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Fat equicontinuous groups of homeomorphisms of linear topological
spaces and their application to the problem of isometries in
linear metric spaces

by
P. MANKIEWICZ (Warszawa)

Abstract. It is proved that if X is a locally convex linear topological space with
the. strong Krein—-Milman property, then every equicontinuous group of homeo-
morphism of X which includes franslations and “minus identity”, consists of affine
mappings only. Also, it is proved that for every metrizable t.v.s. X the following
two statements are equivalent : (i) every equicontinuous group of Homeomorphisms
of X which includes translations and “minus identity” consists of affine mappings
only, (ii) for every translation invariant metrie 4 on X indueing the topology of X,
every isometry from (X, d) onto another linear metric space is .affine.

The question whether every surjective isometry between two linear
metric spaces is affine has not been solved yet {the metrics are assumed
to be translation invariant). The first result in this direction has been
obtained by S. Mazur and 8. Ulam in [6]. Namely, they proved that the
question has a positive answer if the metries are given by norms. Their
proof is based on the argument that, if the metric is sufficiently regular,
then one can define, in terms of the metric, the midpoint of a given interval.
This argument has been used by several authors to prove the correspon-
ding results for other classes of metrics (a survey of these results is to
be found in [8]). In our opinion, it is worthwhile to change the approach
and to ask whether the corresponding version of the Mazur—Ulam theokem
holds for arbitrary metrics, provided, may be, that ‘the spaces involved
are sufficiently “nice”. The first atbtempt along this line was made by
7. Charzytiski [1], who proved that the theorem in question holds when
both spaces are finite-dimensional. In [5], the author has generalized
Charzyniski’s result to the case of metrizable locally convex Montel spaces.

Tn the present note, we study equicontinuous subgroups of groups
of homeomorphisms of linear topological spaces, which include transla-
tions and “minus identity”. We show that, if X is a locally convex linear
space with the strong Krein-Milman property, then

(%) every equicontinuous group of homeomorphisms of X including
translations and “minus identity” must consist of affine mappings only.
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Also, we prove that for a metrizable t.v.s., property (+) is equivalent
to the fact that the corresponding version of the Mazur—Ulam theorem
holds for arbitrary metries inducing the topology of X. The last result
shows that the equicontinuous groups of homeomorphisms are a useful
tool in studing the problem of isometries.

For the sake of completeness, we include in this note several results
and arguments previously presented in [5]. .

1. Preliminaries. !X, ¥ will-denote real topological Hausdorff vector
spaces; explicit mention of the topology will usnally be suppressed. H (X)
will denote the group (under composition) of all homeomorphisms of X
onto itself. A subgroup of H(X) is distinguished, given by the algebraic
structure of X, T'(X), generated by translations and “minus identity”:

T(X) = {peH(X): p0) = ew+y, e = £1, y ¢ X}.

A subgroup of H(X) is called fat if it includes T'(X). If f e H(X), G(f) is
the subgroup of H(X) generated by f and T(X). For any subgroup G of
H(X), we define

@ = {fe6: f(0) = 0}.
In particular, (G(f)), will be written as Go(f).

A fat subgroup @ of H(X) is said to be equicontinuous iff its elements
are equiuniformly continuous, i.e. for any neighbourhood U of the origin
in X, there is a neighbourhood V of the origin X such that fe@ and
x—y eV imply f(#)—f(y) € U for all feG.

Remark 1. If ¢ is a fa.t subgroup of H(X), then

Gy, = {geG: g(x) = f(z)—f( ) for some fe@ and for all z € X},
G ={feH(X): f(z) = g(v)+y for some ge@y,y X and all z e X}.

Remark 2. Tt can easily be deduced from the previous remark
that a fat subgroup & is equicontinuous iff @, is equicontinuouns at the
origin.

It is clear that T'(X) is equicontinuous.

Aff (X) and Lin (X) will denote the group of all affine homeomor-
phisms and the group of all linear homeomorphisms of X, respectively.

If the space X is metrizable, we shall denote by Metr (X) the set
of all metries ¢ inducing the topology of X which are franslation in-
variant, i.e. such that d(z, y) = d(xz—y, 0), for all »,y e X.

By I(X, d) we shall denote the subgroup of H(X) consisting of all
isometries with respect to the metric d e Metr (X).

2. Isometries in linear meiric spaces. The following fact is due to
Z. Charzytigki [1] (ef. [5]).
.. .. . PrOPOSTTION 1. For a meirizable topological wvestor space X, the
. following conditions are equivalent: .
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(i) for every deMetr(X), every isometry from (X, d) onto another
lineay metric space is affine,

(ii) I(X, d) < Aff (X), for every d € Metr (X).

Charzynski’s argument will be presented in Section 6 in the proof of
Theorem 3, which generalizes Proposition 1.

‘The next proposition shows a connection between fat equicontinuous
groups and groups of isometries.

ProOPOSITION 2. For a metrizable topological wvector space X, the fol-
lowing conditions are equivalent:

(i) I(X, d) < Aff (X), for every d e Metr(X),

(ii) every equicontinuous fat subgroup of H(X) is contained in Aff (X).

Proof. (i) = (ii). Let @ be an arbitrary fat equicontinuous subgroup
of H(X), and let & be an arbitrary bounded metric in Metr(X). Define
a(z, y) = sup {hg(®), g(¥)): g €G}. Obviously, @ is a metric and

1) a(z, y) = d(f(z), f(v))

‘We shall prove that d e Metr (X). Since all translations belong to @,
we deduce, by (1), that &(z, y) = d{z—y, 0) for all 2, ¥ € X. Now, observe

for every #,yc X and fe@.

that

{2) Az, y)=hiz,y). for all zy e X.

On the other hand, take £ > 0. Since ¢ is equicontinuous and h € Metr (X),
there is 5 > 0 such that h{z, y) <y implies h(y(m),g ) < & for every
g €@. But this means that, for every £>.0, there is an 5 > 0 such that
k(z, y) < n implies d(®, y) < e. This, with (2), shows that @ induces the
same topology as k. Thus, d € Metr (X).

Finally, by. (1), we have @ < I{X, d). Hence, by (i), ¢ e Aff (X).

(if) = (i). It suffices to observe that, for every metric d e Mefr (X),
the group I(X,d) is a fat equicontinuous subgroup of H(X).

3. Affine groups property. In view of the previous section, one sees
that investigations of fat equicontinuous groups of homeomorphisms may
be useful in studying the gquestion whether every surjective isometry
between two linear metric spaces must be affine. In what follows, we
shall say that a linear topological space X has the affine groups property
if and only if every fat equicontinuous subgroup of H(X) is contained
in Aff (X). In the theorem below, we give several necessary and sufficient
conditions for a space X to have the affine groups property.

THEEOREM 1. Let X be a linear topological space. Then the following
conditions are equivalent:

(i) X has the affine groups property, .
(ii) for every fat equicontinuous subgroup G of H(X), G4 is contained
4n Lin (X),
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(iii) for every equicontinuous fat subgroup G of H (X
= —g(—a), for every gc@, and v X,

(iv) for Veve'ry feH(X) such. that G( f) is equicontinuous, G(f) <
Aﬁ(X)

), we have g(x)

) for every feH(X) such that G( f) is equicontinuous, Go(f) =
Lin (X ),
(vi) for every f e H(X) such that G(f) is equicontinuous, the mapping

= f(@) —f(0), for # € X, is linear and
Go(f) = Golg) = {eg™: ¢ = +1, n =0, £1, £2,...},
(vii) fm every feH(X) such that G(f) is equicontinuous, @,(f) is
abelian,

(viii) for every feH(X) such that G(f) is equicontinuous, we have
g{z) = —g(—2) for every g e Gy(f) ond v X.

Proof. The implications (i) = (ii) = (v) are frivial.

(iii) = (i). (iii) means that g(%(m—}-(—w))) = }g@ +g(—a), for
every g € G4 and every z € X. Using Remark 1, one can ecasily show that
this imples that f{3@+%)) = Hf(®)+f(y)) for every fe& and every
2,y € X. Therefore, @ consists of affine mappins only.

The implications (i) = (iv) = (v) are trivial.

(v) = ( ') We ha.ve g €Gy(f) and therefore the mapping g is linear.

Obviously, G(f) = . Hence Go(f) = Gy(g).. It is easy to check, by
using the linearity of g, that G{g) consists of all mappings of the form

hiz) = eg™(®)+y for weX,

where ¢ = £1, % =0, £+1, 4+2,... and yeX. Since Gy f) Go(9),
(vi) follows from the definition ef G,(g).

(vi) = (vii). Obvious.

(vil) = (viil). —Id € Gy (f) and therefore g commutes with it.

(viii) = (iii). Let @& be an arbitrary fat subgroup of H(X). Fix any
g € @. Trivially, G(g) = G'. Hence G(g) is equicontinuous and G,(g) = G.
By (viii), we infer that g(z) = —g(—=) for every # e X.

4. Invariant subsets. If @ is a subgroup of H(X) and A a subseb
of X, we write G4 for U g{4), which is the smallest G-invariant subset
of X including 4. We defme

Inv(@) = {4 « X: 4 =G4},
the class of all G-invariant subsets of X. The lemma below presents the
properties of G-invariant subsets needed in the sequel.

LeMMA 1. Let X be & linear topological space and let G be a fat sub-
group of H(X). Then ’
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(i) for every A eInv(@,), x e X and g e G,, we have
gla+4) = glz)+4 = gl&)+g(4),
(ii) every Gg-invariant subset is symmetric,

(i) if A, eInv(G,), for 1 eT, where T' is an arbitrary set of indices,
then () 4; e Inv(G,),
el

(iv) if A is Gyimvariant, so is ifs closure,
(v) if Ay, Agy .oy A, eInv(G,y), then A+ A3+ ... +4, eInv(Gy),
(vi) if @ is equicomtimwous, then the topology of X admits a base of
G-invariant neighbourhoods of the origin. -
Proof. (i). Fix #e X, A eInv(G,), g €G,. The statement follows
directly from the definition of Inv(@,) applied to the mapping fe@,,
defined by

flw) =g(uts)—g(@) for wuelX.

(i), (iii), (iv) are obvious.

v). It suffices to show that A+ B eInv(@,) provided that A, B
e Inv(@,). To this end fix 4, B eInv(@,). By (i), we have

g(4+B) = Q glw+B) = g g(®)+B =g(4)+B =A+B,

for every g €@,.

(vi). Let % be an arbitrary base of neighbourhoods of the origin
in X. Tt can easily be checked (in the same way as in the proof of Propo-
sition 2) that {G, U: U e &} forms a G-invariant base of neighbourhoods
of the origin equivalent to #%.

LEMMA 2. Let X be a locally convex linear topological space and
let G be am equicontinuous fat subgroup of H(X). Then, for every A c X,
we infer. that G,A is bounded if and only if A is bounded.

Proef. Assume that 4 is a bounded subset of X. Liet # be a base
of Ginvariant neighbourhoods of the origin in X. For every Ue%,
let U’ be a convex neighbourhood of the origin contained in U. For any
positive integer % and for every V < X, denote

ERV =V+ ...

Since A is bounded, for every U e % there is a positive integer %(U) such
that A < k(U)U’. Since U’ is convex and U’ < U, we have

(3) A=K U =KTOT cHOU.

By (3) and by Lemma 1 (v), each seb k(U)® U is Gy-invariant and con-
tains 4. By Lemma 1 (iii), the set B = ﬂ E(U)® U is Gginvariant.

+V, the sum of % copies of V.

2 — Studia Mathematica LXIV.1
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Since A = B, we have @, 4 c B. Given any convex neighbourhood 12
of the origin, take U e with U < V. We have

Gd < Bh(U)OU c K(T)OV =k(T) V.

Thus G,4 is bounded.

The reverse implication of the lemma is an obvious consequence
of the fact that 4 « G.4. ‘

QuesTtIox. Can the assumption that X is locally convex be ommited
in the lemma above?

5. Extreme points and spaces with the strong Krein~-Milman property.
Main result. We recall that, if 4 is a subset of a linear space X, then
LA is said to be an extreme point of A iff x, does not belong to the
convex hull of AN {z,}. To prove the main theorem of this note, we shall
need the following

LEmia 3. Let X be a linear topological space and let @ be a fat sub-
group of H(X). Assume that A <« X s @ Gy-invariant subset of X and @,
is an extreme point of A. Then, for every g € Gy, we have

glzo) = —g(—m0)-

Proof. By Lemma 1 (ii), 4 is symmetric and —ax, e A, therefore
—, is also an extreme point of 4. Observe that the set B = (2, +4) N
A (—@y+4) is symmétric. Now, if 0 #z € B, then 0 = %(w+(—m))
and 0 is not an extreme point of —z,+ 4. This would imply that z, is
not an extreme point of 4 —a contradiction. Since 0B, we obtain
B = {0}. ‘

Fix an arbitrary g €@,. By Lemma 1 (i), we have

0} = g({0}) = g{(@o+A) 0 (—mo+ )| = (o) +9(4)) N g — ) +g(4)).

Sinee g(wo)+9(— o) = (9(@s) +9(4)) 0 (g(—20)+-¢(4)), we deduce that
0 = g(zo) +g( —). Thus glag) = —g(—2)-

Linear topological spaces with the property that every closed bounded
subset possesses at least one extreme point are said to have the sirong
Krein—Milman property. In such & case, we shall write for short : X has
the SKMP. , : ;

MaTx TEEOREM. Let X be & locally convex limear fopological space
with the SKMP. Then X has the affine groups property.

Proof. Fix f e H(X) such that G(f) is equicontinuous and set

B={&weX: g(x) = —g(—a) for g €Go(f)}-

icm°®
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Observe that for every y e B and every heGy(f), setting y' = h(y),
we have

9@ = g(b(®)) = (gh)(y) = —h)(—y) = —g{R{—y))
= —g{-k®)} = —g(—¥",

for every g € Go(f). This means that B is Gy{f)-invariant. .

By Theorem 1 (viii), it suffices to show that B = X. Assume the
contrary,i.e. that B == X, and fix # € X\ B. It is easy to see that Bis closed.
Hence, by Lemma 1 (vi), there exists a Gy(f)-invariant neighbourhood
of the origin, say V, such that -+ 7V is disjoint with B. Thus = ¢ B--V.
Note that, by Lemama 1 (v), g(z) ¢ g(B+V) = B-LV, for every g € G4(f)
This means that the set 4 = {g(x): g €Go(f)} is disjoint with B+7V.
Therefore, the closure of A is disjoint with B. On the other hand, A is
the smallest @, (f)-invariant subset containing #. By Lemma 2, 4 is bounded.
Hence the closure of A contains at least one extreme point, say. z,.
By Lemma 1 (iv), the closure of A4 is G;{f)-invariant and by Lemma 3
we obtain z, € B—a contradiction.

The theorem above and the results presented in Section 2, together
can be summarized in

CororLrArY. If X is @& metrizable locally convex linear space with the
SEMP and d is a melric on X, then every isometry from (X, d) onfo another
linear metric space is affine.

QUESTION. Does the theorem above remain valid withowt the assumption
that X 48 locally convex? .

QUESTION. Does every limear topological space possess the affine
groups property? It would be interesting even to know whether the
angwer is affirmative for locally convex or metrizable spaces.

Remark 3. In view of the Main Theorem it is worthwhile to men-
tion what spaces possess the SKMP. It is known ([7], [4]) that for Banach
spaces the SKMP is equivalent to the Radon—Nikodym property. This
implies that every reflexive and every separable conjugate Banach space
has the SKMP (cf. [3]). Also, it can easily be proved that every locally
convex Montel space has the SKMP.

LevMwva 4. Let X be a finite-dimensional space and let T e H(X)
be a linear mapping such that G(T) is equicontinuous. Then each z € X
is am extreme point of its Go(T)-ordbit (i.e. of the set Go(T){&} = {g(x): ge
€ Go(T))). ‘

Proof.. Without any loss of generality we may assume that X is
an n-dimensional Euclidian space. Put ¢ = G(T). Observe that

(4) Golr) = {eT™(@): e = +1, n =0, £1, £3, ...},
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for each z € X. Take any bounded convex neighbourhood U of the origin
in X. Let V be the closed convex hull of &,U. Using the linearity of T,
it is easy to check that V is a bounded G,-invariant convex symmetric
body in X. Therefore, there is a unique symmetric ellipsoid ¥ e X with
the minimal volume, among all the ellipsoids in X containing ¥ [9].
Sinee T leaves V invariant, we infer that T does not change the volume.
On the other hand, since T(V) = V, we deduce that T(E) = E. Hence T

" is an isometry with respect to the Huclidean norm Il Iz induced on X
by . This and (4) imply that G,{z} = {y e X: lyliy = lolz} for each
2 e X. The lemma follows from the fact that each point on the boundary
of E is an extreme point of F.

THEOREM 2. Let X be o linear topological space. Then the following
conditions are equivalent:

(i) X has the affine groups property,

(i) for every feH(X) such that G(f) is equicontinuous and for every
2 e X, x is an ewtreme point of its Go(f)-orbit (i.e. of the set Go(f){z}).

Proof. (i) = (ii). Take fe H(X) such that G(f) is equicontinuous
and fix # e X. By (i), f is affine. Without any loss of generality we may
assume that f is linear. Put ¢ = @(f). By Lemma 1 (vi), we have G,
={ef": e = L1, w =0, £1, £2,...}. Therefore G,{w} = {ef"@): ¢ =
+1, n =0, £1, £2,...}. Let 2, = f"(x) forn = 0, +1, -2, ... Assume
that # is not an extreme point of @,{x}. Then )

: m
® T =" =28it"iz"~i’

=1

: m
where & = £1,%, >0 and 3, =1. Put % = min {0, ny, 0, ..., fi,}
=1
and ! = max {0, %,, %y, ..., Ny,} and define ¥ = span {z;: & <4<} It fol-
lows from (5) that z; can be written in the form

i-1 -
? = Zaizi, where a;eR.

=k

Therefore
-1 -1

(6) f@) = Y af@) = Y an, e X.
i=k i=k

Sinee f(z;) = #,; and because of (6), we deduce that f(¥) = Y. Thus
Go{ow} = Y.Let T' = f|¥. Then Y is finite dimensional. Hence, by Lemma 4,
we conclude that # is an extreme point of Go(T) {z}. Since &, {&} = Go(T){x},
we infer that # is an exfreme point of G4{w} —a contradiction.

icm°®
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The reverse implication is an easy consequence of Lemma 3 and
Theorem 1 (viii). ‘ _

6. Pseudoisometries and unimorphies. A mapping f from a linear
topological space X onto another linear topological space ¥ will be ealled.
a pseudoisometry iff there exist such systems {d,: teT} and {h;: teT}
of translation-invariant pseudometrics inducing the topology of X and Y,
respectively, that, for every teT,

b (f(@), f(¥)) = dyfw,y) for every ,yeX.
It for t e T, &, and by are given by pseu&onorms, then fis said to be a uni-
morphy. It is known, (cf. [2], p. 111) that every unimorphy is affine.

TreEorEM 3. Let X be o linear topological space. Then the following
conditions are equivalent:

(i) X has the affine groups property,

(ii) every pseudoisometry from X onto amother linear topological space
s affine.

Proof. (i) = (ii). Fix any pseudoisometry f from X onto another
linear topological space Y and let {d,: t €T}, {k: ¢ T} be such systems
of translation-invariant pseudometries inducing the topologies of X and ¥,
respectively, that, for every ¢eZ,

h(f(@), f(y) = dyo,y) for every z,yeX.

Without any loss of generality we may assume that f(0) = 0.
Let & be the subgroup of H(X) consisting of all g € H(X) such thas,
for every teT,

d(g(®), 9(y)) = dz,y). for every »,yeX.

Obviously, @ is a fat equicontinuous group, and therefore consists of
affine mappings. For every y e X, define

ulo) = (f@)+fw)—y dor weX.
Tt is easy to see that, for every y € X, the mapping u, is & pseundoisometry
of X onto itself with respect to the pseudometrics {d;: ¢ € T}, and wu,(0)
= 0. Thus u, e & for every y ¢ X. Hence u, is linear for every ¥ & X. Set
v{®,y) = u(@)—z for every @,y eX.
We have
) v(@,y) =7 F@) FFy) —(@+y) =0y, 2),

for every », y € X. Obviously, v(, y) is linear at z and, by (7), we infer
that »(w, ¥) is linear at y as well. We shall prove that »(, y) = 0 for every
@,y e X. To this end, take an arbitrary real a. Then we have, for every


GUEST


22 P. Mankiewicz

teT,
daz, 0) = dy(u_, (az), 0) )
> d,(u‘a_ly(am)—am, 0) —dy{az, 0) = d,(v(am,a“ly),())—d,(m, 0)
= dl(v(m} v), 0)_‘2[(“”7 0).-
Finally, we infer that, for every teT,

a1y

2dy(az, 0) = d,(v(x, y), 0) for every «,y e X.

Letting o tend to zero, we infer that, for every ¢ eT,
d(v(@,9),0) =0 for every »,yeX.

Thus v(x, y) = 0 for every #, y € X. By (7), this means that

@ +f@) =w+y for every o,y e X.
Hence f(z+4y) = f(@)+f(y) for every z,yeX. Singe f i3 continuous,
we deduce that f is linear,

(ii) = (i). Let @ be an arbitrary fat equicontinuous subgroup of

H(X) and let {d;: t €T} be an arbitrary system of translation-invariant
pseudometries inducing the topology of X. Using a similar argument

to that used in the proof od Proposition 2, one can show that @ consists

of pseudoisometries with respect to the system of pseudometrios {d;: ¢ e T},
where

@, y) = sup {min {d(g(«), g(y)),1): g @)
for teT. Thus @ consists of affine mappings.

Remark 4. If X is a locally convex space with the affine groups
Iroperty, then every pseudoisometry f from X onto another space is
a unimorphy. Indeed, f is an affine homeomorphism and if {p,: teT}
is any system of pseudonorms inducing the topology of X, then f is & uni-
morphy with respect to {p;: t €T} and {g,: ¢ €T}, where ;

WYY = py(FHy)—F%0)) for every y e ¥ and teT.

A mapping fe H(X) is said to be a pseudoisometry of X onto itself
iff there is such a system of translation-invariant pseudometrics {d;: ¢ e T}
indueing the topology of X that, for every ¢ e T,

&4(f(=), f®)) = d(w,y) for every v,y e X.

Remark 5. If X is a locally convex space with the affine groups
property, then, for every pseudoisometry f of X onto itself, there exists

such a system of pseudonorms {p,: s €8} inducing the topology of X
that for every se®,

D:(f(@)=f(y) = psfo~y) for @,yeX.

e ©
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To show this, it is enough to observe that if G is & group of all pseundo-
isometries of X onto itself with respect to pseudorpetme.s {d;: teT} and
{g: s€ 8} is an arbitrary system of pseudonorms inducing the topology
ofs X, then it suffices to define, for s el,

py(@) = sup {g,(q¢(x)—g(0)): ge@} for wzeX.
(1, is & pseudonorm because of the fact that & consists of affine mappings.)
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