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Norm convergent expansion for I ,-valued Gaussian random elements

by
T. BYCZEOWSKI (Wroclaw)

Abstract. This paper is a continuation of [1]. We prove that every Gaussian
random element with values in an Orlicz space Lg can be expanded into a norm con-
vergent (a.s.) orthogonal series, where @ is a concave Young function.

In [1] we have investigated Gaussian random elements with values
in L, spaces, 0 < p << co. This paper is a continuation of [1]. We prove
here that the Gaussian random element with values in an Orliez space Lg
can be expanded into & morm convergent (a.s.) orthogonal series (under
the assumption that & is a concave Young function). This result has been
proved by Jain and Kallianpur for Gaussian random elements taking
values in an arbitrary Banach space [6]. In the proof of our theorem
we use a theorem on the convergence of Lg-valued martingales (Theorem 1).
This theorem is analogous to the theorem on the mean-convergence of
Banach-valued martingales, due to Chaterji [2]. In our situation, how-
ever, there are some difficulties connected with the construction of con-
ditional expectation because the classical notion of the Bochner infegral
cannot be used [11]. In recent years the integration theory for functions
with values in non-locally convex linear spaces has been developed by
several authors [3], [12], [14]. However, their constructions are restricted
to the case of p-normed spaces and therefore are not suitable for our
purposes. Our construction of integral and conditional expectation is
suggested by the notions of an integrable space and an integral, recently
introduced and investigated by Wilhelm for functions with values in
a normed group [16], [17], [18]. This construction is based on the corre-
spondence between random elements with values in an L, space and
measurable random processes with paths in an L, space, given by The-
orem 1.1 in [1] (see also Remark 4.4 in [1]).

Preliminaries. Let (7, F, m) be a measure space. Let @ be an arbi-
trary Young function, i.e. a continuous non-decreasing function defined
for 4 > 0 and such that ®(u) = 0 if and only if %= 0. Assume addition-
ally that @ is subadditive. Given such a function @, pub
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(1—a) DB ) =(1~a)¢( o f lu]e“‘"""zdu)
for every F-measurable real-valued function # on T. Let L, be the seb (i
of all real-valued F-measurable functions # on T such that |#lle < oo.

Clearly, L, is a linear space under usual addition and scalar multipli- = (1*“)45( 1/::—_— : f aly 16_"2120@) = (1 —a)®{s0)
cation and || ||y is & (usually non-homogeneous) seminorm on L, . Moreover, T
(Lgs Il llo)-i8 & complete linear metric space (we identify functions which . - B(oo)e P Ay < ye~ i g
are equal a.e.). (Lg, || llo) i8 an Orlicz space (usually on @ less restrictive Vor wise y
conditions are imposed) [8]-[10].
~ Now, let us assume that (T, F,m) is a o-finite separable measure f O (juf) R du — Bo(),
space. Then L, is separable ([13], p. 30). Let X be a Gaussian random 1/2.,6 ’7
element with values in L,. Then, by Theorem 1.1 in [1], it follows that . .
there exists & measurable Gaussian random process £ such that & = X which proves (i). We obtain (ii) in the same way, taking into account that
a.8. [P], where £(0) denotes the equivalence class of F-measurable func- (B2 = AR,
tions corresponding to &(w, +). In particular, u., the meagure induced on Ly : sis .
by & cofncides with tho distribution of T. On he ofher hand, every Wherf‘ifaﬁsy? lﬂiﬁ;ﬁjﬁt;”f‘jff‘;: A e Eiiﬁuﬁgma‘ 2.2.3).
measurable Gaussian random process with sample paths in L, induces, As it has been remarked in the Preliminaries, instead of Ly-valusd
in & natural way, a Gaussian random element with values in Ly (The- random elements we can consider measurable Gaussian random ;rocesses
orem 4.1 in [1]). with paths in Ls. Given a measurable Gaussian random process &(w, ),
Gaussian random elements with valueés in L, spaces. Now, we gener- write
alize to separable Orlicz spaces some results proved in [1] for L, spaces. 0(t) = BEQ®), mqt) = BO(|E@)), ;
First of all we prove a lemma which will be useful in the sequel. My(t) = BO(|E@H) —0(D)), K(s, ) = B&(t)=0(1)(£(s)—0(s)). -
LElV{M& T hff” exist real COW.SWMS a, 8,0 < a, § <1, such that for every PropostTION 1. The following statements are equivalent: T

symmetric Gaussion random variable n we have: i) &o,-) eIy as. [P],

. 1 () myely,

)  SEM) <HE¢(MD, (il) 0eLy and M, elL,.

) By these conditions it follows that KR
@) (@<L —1—_78-17}(15(]17]). (iv) Oely, and KV*eL,. -
Moreover, '1,f ® is concave, then (iv) implies (i) (and oll. these conditions

If we additionally assume that  is concave, then for every random variable & are equivalent).
we have Proof. We have

(iii) BO(§) < O(EIE). [motym(@) = [ BD(1&()))mdt)

Proof. Let ¢ = fwlwle_”z’zdm. Put | fE@ (s —o t)])m(dt)+fE@([B(t)})m(dt)
. 1/27- e ~fM._,, tym (@) + [ ®(10(8)l)m (at).
1 2 Thus, (iii) implies (ii). Since
= e P du. ?
V;’ {lyl<c}

[modm = B{f & (1&&))m(@n)} = Blél,,

Let o be the variance of 5. Then we have we infer that (ii) implies (i).
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The proof that (i) implies (iii) is almost the same as the corresponding

part of the proof of Theorem 4.2 in [1] and is omitted. .
Next, let us observe that by inequality (i) in the lemma we have

1f2 1
O, ") < 75 Mold),

and so (i) always implies (iv). On the other hand, if we assume that @
is concave, then, by inequality (iii) in the lemma, we obtain

1
- 12
My(t) < as( 4K(t,t)‘ )

Thus, if K(t, )" el';,p, then My € L, which proves that (iv) implies (iii),
and completes the proof.

COROLLARY 1. Let X be an Lg-valued Goussian random element. Then

X =0+Y

where 0 € Ly, and Y is & symmetric Gaussian random element with values
n Lg. .
. Proof. Let £ be a measurable Gaussian random process such thab
£ = X a.s. [P]. Then, by the above proposition. F&(t) = 0(%) € L, and
37(#) = £({)—0(t) i3 a syminetric Gaussian random process with paths
in Lg. Putting Y = 7, we obtain the desired conclusion.

COROLLARY 2. Let X be o Gaussian random element with values in Lg.
The support of X is the algebraic sum of an element of Ly and a closed linear
subspace.

The proof follows immediately from Theorem 2.1 in [1] and Corollary 1.

CoROLLARY 3. Let {£(t): t € T} be a measurable Guassian process and
let f be a real F-measurable functiow defined on T. Then either f&(w, +) € Lg
a.s. [P]1—if f0eLy, and ED(|fE—f0)) e Ly, or f&(w, *) ¢ Ly a.s. [P] —if
a? least one of these conditions is not satisfied (when @ is concave, we have
either f&(w, -) € Lo a.s. [P]—if f0 € Lo and fE* e Ly, or f&w, ) ¢Lg
a.8. [P] — if at least one of these conditions is not satisfied).

Proof ot this corollary follows immediately from Proposition 1 and
the 0-1 law (Theorem 2.1 [17).

R_em:?rk. ‘We can also observe, in the same way as in [1], Remark 4.3,
that if p is & Ganssian measure on Ly and @ is a complete measurable
subgroup of L,, then u(G) =0 or u(@) = 1.

Lg-valued martingales. Let (2, X, P) be a probability space and
let (T, F,m) be a o-finite measure space. Let @ be a Young function.
Assume that @ is concave (then it is, of course, subadditive).
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Let &, be the set of all real-valued X x F-measurable functions f
defined on 2 x T and such that [f]s < oo, where

[fle = [BEIF)am(t).
A

TH is easy to observe that (s, [ lo) is & complete metric linear space
(if we identify funetions which are equal a.e.). :
By & we shall denote the linear space of all functions of the form

n

@;(t)y4, (), where ;6 Ly and A;e X, ¢ =1, ...,
2 Ti\t) % a; i ’ 3y

i=1
PROPOSITION 2. & is a dense linear subspace of (L, [ lo)-

The proof- of this proposition depends on the standard approximation
argnments and is omitted. "

Now, let Z, be a sub-c-algebra of X. I f(w,f) = 2 5:() 1.4, (0),
we define =1

I(f) = D) P4\ %,
i=1

where P{-|Z,} denotes the conditional probability with respect to Z,.
Observe that
B(I(H) < BI(fD) = Bifl

whenever fe%. Therefore we have

(o< [flo-

.By the above inequality we see that I is a continuous linear mapping

from & into & ,. Since & is dense in %4, we can extend I onto #,. This
extension will be denoted by the same symbol and will be called the
conditional expectation operaior.
Now, we shall establish some elementary properties of I.
PROPOSITION 3. Let 5, be o sub-c-algebra of X and let I be the conditional
expectation operator with respect to Zy. The following statements are valid:
1. I{f) is & X, x F-measurable function, for every feZs.
I(af+B9) = aI(f)+BI(g) as. [Pxm], for f,9€ %o, 0, f R
I (Nle < Ufloy for feZo.
. [I(f)dP = [fdP as. [m], for fe Lo and A eZq.
A A

oW b

5. Let 5;, 4 = 0, 1, be sub-o-algebras of 2. Let I; denote the conditional
expectation operator with respect to Z;, ¢ = 0, 1. If %, = Xy, then
L(L(f) = L{L() = L) as. [Pxm]
Jor feZs.
6. I(f) =f as. [Pxm]if fis X, X F-measurable.
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Proof. Property 1 follows immediately from the fact that the top-

ology in (%4, [ Js) is stronger than the topology of convergence in the
measure P xXm (see the lemma, (iii)).

Properties 2,3,5,6 follow immediately from the construction of I.
‘We prove property 4. We have

|[1(hap~ [ I(f)aE|<BIf—F)
A A
and
| [ 3P~ [ f,dP|< BIf—F,l.
A 4
Thus we have . .
- |f 1tap— [1(£)aP||, <f~fulo
A A4

and
| [ 74— [f.aP|, <[f~fus-
4 4

Nowz let £, e ‘5,”.&11(1 let [f,—fls — 0. Since 4 obviously‘holds for f,, we
obtain the required coneclusion from the following inequality:

|jrnap— [ar| < [rinar— [1isar], +| [rap— [s.a8],

<2 [f‘”fn]di .

PROPOSITION 4. Lel fe%y. Then I(f) = B{f|Z}

. = a.s. [PXm]
where E{f(1)|Z} denotes the usual conditional empectati y ’
v ol iy 1 7 ion of the random

Proof. By the standard approxima,tian argun i ily 1

y guments it easily follows
that B{f| Xy} is Z, x F-measurable. The required equality is obvious if
fe%. Now, let fe £, and let f, € & be such that [f, —f],— 0. By the

property of I we have [I(f,)—I(f)]o— 0. On the other hand, we have ‘

[B(B{f s ) —F (s N ZN) S BUfuly ) =7, ).

Hence

LE{fa] 20}~ B {f1 Z}1e < [fu— 1o
Therefore {F1Z}]e <Ufu—Flo

) =E{fIZ%} o (Lo, [ Jo)s
which - means that
I(f) = B{f1Z3} as. [Pxm].

Remarks. (i) Let X be a random element with values in Ld; and let &
be a meagnrable stochastic process such that § = X a.5. [P]. Assume that

icm®
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Ee Py Let 2y = {Z, 0} and pub

—
BX = I&.

Tt is easy to verify that the expectation Fis well defined and that BX € Ly.

Moreover, if we indentify (Zo, [ lo) with the family of all L-valued
yandom elements X having the property that the measurable process &
representing X belongs to £, then the mapping X — BX is a continuous
linear operator from (&g, [ o) into (Lgs || la)-

(ii) Tt is easy to observe that [f 1, = Blifls is not suitable for our
purposes. If &(1) =17, 0 <p <1, and m is the Lebesgue measure on [0, 1],
then it is easy to find a sequence f, € & such that E\fullp— 0 bub I1T{(F)ll,
— co. More generally it can be shown that if the metric linear space is
not locally convex, then there exists & sequence f, of simple functions,
defined on the unit interval with the Lebesgue measure, uniformly tending
to zero and such that |Ef,]+ 0 [11] '

(iii) Tn the construction of I the condition that @ is concave wWas
used only in order to ensure that the Zg-topology should be stronger
thian the topology of convergence in the measure P xm. Observe that this
condition is satisfied when m is finite or when limsupt/®(t) < oo.

-0+

Now, let Z; be an increasing sequence of sub-c-algebras of X. A se-
quence f; of Z;x F-measurable mappings defined on 2x T is called -an
Lgvalued martingale it [file < oo and i<j = B{flZ} =i

TreoreM 1. Let {f,, Z, n>1} be an Lgy-valued martingale such that

o= E{flz“n}
where f € 4. Then

im([fo—Ffale = 0,
where .o = B{f|Zw} and Z is the o-algebra generated by ) Z,.
n=>1

This theorem has been proved by Chaterji [2] for Banach space-valued
martingales. It is easy o observe that the arguments used there remain
valid also in our situation.

Expapsion of Gaussian random elements. Assume that (I, ¥, m)
is a o-finite separable measure space and that & is a concave Young func-
tion.

We prove the main result of this paper.

TrEogEM 2. Let X be a Gaussian random element with values in Lg.
There ewists a function 8 €Ly, & sequence (&) of independent, normally
distributed real random variables with mean zero and variance 1 and a se-
quence (y,) of elements of Lg such that
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o0

X =0+ &y,
F1

where the series 3, &vp; converges a.s. [P] iw the norm of Lg.

Proof. By Corollary 1 it follows that we can assume without loss
of generality that 6 = 0.

Now, let & be a X x F-measurable Gaussian random process such
that £ = X a.s. [P]. We can assume that £(-,t) e Ly(R2), for every t e T.
Arguing as in the proof of Theorem 1 in [6], we obtain the equality

= Y &),

j=1
where &’s have the required properties and, for every te T, the series
converges in L,(£2) and hence a.e. [P]. By the proof of Lemma 1 in [5]

n
we have K(t,1) = 3 v2(1). By Proposition 1, (iv), we have K (t, 1) & L,.
n=1

Thus we have y, € L. By the lemma, we obtain

1
[£lo < 7= EIXl.
Since B[ X|lg < oo [4], We have & L,. Let 5, = B{£|2,}, where X2,
is the ¢-field generated by {&, &, ..., &,}. By Theorem 1 it follows that
[£n fm]¢—>0 where £, = E{&[ - By the lemma, (iii), we obtain

E{]J fwng-—)() Thus, f —- J” in probability. By Proposition 4 we

obtain £, Z &y and S, = & a.8. [P xm]. Since & are independent,
we obtain .f - fmth probability 1 (see Theorem 1 in [7]), which com-
pletes the proof.

Added in proof. The author has recently learned of a paper of 3.T. Toprapss,
O mepax 6 Ganazosuiz npocmpancmeer usmepumbiz Pyrryuld, TPymHE Tommmccwxoro]
yausepcuTera, 166 (1976), pp. 43-50. Using an inequality stated in this paper in the
lemma, p. 48, one can observe that the conditions (i}~(iv) in our Proposition 1
are equivalent for arbitrary separable L space, under assumption that & is a con-
tinuous nondecreasing function satisfying (A,) condition and such that &> 0 and
@(t) = 0 iff ¢ = 0. Also all the remaining results hold for all separable Lg spaces,
with & as above.
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