¢ X, and €} = {@} otherwise.

Clearly the classes @~ verify condition (S) of Proposition 7. Let C" be as in this -

proposition and let (45),, (BL); in £ Q%By and (X5), in 2% be the sequences provided
by the proposition. For each ke N, take Vi = {xen,(B}); Bi(x)e %%}  neN
is fixed, then by (5) of the preceding proposition there is some o, <w; so that

M, ={xeX; cl(c’;)(Tn Ay, )<a,} and {xeX; cl, ,(T n 4}, x)<p}
have the same measure for all p>u,. Let a>a,, for all n,re N. Obviously

N MU m(TNY ) € X5 ol (T, 0)<a)

nr

On the other side R\NX;={xe X; cl(T, x)<w; \X,< () C". Since
Cran(IT\NUAp=U X; for each reN,
n k

we obtain that

ReX U (Xo\U ny(TNU 4p) v U (X5 n Xi)

=Xou (N M,.r\U 7r1(7"\U Ay U (X5 n My v U X5 X5) .

nr n,r

By hypothesis, X, n R and (ﬂ M,,,\U nl(T\U 4)) N R are both negligible. The

sequence (T, R, r,), will be the followmg countable family
{(Tndy, My, 0 X5,7); neN,reNYO{(Tn B, Vin X5, r); keN,reN}.

It follows from (4) of Proposition 7 that R\ U R, is negligible. We verify the properties

(1), ), (3).

‘1. This follows from the fact that A4;(x) e % for each xe X and By(x) e .,
if xe V,§

" {xe My, 0 XG; Wl (T N 4, )Sa}s{xe X; g, ,)(Tm Ay, X)<oI\M,, is

empty if axe, and negligible otherwise, by the choice of a,,

2" {x e Vi 0 Xg; clee.n(T n By x) S} = ny(BY) A X§ n {x e X; el (T n
N B, x)<a and ¢l (T A B, x)<cl(T, )} = 7,(B)) N X5 N U {x e X;cl »(Tn
N B, x)< B and cl (7, x)> B}, measurable by (5) of the precedmg proposition. Since
(Vi) = 0, our set is negligible.

3. Follows immediately from the definition of the classes b,

ThlS completes the proof of the lemma
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Proof of Proposition 12. Clearly, the only thing to show is that if R satisfies
the hypothesis of Lemma 13, then R is negligible. By successive applications of that

. lemma, we obtain for each ke N and (py, ...,p,) € N* a set T}, e (X, ¥),

asubset R, . of X'and anintegerr,, . sothat the following properties are verified :
L. ‘Rl’impkc{x eX; C](t‘; olepe. pk)( PLepi? x)< 601}.
2: {xeR,, n; cle, Pageen e ﬂ;)( wiwmes X) S0} is negligible for each e<w;.
3. xeR,,  pothencle, v S (Tpopis X)<Ce,rppynrppety ST preccpiom s X)-
4. Ry NU Ry p i negligible.
P

We deduce from (4) that R\U () Ry is negligible. Furthermore, we claim
ned k

that ) Ro is empty for each me 4", Indeed, for x e ) R,x, we would obtain:
k PR

cl (T \)>C (e, rnu)( wils .\.)> >d(c Prll, . r"]k)(Tn}ks x)

which is a strictly decreasing sequence of ordinals. This is impossible and the proof
is complete.

THEOREM 13. Let A€ M@ABy. Then {xe X; A(x) is Fye . If A(X) is an
Fos-set for each o€ X, then there exists a double sequence (F,,),, in F4 so that
A= N UPF,,. Hence &, =5,.

;omon

Proof. The set S of Definition 10 will be the set 4°. From (3) and (4) of Pro-
position 11, we obtain that

{xeX; A(x) is F,;} = {xe X; cl (4, x)<w,}.

Thus the first statement follows from Proposition 12. Assume now 4(x) is an F_;-set
for each xeX. Again using Proposition 12, there exists a<cw; such that
{x e X ¢l (4, x)>a} is negligible. By Proposition 2, it is therefore not a restriction
to assume in the proof of the second statement that cl,(4, x) is bounded by some
a<w;. We will show by induction on a<w, that if ce¥, des/(X,Y) and
cl(4, x)<a for each x € X, then there is an element Q in &, so that A< Q<=S8%.

Clearly, this will finish the proof.

The casc « = 0 is trivial, since then A° 0 S, = @. Assume now the property
true for every o< ff and let cl (4, x)< f§ for every x € X. We remark that it is enough
to prove that for each r & N there is an element Q in &, so that 4& Q<SG . Let
thus re N be fixed. By (6) of Proposition 11, there exists a sequence (Fy,), in %,
$0 that cly, (4 N F,, x)<f for each ne N and each x e X and 4 < |J F,. For each

n,

ne N and a<f, let
' My = {xeX,clendnF,x)=a}.

Applying the induction hypothesis on (4 n F,) 0 (M,,x ¥) we find an element
Q. in F, so that (AN F)n (M, x Y)<Q,,=S,n- Let ne N be fixed. Since
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(M), <p is a measurable partition of X, the set @, = U (Qu N (M, % ¥)) is still
’ oa<f

in #, and 4 N F,= 0,8, . It is easily seen that
Ae U Et\ U (-FII\QH)CS(Cc,r) s
n n

where

Q = U-Fn\U(Fn\Qn)= U-an D(F:U Q/I)EﬁZ'

This completes the proof.

Application to the Baire functions. We refer to [2] for the following result on the
integration of functions of the first class:

THEOREM 14. Let X, M , i be a complete probability space and Y a Polish space.
Let &¢: X'x Y- R be a uniformly bounded function which is measurable in the first
variable and of first Baire class in the second. Then the function @ on Y given By
o(y) = j'cb(x ) u(dx) is also of the first class.

Under the contmuum hypotheSIS it is easy to define a function @ on [0, 1]
only taking the values 0, 1, which is of the first Baire class in the first variable, of
second Baire olass in the second one and such that the function ¢ on [0, 1] given

by ¢(y) = j(b(x y)mdx) is not even measurable. However, the following is

true:

THEOREM 15. Let @: X'x Y- R be a uniformly bounded function which is J @ %y~
measurable and of the second Baire class in the second variable. Then the Sfunction ¢
introduced in Theorem 14 is still of the second class.

Using Theorem 14 and the Lebesgue-theorem, Theorem 15 will be a consequence
of the following result:

THEOREM 16. Let @: X x Y- R be M ®By-measurable and of second Baire
class in the second variable. Then there exists a sequence (2,), of M RBy~measurable

Sfunctions so that each @, is of the first class in the second variable and ® is the pointwise
fimit of (D,),.

Proof. We use the terminology and results of [4], IX. Let 0 = {fe R¥*Y,
fis M @ABy-measurable and fis of first Baire class in the second variable}. Clearly 0
is a complete ordinary function system. The sets M, N are the sets

{x,WeXxY; f(x,y)>a} and {0 eXxY; f(x,¥)=a},

respectively, where fe 0 and a¢€R.
Hence the sets M are the members of &, = % . Indeed, each set M is clearly
in &,. Conversely, if 4 = U F, with F, e %, for each n, then

1
A ={(x,»)eXxY; f(x,3)>0}, where f: ZE’;I,‘"E@.
n

icm
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To show that & is an f*, i.e. a pointwise limit of a sequence in @, we have to prove
that if @ € R, then the sets {(x,»)e X'x ¥; &(x,y)<a} and

{(x,») e Xx Y; &(x,y)=a}

are both N* = M; = & ,. Now, those two sets are both in &, and Theorem 13
completes the proof.
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