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Two observations on a theorem by Coifman

by
JAAK PEETRE (Lund)

Abstract. We apply Coifman’s characterization of Hy if 0 < p < 1 (1) to prove
anew the interpolation theorem of Fefferman—Rividre—Sagher and (2) to give a charac-
terization of translation invariant operators in H, if 0 <p< 1.

Ronald Coifman recenfly established the following elegant charac-
terization of the space H, = H,(R) if 0 <p <1.

TeeorEM I ([1]1). A distribution f is in H,, where 0 <p <1 iff it
admits the representation f = >a;b; where b; are measurable functions having
their supports in intervals I; and satisfying

()| < ILI7P,  [db(@)de =0 for O<E<N

where N is an integer > 1[p and a; are real numbers subject fo Y, |a;|” < oo.
Also we have the equivalence of norms

Wl ~ 1nt( 3 1el?)™.

On the other hand, Fefferman—Rivitre—Sagher obtained the following
interpolation. _
‘ TaEOREM IT ([3]). (Hpo, le)ep where 0 < py, < py < o0, 1fp =
(A—0)Ipy+6/ps, 0 <8<

‘We now want to show how Theorem I can be used to give 2 simple
proof of Theorem I1. In a way, however, our argument is similar to the one in
[1], where the main step in the proof of Theorem ITiz used to obtain Theorem I.

Before entering into the details we would like to point out the ana-
fogy with the interpolation theory of I, spaces. It has been well known
lor a long time that ’

(1) (Lpgs Lp)ep = Lp  (in the same conditions as Theorem IT).

In Peetre—Sparr [6] a new approach to (1) was proposed. We introduced
the space L, of measurable functions with support (1) of finite measure,

(1) “Support” here means the eomplement of the set on which the funection
vanishes. Since we identify functions differing on a nulset it is unique up to nulset.
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equipped with norm |fllz, = suppf and we proved that (in the notation
of [6])

(2) (L(]’ Lou)a;p;E = Lp

Using the standard results of the abstract theory of interpolation spaces
(as developed in [6]) we could obtain (1) from (2). Our present thesis
is thus that Theorem I does about the same for Theorem IT as (2) does
it for (1).

Tnspired by the above let us now for a distribution f with compact
support and [of(w)de =0 if 0k <N pub(2) |fllg, = || where I is
the smallest interval containing suppf. If we write f; = a;b;, Theorem I
can be rephrased as follows: feH,, where 0 <p <1 iff f=2f; with
Dfle, WAL, < oo We can now supply as promised the

Proof of Theorem II. Since one inclusion (H, , Hy,)e < H,, a8
always in such situations, is trivial, we may conoentrate'on the opposite
inclusion H, < (Hy,, Hy o Also, in view of the reiteration theorem and
the interpolation theorem of Rivitre-Sagher [7], we may assume p < 1.
‘We distinguish two cases.

Case 1. py < 1. Let thus f € H,, and let us (by Theorem I) write f= 3f;
with 3 1|f iz, 1filR,, < oo For every integer » let us seb

Uy = Zfi'

e,

where a =1/p.

B, = {i] 2 <|fll, <2} and

Clearly, f = >, and for every » u, € Hpn Hy, . More precisely, for j =0, 1
we obtain (again by Theorem I) .

% <O D Wil Ml
J

ek,

< 02@ Y f a1,

ik,

< 021‘(17]'-17)(1’
with a, = > Ifill, IfdiZ,,, or (in the notation of [67])
%, ,
=20 J (20120 4,5 HE, HEY) < C6,-

Since Y'a, < oo, it follows that f e (H!, HPY) - with p = (L—n)p+
+py, 0 <7 <1. Bub (see [671)

(Hz{%ﬂ]’ Hg;ﬂ)ﬂl;.l = (H

Do ? le)gf;];K

and the proof is complete.

(%) 'This is not a “norm™, not even in the sense of [6].
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Case 2. p, > 1. We proceed as in case 1 but make first the additional
remark that from the proof of Theorem I (in [1]) follows that actually
lllz,, < €2°. From the Holder type inequality

Il < Ol Il with  1fpy = (L—2)[p+4/co

follows now

Hu’v“le < 0 9r—2lpy) a:/m .

The rest of the proof is the same. m

So much for our first “observation”(®). The second one is concerned
with multipliers. In May 1968 I wrote a survey article [56] concerned
with the Stampacchia spaces Zp,. The importance of this family stems
from the fact that it encompasses a number of classical spaces, the most
famous being BM.O.=¢ =9, , (1<p<oo)*). I also proposed
an alternative notation &% = &,; (with 1 =n-tap) and suggested
the introduction of more general spaces 37 (by the analogy with Besov
spaces BYE): fe &P iff

([ o prear < oo

for all ¢ € L, with the support contained in the unit interval [—1, 1]and
[dFp(w)de = 0 for 0 <k <N, ¢, = (1/r)p(w/r). T further gave a charac-
terization of tranglation invariant operators T': L,— B.M.O. (analogous
to a classical result of Hardy-Littlewood for Besov spaces): If Tf = kxf
then T: L,—B.M.O. iff ke 1% (1< p < o). In view of the duality
theorem of Fefferman-Stein [4], to the effect that H, = B.M.O. (which
helas was not avaible in ’68) this can also be viewed upon as a character-
ization of translation invariant operators T: H,—» H,. We now extend
the latter result to H,, 0 < p < 1. This is implieit in [1], [2].

TaeoreEM IIL. If Tf = kxf, then T: H,— H,, where 0 <p <1 4ff
ke gYP~V (In particular, we must thus have k e ByP~>.)

Proof. As remarked in [1] it suffices to establish 7': H, - L,.
Again, in view of Theorem I, this is equivalent to the inequality

() % fllz,, < OF15 1 Nz -

(3) Actually in [3] is proved a little bit more, namely the in itself interesting
formula:

(%) K (i, f3 Hpys Hp)) =~ E (b, [ Dpy0 Lp,)
where f# denotes the “grand maximal function” of [4]. It would be interesting to know
if (x) could be derived using the present approach, too.

(%) It is perhaps not so well known, but B.M.O. actually stands for (the initials of)
my children Benjamin, Mikaela, Opi (Jakob). :
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Take now f = g,. Then (3) reduces to

9,5 S, < 0P r g, = O gz,

which precisely says that fe &P~ m
Incidentally from Theorem III we also get & very simple proof of
the multiplier theorem of Fefferman—Stein [4].
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Representation of random linear functionals
on certain S{IM,} spaces ’

by
CHIFAW CHANNING (Cleveland, Ohio)

Abstract. We prove an integral representation theorem for random linear funec-
tionals on certain § {Mp} spaces. With stronger conditions on {My}, the represen-
tation can be rewritten in terms of the Lebesgue integral over R%. In the process of
proving the main theorems, we obtain a probabilistic Riesz-Radon representation
theorem, which is of interest in it’s own right.

1. Introduction. The purpose of this paper is fo prove a representation
theorem for generalized random processes on a rather large class of spaces,
namely S{},} spaces. Such spaces are introduced by Yamanaka in & note
[67 in order to make possible a unified treatment of the K {M,} and S-type
spaces of Gel’fand-Shilov [2]. For K(a) (i.e. the space of C*(R)-functions
with supports contained in [—a, a]) such a representation theorem is
obtained by Ullrich [5], and for certain K {M,} spaces, by Swartz and
Myers [4]. Since the conditions we impose on S {1} spaces are all satistied
by those K {M,} spaces considered by Swartz and Myers, our represen-
tation theorem is hence more general.

Ag far as method goes, Ullrich, Swartz and Myers all use a scheme
of representing continuous linear functionals on ¢-normed spaces parallel
to the scheme employed by Gel’fand—Shilov [1], [2]. In this paper, we
are working in the same spirit.

The organization of the paper is as follows: In IT, we give the necessary
preliminary definitions, then prove S{M,} is complete and o-normed.
In III, we lay down the basic assumptions on {M,}, with the derivation
of two straightforward consequences. And in IV, we prove a lemma which
gives a “large” measurable set B ¢ %, where (2,4, u) is a fixed prob-
ability space, on which our random process is bounded. Then in V, we
establish a probabilistic version of the classical Riesz—Radon theorem for
continnous functions vanishing at co. This theorem, which is of indepen-
dent interest, is an important ingredient in the proof of Theorem 6.1.
An extension theorem, of a probabilistic Hahn-Banach type, is also stated
in V. This theorem is proved in Hang [3], and is used here on many oc-
casions that follow. In VI, the main results of this paper are stated and
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