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Weak-strong convolution operators on
certain disconnected groups

by
GARTH I GAUDRY (Bedford Park) and TAN R. INGLIS (Milano)

Abstract. In this paper we produce estimates for certain types of convolution
operators on LP (@), where @ is a type of totally disconnected LCA group. The oper-
ators under consideration are analogues of the weak-strong convolution operators
on R of Fefferman and Stein [2]. As in [2], our estimates are produced by observing
the action of the operators on the space BMO(G) of functions of bounded mean oscil-
lation on G. However, there is one significant difference in that our results are obtained
without the intervention of an analogue of the space H. '

Asg a consequence of the operator estimates, we provide sufficient conditions
for a function to be an L? Fourier multiplier, for indices p lying in a closed sub-interval
[r, ] of (1, ). We also show that the range [r, '] is best possible, by giving an
example of a function p which is an L? Fourier multiplier for all p in [r, 7], but nob
for any p outside [r,r'].

1. Definitions and notation.

1.1. Throughout this paper, we let & denote an LOA group having
the following propérties:

(i) there exists a strictly decreasing sequence {G,}..z of open
compact subgroups of G such that the index @,,,:@, of G,,, in @, is
bounded by some integer b= 2;

i) U6, = @ and NG, = {0};

(111) ,a(G,,) 1, ¢ denoting the Haar measure on G.

Let I" denote the dual group of G and, for each =, I, the annihila-
tor of @, in I'. Then {I'} is a strictly increasing sequence of open, com-
pact subgroups of I' sueh that I,:I,,; <?b, and

(iv) Ul = I'and M1, = {0}

12. If ¢ e L= (I'), denote by T, the continuous linear operator on
T} @), for which

(T, npf = ‘pf

If p e[1, co] and ¢ € L(I"), we say that ¢ is a Fourier multiplier

.of L?(G) if there exists a number B such that :

(1) 1Tl < Bliflly
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~for all f in I? A I”(@). Denote the space of such functions by IL,(I").
The norm of an element g of M,(I") is the smallest number B for which
(1) holds.

For the basic facts about multipliers, the reader is referred to Ed-
wards [1], Chapter 16.

1.3. For an element f of L} (@), define
) = smp | f ity

where, for a measurable set § of positive measure,

12
Gf.n__1+a;lu dy} ’

1
(s =57 Sf (o) o

‘We say that f e BMO(®) if and only if ¥ e L™(@), and we set |flsmo
= |If*llo. The space BMO(G) is a Banach space modulo the space of
constant funetions. Clearly, if f € L®, then feBMO and

[l oo < 201l

1.4. A radial function on @ (resp., I') is one which is constant on
 each set of the form. G, \G,, ., (resp., I, \I,).

1.5. If § is a coset modulo @, in @, that is, § = @, -+« for some =,
then [S]_,, called the predecessor of 8, is defined by the formula

8., =6G,_,+=.

1.6. I 0 <6< 1, and # e &, we define the subgroup G5~° of @ by
the formula

G, it a<o0,
G =
Gj if »>0,
where j is chosen so that
#{(Gy) < p(G) 0 < u(Ghy).

1.7. For each integer N, let Dy denote the Nth “Dirichlet kernel”

on @ defined by the formula
Dy(z) = EGN/H(GN)-

(For a set 8, &g is the indieator funection of S.)

2. Estimates on. BMO for convolution operators.

‘2.1. THEOREM. Suppose that k € L' () and that

(@) k() <B for all y in T, ’
and
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(ii) for all n, and ol y in G4y,

[ k(@—y)~kiz) o< B.
. \Gp
Then

1% * fllamo < Allflsaoy

for all f in L=(Q), where A is a number independent of |kl and of f.

Proof. The proof may be obtained as a simplification of that of
Theorem 2.2. W

2.9. TaEOREM. Suppose that 0 < 6 < 1, and that @ i the radial func-
tion on I' such that

(1) B(y) = ."'(Gnq-})elz
for each n. Let k& be an integrable function on G such that
(i) for oll ¥,

k) <B and

on I, N\T,,

BO()

@) k() <

and.
(i) for oll n, and all y in G,,

®3) f

NG

k(e —y)—F(=)| do < B.

Then there is ‘a number C such that

1%+ flemo < Cllflleuo
for all f in L™(@).

Proof. Fix f in L™(@). In estimating [[k«f|lgyo it suffices, by trans-
lation invariance, to consider the quantity

@ (e

+fo;, Where

12
f o (@) i, 0]
Write f = fa
®) fi=

We first estimate

1
(@ | e

In doing so, we shall suppose without loss of generalibty that
M Dy_yxfa = 0.

P oo

(v I

12
(6) — (k%) (;N_llgdm) .
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Now, if
(8) =5k
EG\IG%V_—Gﬂ—l’

and K (z) = &' (2—#), then

1 . 12
(9) (m G}[ ]]{}*fg (ﬂ?) - (k*f2)G‘N__ll dLB)

1
(e |
1 1 12
< ’_ ’ 2
#(6y-a) GNf (-“(GN) Gi (" —Teg)xfa ()] da;) dz,

—1
the equality following from (5) and (8), the estimate from Minkowski’s
inequality. :
Now, if p e I*(Gy), and

1 . 12
(F(GN) G£ el ) <1

- f K —k, a P
e )

(10)

then
1
1 |- (-
o lP(GN) J ( ks)*fs(sﬁl’(s)ds!

~ i%{ JE-m0ne-n e @l

B ; 1 1/2
< [ 1w =1y [—— [ 1fus—1)p
Gfl( )()1(MGN) gi \fals—1)] ds) i,

by Fubini’s theorem and (10). But j

(o [re-ora)
N

' 1 . 12
=(,u(GN) e f 1£2(8) — Dayyxfa(8)! ds) < Iflleaos

N+t
thanks to assumption (7). Hence, by (9), (11), and (12), )

13 1 ’ 3
(13) (mg}fv o f3 () — (Bx fadgy,| M) '

N 1
< Wlewo—i—— | d [ ' —E
Wosco 77— GN[ 1 Jw—ria
<Wfho smp [ k) —Ht—2)1d < Blflamo,
IN~1 G\[GI—H} . ' N
N——1
by (8) and (3). : ,
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We next estimate the component of (4), due to f;. Write b =f;—
—Dy_p*fy. Then - .

1 Ly
w0 (g [ e~ ot )
1 2 " -~1{2
=(n(GN> 4 Vex b ‘“) < p(G) P oxhlly

=ne (|

INEN—1
= B p(Gx)* 2| fy — Dy_i#fille

by (1) and (2). But, by (5) and the fact that Gy_, < (%551,

Ifi— Dy_yfills = ( f If—DN_l*f]Z‘dm)m.

BRI )" < p(@) B w(x™( [ o) )"
r

i—-8

) |5t NS
So, by (14),
1 X R 12
(15) (mai TR S dm)
& 1o 2 12
< B (n@ ‘_ (AN m)
(st l_af AT R)
Gyl
' el [y
B I L e S i“z’”)

G y—1l-1

< 2 B " flamo

by 1.6, assumption 1.1, and the definition of BMO.
Combining (13) and (15) completes the proof. m

2.3. CoROLLARY. If % s as in 2.2, then

&+ Fllamo < 201l )
for all f in T™(@), C being the constamzin the conclusion of Theorem 2.2. ®

3. Interpolation. A key step in the production of our estimates for I?
Fourier multipliers, is an interpolation theorem for analytic families of
operators simultaneously mapping L to BMO and I? to I'. We shall
omit the proof, which is a generalisation of the corresponding result on
R"™ of Fefferman and Stein [loc. cit.].
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3.1. THrOREM. Suppose that z —T, is a mapping from the strip
={z€¥: 0<<Rez<1}to the space of bounded linear operators on I*}(Q).
We assume this mapping to be strongly continuous and uniformly bounded
on 8, and analytic in the interior of S.
Suppose that there are constants M, amd M, such that

sup [Ty fllsmo < Mollfle: 4 feFnl™@)
—ooy< oo
and
_mszlp I Zyaflle < Mallflle. i felX(@).

If 0<t<l, p =2/t and f is a simple integrable fumction, then
' Tefllp < M\l
whe're M, 18 independent of f.
4. Multiplier theorems. In proving our multiplier theorems, we shall
make use of the following observation.
4.1. LeMMA. Let D be ¢ bounded radial function on I'. For each integer N,
let Oy = Bérns_y» and Fy be the function on G such that Fry = . Then

(&3] 1 x+fllsmo < Oliflemo
Jor all f in L™(@), where O is o number independent of N and f.
Proof. One way is to observe that Fy is also radial, and so

f 1Py (@—y)—Py(2) do =0 .

for all y in @, and a]l n. Hence (1) follows from Theorem 2.1.
-Alternatively, one may observe that the BMO norm is equivalent
to the norm

Jop (2 S 0=
N3 =n

We wish to deal with kernels k¥ on G which are not necessarily inte-
grable, but satisfy conditions like those in 2.2(i) and 2.2(ii). So we shall
need the following regularisation result. ;

4.2. LEMvMA. Let % be a pseudomeasure with compact support on G,
integrable on each compaci subset of G\{0}). Assume that

(i) #f © is as in 2.2(1), then

fle<B and  |k(y)| < BO(y) ae.

@

and
(ii) for all m, and ¥t y in G,

@) [ ke—y)—k@law<B.

G\[G,lfel..; .
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Let ; = Dyxk. Then the functions k; are integrable and sotisfy. the
conditions of Theorem 2.2 umiformly in i (with & different value for B).

Proof. The only nontrivial assertion to check is 2.2(ii). Suppose n
given, and that y e G,. Then

@ [ Dwk(a—y)—Dek(z)] do

[N WY
<[m@l] [ ba—a—k@—y—2) djd
¢ e ok B
<[ [ (k@) -ke—2)]+ k@) —k@—y)i+
G G\IG:,,_BLl

+ bl —y) — o —y—2)|) da}de.

Two cases now arise: (a) G; < @,; and (b) &, < G;.
Oase (2). Observe that if z €G; < @,, then by (3),

(5) f

TN ol BY

k(x) —k(z—2)| do < B.

Again, by hypothesis (3),
(6) f
G\IGL—G]—1
sinee y € @,,. Finally,
M [ ke—y)—kle—y—2)ds
TEN o B
(G\[G':,_B]_l)-l-u
by (8) and the fact that y €6,

[ IDisklz—y)

PN W

k(z) ~ k(@ —y)| Ao < B,

k(@) —k@—2lde = [ [k(@)—klz—2)|da< B,
TN - Y
< [GL°]_,. From (4)~(T7), we deduce thab

— Dyke()| dw < 3B,
when ¥ € Gy,
Case (b). In this case,

[ Dak(@—9)
TN WY

— Dk()] iz — 0,

since y e @, = Gy, and Dy(s—1) = Dy(s) for all 3 in @ and all s.m
Here now is the main multiplier theorem.
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4.3. TEEOREM. Suppose that k is a pseudomeasure satisfying all the
conditions in 4.2. If 0< a<1, then %O~ is a Fourier multiplier of L?
whenever -p € [2/(2—a), 2/a].

‘ Proof. It suffices to show that, when p = 2/a, O~°k&,, o € Mp(T)
for every j, with norm bounded independently of j. To tlns end, fix j,
and let {T},.c be the family of operators on I*(@), one for each 2z in §
= {ze¥: 0 < Rez<<1}, defined by the formula

() (TY)" = brpr_ 077 -

It is quite simple to check that, thanks to the condmons in 4.2(i), the
mapping 2z — T, is strongly continunous and umformly bounded on 8§,
and analytic in the interior of S.
Clearly, if feI*(G)
9) sﬂp
because of (8) and 4.2(i). "
Suppose next that fe I*nIL™(@), and write

(10) (Tuf)" = 0" epn s (kirnr_; f).
Let §; be the operator (on IFnL*(@)) defined by the formula

”Tl—}-iyf lla < Bliflle

(8" = icfr,\r_,-ﬁ .
By Corollary 2.3 and Lemma 4.2,

(1) 18; flmaco < Allfll
where A is independent of f and j. Lemma 4.1 shows that
(12) (1% ij Niemo < OlI8;fllzmo

where O is independent of f, j and y, and I,, is the operator defined by
the formula

(Lyg)” = 0% kp, N g .
Tt follows from (11) and (12) that
(13) ' sup [T fllemo < 40 flleo -

—oelY<:

The result now follows from (9), (13) and Theorem 3.1, (with t =q). m
A particular case of Theorem 3.1 is where we have a single linear
mapping which is simultaneousty continnous from I? to Z* and from L*®
to BMO. Such an operator will then be continuous from I? to I? wherever
2<p<oco. We are thus led to a second, simpler, multiplier theorem.

4.4. TEROREM. Let & be a pseudomeasure having oll the propemes
laid down in 4.2. Then keM (I") for all p in (1, oo).
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5. Applications and examples. For the remainder of this paper
we assume, solely for simplicity of presentation, that @,,;: @, =2 for
all n, and take 6 =1/2.

5.1. THROREM. Let @ be a bounded function on I' such that ¢ = 0 on Iy,
and, for each n> 0, ¢ is constant on the coseis of I, in Iy, p\Ty,. Then

(1) 90 e M,(I') when 1< p < oo;
and :

() f 0<a<,

90" e M) when 22 —a) <p<2/a.

(Note O(y) =27 when y e I\T,.,.)

Proof. Sinee the function ¢& is constant on cosets of I, and
bounded, there is a psendomeasure %, supported in G, such that k = ¢@.
At the same time, for each # >0, the funetion pO&mr,, I8 constant on
cosets of I3, and is therefore the Fourier transform of a pseudomeasure
supported in @,,. In other words, the behaviour of % on the set G\G,, depends
only on the part of ¢©@ supported in I},. Clearly, therefore, k is integrable
on each compact subset of G\{0}. If we verify condition (3) in Lemma 4.2
(with 6 = 1/2) for %, statements (i) and (ii) above will then follow directly
from Theorems 4.4 and 4.3, respectively. In other words, it remains to
prove that

@ I

e I

|k(z—y)—k(e)| de < B

for all integers », and all ¥ in @,.

Since & is supported in &y, we may restrict our attention to integers
n > 0. However, by Definition 1.6, G¥* = @,, or Gy according as
is even or odd. It is easily seen therefore that (1) will be established if
we prove that ‘

(2) ' [ k@—y)—k@)] do< B
N,

for all y in G,,, and all integers m > 1.

Fix an integer m > 1, and write & = %, + k,, where

i‘;l = Ez*mk' and i’z = EP\P.ZmiC-

By hypothesis, 7%2 is constant on cosets of I, ; hence k, is supported in ¢,,,
and makes no contribution to the left side of (2). On the other hand,
%, is supported in I}, and hence %, is constant on cosets of G,,,. Clearly,
then % (#—y)—Fk.(x) = 0 for all ¥ in G,,,, and we have established (2)
with B =0. m
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5.2. BxAMPLE. We now show that the range [2/(2-—a), 2/a] in
Theorem 5.1(ii) is best possible by exhibiting a function ¢ sa’msfymg
the hypotheses of Theorem 5.1, but such that

p =6 ¢ M (T

whenever g ¢ [2/(2—a), 2/a]. We achieve this by showing more, viz.
that if p = 2/(2—a), then p does mot belong to the closure of M, in
M,-norm for any ¢ < p. We also show that ¢ M3 (I'), that is, the opemtor
T, is not bounded from L (G) to I*(G). This makes an interesting contrast
W1th the “singular” multiplier example of Figh-Talamanca and Gaundry [3].
(At this stage, the reader is urged to consult the paper [4] of the authors.)
We construct Budin-Shapiro-like polynomials on & as follows. For

each 0= 0, fix 9% in Ty, \Toyy; and seb

o =5 = &%, :

¢ = 1t YRoke1 =1, .., n+1),

o = 92—1”“720'1?—17
~where the y% are chosen in. Iy, 5 \Iyy,; in such a way that (¢f)" and (of)"
are both constant and nonzero on precisely 2F cosets of I, in Ty, ;N\
{In fact, (o¥)" and (o})" will both take the values 427" on 2" cosets of
I, in 1’m o opyy) It 8 eagily seen that

- 86

[} +1ohl = 2{lgh i o[} = ... = 2FT1g, ,
n
ol << 2+
and
' flohl, < 20+ 0R—nip
for 2 =0,...,n+1 '

‘We define ¢ to be 0 on I'y and on all sebs of the form I, , \ 1%, (n2>1).
For # > 0, we set ¢ equal to sgn(g;‘H)A on Iy o\Ty,, ;. By Theorem 5.1,
v = p0"* € M,, where ep = 2/(2—a).

To show that v ¢ M, (F ), it suffices, by Proposition 1 of [4], to produce
@ sequence {ha} in 4,(@) such that |k,ll, is bounded, [yl 4g —> 0, amd

@ by = [9(p) () dy - 0.

Take, for-n>1,
= By = gty 2O
Sinee :

(9:-}-1) = (Q:+1) 51'2,;,‘_3\1‘2”_(_1’

icm
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we see that
Hlemallay < Mol iy o) o
< 9nt2—nip’ . pn+llip’ _ gn+2)2+@+1)ip’
Hence []hn[IAp < 1 for all ». However.
Wrnlag < Mo salelEry, N sy) /20O’
— 9+l —1p) _,

as n — oo sinee g << p. Finally”

{py by = f g g~ (wrRm)ip’) g - Q- i) g,
Top+a\Tan 41
=27,
and so p ¢ M, (I') whenever ¢ << p.

Finally we show that T, ¢ M3(I") by exhibiting a sequence of functions
{fa} in I*(@) such that

Wi
———uu‘}’a‘]’ >o00 ‘88 M0
nh2
We take
Ju = Ohs1-
Clearly, )
(Tfa) "= gmnpmtoadleng, an+2 N\ 2nt1?
and so
]Tv.fnl — 2n+1-—(1—u)((n+1)l2)592“+1
Hence )
ﬂwaqu’ — 2n+1—(1—a)((n+l)]2)r—(2n+1),‘p’,
while
falle = Ifalla = 22
Therefore
T . ‘
I “}frlz[ilp =902 L, oo a5 g > oo,
n

gince 0 < a<l. m
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Fat equicontinuous groups of homeomorphisms of linear topological
spaces and their application to the problem of isometries in
linear metric spaces

by
P. MANKIEWICZ (Warszawa)

Abstract. It is proved that if X is a locally convex linear topological space with
the. strong Krein—-Milman property, then every equicontinuous group of homeo-
morphism of X which includes franslations and “minus identity”, consists of affine
mappings only. Also, it is proved that for every metrizable t.v.s. X the following
two statements are equivalent : (i) every equicontinuous group of Homeomorphisms
of X which includes translations and “minus identity” consists of affine mappings
only, (ii) for every translation invariant metrie 4 on X indueing the topology of X,
every isometry from (X, d) onto another linear metric space is .affine.

The question whether every surjective isometry between two linear
metric spaces is affine has not been solved yet {the metrics are assumed
to be translation invariant). The first result in this direction has been
obtained by S. Mazur and 8. Ulam in [6]. Namely, they proved that the
question has a positive answer if the metries are given by norms. Their
proof is based on the argument that, if the metric is sufficiently regular,
then one can define, in terms of the metric, the midpoint of a given interval.
This argument has been used by several authors to prove the correspon-
ding results for other classes of metrics (a survey of these results is to
be found in [8]). In our opinion, it is worthwhile to change the approach
and to ask whether the corresponding version of the Mazur—Ulam theokem
holds for arbitrary metrics, provided, may be, that ‘the spaces involved
are sufficiently “nice”. The first atbtempt along this line was made by
7. Charzytiski [1], who proved that the theorem in question holds when
both spaces are finite-dimensional. In [5], the author has generalized
Charzyniski’s result to the case of metrizable locally convex Montel spaces.

Tn the present note, we study equicontinuous subgroups of groups
of homeomorphisms of linear topological spaces, which include transla-
tions and “minus identity”. We show that, if X is a locally convex linear
space with the strong Krein-Milman property, then

(%) every equicontinuous group of homeomorphisms of X including
translations and “minus identity” must consist of affine mappings only.
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