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A formula for the eigenvalues of a compact operator
by
HERMANN KONIG (Bonn)

Abstract. Lot T be a compact operator in a Banach space X. “Let 1,(T) denote
the eigenvalues of T ordered in non-increasing absolute value and counted according
to their multiplicity. We prove that

[ (T)] = Hm ap(Tm)Hm,
M—>0

where a,, denotes the approximation numbers or any other s-number sequence in the
sense of [5]. For » = 1 this is the well-known formula for the spectral radius of T.
As a corollary one has Weyl’s inequality in Hilbert spaces. We also give an estimate
for |4, (T)| by the approximation numbers of I' with respect to an equivalent norm on X.

1. Introduction. Let X and ¥ be complex Banach spaces. We denote
the continuous linear operators from X into ¥ by (X, X), the compact
operators by A (X, Y). Let Z(X) = Z(X, X) and A (X) = A (X, X).
The approximation numbers of T e £ (X, ¥) are defined by

0,(T) = it {|T—T,j: T, € £(X, ¥), 1ank T, < n},

for any positive integer n € N, with a,(T) = ||T'|l. The isomorphism numbers
of T'e #(X, Y) are defined as follows: If rank T < n, i, (T) = 0. I rank
T > n, there exists & Banach space Z of dimension > n and operators
Ae%(Z,X)and Be#(Y,Z) such that BT A is the identity I on Z.
Let

i, (T) = sup{l4]~" B},

the supremum taken over all Z, A and B with the above property. The
approximation numbers and isomorphism numbers are examples of s-num-
ber sequences of continuous linear operators in the sense of Pietsch [5].
If s, is any s-number sequence, we have by [5] for any T eZ(X,Y)

i (T) < 8,(T) < 0, (1)

Let T € Z(X) be an operator the spectrum of which consists of eigen-
values of finite multiplicity only. We assume always that the eigenvalues
are ordered in non-increasing absolute value and counted according to
their multiplicity. We denote them by 4,(T), n € N.
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The s-nmambers in Hilbert spaces H were studied by Gohberg-Krein [2].
For T € o' (H) and any s-number sequence s,

$(T) = A,(1T1),
where T = U|T] is the polar decomposition of T, cf. [5], [6]..

. 2.‘ Estimates for the eigenvalues. C. R. Loesener [4] has shown in
his' thése that for any matrix operator T in the complex euclidean
N-space C¥,

A(T)] = lim Z,(jT™)™,  »=1,...,N.

We generalize this finite-rank Hilbert space resulf to. o :
Y - COM; :
on a Banach space. ' pach operators
THEOREM 1. Lot X be a compler Banach space and T e #(X) be an
operator the spectrum of which consists of eigenvalues of finite multiplicity
only. Then for any n e N and any s-number sequence Spy

(2.1) ‘ 12, (T)] = Lim s, (T™)"™,

B Remarks. (a) This contains Loesener's result, since in Hilbert
5paces 8,(T) = 4,(T]). Of course, any operator T e 2 (X) with T e ' (X)
for some N e N fulfills the assumption of Theorem 1. Recall s (8) = |8
so for n = 1 Theorem 1 gives nothing but the formula for the spe(lrtn‘al ra;dius’
of. T. (b) Theorem 1 is also valid for Riesz operators, i.e. operators Wl"bil
dimker (I —AT) < oo, codimim (I —AT) < oo for any complex number A.
" ;;f(ra"))(;)_f.s S’ce; have to show that the limif in (2.1) exists and is equal

- a(8) < 8,(8) < an(9),
it is enough to show

(2.2) Hm a,(T™)V™ < [2,(T)]
wd M—>00
(2.3) Iim 4,(I™)¥ > |4,(T)].

M—>00

{a) Both inequalities are true for # = 1. To show the i ti
for (2.2),' we may agsume that 4,_,(T) £ 0, for otherwise byliﬁzeiﬁgﬁczgz
?Jsilsumptlon and ordering of the eigenvalues 4,(T) = 0 and a, (T™)" ¢
. g ‘;:se(lky)ehli mmulinazlvnth the property A, ,.(T) s&)»,‘(fl’)ﬂ.L So % =1.
P =_PI(A . Zer:h tiplicity ome. Lf.st A ={(T), ..., Ay_p(T)} and lei,i
P = ef:n eilb 13]:3 gﬁ;ﬁ’&l {)ro;ectlon of T with respect to the spectral
st ,f y > D ord I{Jtegral (ef. [1], Chapter 7) for the proper-
of spectral projections. Since the multiplicity of an eigenvalue A
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is the dimension of the range of the spectral projection associated to 4,

we have n—Fk = dimP(X). Therefore rank PI™ < n—k for all me N
and
ap(T™) < ty_p1 (T™) < T —PI™| = I —P)T™ = lz—p)™.

We nsed here that P commutes with 7 and that (I —P) is a projection too.
The spectrum of (I —P) T is equal to the spectrum of T minus A4, so consists
of the eigenvalues {A,_..;(T): i€ N}.. Hence by the classical formula
for the spectral radius 7,

lim o, (T™)"™ < lim (I —P)Imjm
m—>oo Mmoo B .
: = r{(I—P)T) = Whppsa(D)] = (D)1

(b) We prove mext the induction step for inequality (2.3). Again
we may assume A,(T) 5 0. Let 4 = {4,(T), ..., A, (T)} amd P = P(4, T)
be the spectral projection relative fo A. Then k:=dimP(X)>n and
1p(T) = L,(T). So k = m, if 1,(T) has multiplicity one.

T maps P(X) into itself. Let T: P(X)-> P(X) be the restriction and
astriction of T to P(X). But 0 ¢ o(T) = A and hence T is injective and
an isomorphism because of dimP(X)< co. Let A: P(X)—X be the
natural injection and B,,: X —P(X) be defined a8 B,, = (I~Y™P. Then
B, T™A is the identity on P(X), and by definition of the isomorphism
numbers of 1™,

in(T™) = 3 (T™) = AT Bl > 1P NIy .
In absolute value, the largest eigenvalue of T is /1£(T)‘1 = A (T
hence again by the spectral radius formula, this time for T
lim 4, (T™)%" > lim [P~ (7)™~ = (TN = A, (D) 7
=y m—>

Of course, lim |[P[~Y™ = 1, since P does nob depend on m € N.

m—»oo
T am indebted to the referee for pointing out that Weyl’s inequality
in Hilbert spaces is a consequence of Theorem 1: Let 8, (H) denote the class
of compact operators T e % (H) in the Hilbert space H for which

5p(T) = (3 salTP)" < o0.
neN
Then for 0< p, ¢ < oo with 1/r =1/p+1/g (cf. [6])
(2.4) 0,(8T) < 0, (S)o(T), B elS(H), T el8,(H).
Weyr’s INpQuUALITY. Suppose T e8y(H) with 0<p < co. Then -
the eigenvalues of T are absolutely p-summable with

(3 immpe)’? < (3 salmr)”

neN neN
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Proof. Given ¢> 0 and N e N, there is by Theorem 1 a positive
integer m such that

4. (I < (1+a)s,,(1"”)1’m for all » =1,...,N.
Hence

(2 124 ( T)Ip)llp 1-+e) ( ys TM)plm)llp

n<N

= (1+¢) ”plm(Tm)llm
and by (2.4),

< (L+e) 0 (T).
Another consequence is the

CorOLLARY. Let dimX =1< co and T e #(X) be wwertible. Then
Sor any s-number sequence s, and 1 <k <1

(D) [ g1 (T)] = m. Hm (85 (T™) 8, (T~™) )llm-
Proof. The inequality ’
L i® e <
holds ’by {5] Henoe hy Theorem 1,
P (D] =hm‘51-k+1(1m Y

SIm o (T77)7 = (BT = 1Agga (D]

Therefore [A_z,(T)] = Hm aq(T~™~¥" A gimilar argument shows
M0
this for the isomorphism numbers and thus for any s-number sequence.
Let |- {l; be an equivalent norm on X. We write
Ils ~0-1 and T = ||T: (X, |- )~ (X, [ 1)]-
Then by Holmes [3] there is another formula for the spectral radius of
an operator T e Z2(X),
(L) =it {iTlh: -l ~ -3,

Thls formula has only a weak generalization to s-number sequences. Let

8,(T), denote the s-numbers of T with respect to an equivalent norm [+],
on X.

THEOREM 2. Let T € L (X) be as in _’l’heorom 1. Then for amy s=number
sequence 8, and any n € N,

(2.5)  inf{sa(T)a: -l ~ - 13 < 1A < sup{sp(T)yt f -l ~ 1< [}
Both inequalities may be strict in general.
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Proof. (a) To show the first inequality for the approximation numbers
o,y leb A = {3,(T), ..., A,_(T)} and P be as in part (a) of the proof of
Theorem 1. Then by the mentioned formula for the speetral radins

inf{a, (T)asll - o ~ I I} <iof{op gy (T2 |- e - 1}
SInf{(I—P) Tl - fa 1< 11}

=r((T—P)T) = 11,(T)I.

(b) We show next |4,(T)| < supi,(T),. If this supremum is infinite,
nothing is to show. As in (b) of the previous proof, let A = {4,(T),

(1)} and P =P(A,T) with & :=dimP(X) = n and A,(T) = ).”(T)

We may assume 1,(T) #0. Then T: P(X)->P(X) again ‘has an
inverse and

A (T)["* = r(IT'P: X -> X)

is the spectral radius of I7'P, where I: P(X)->X is the injection.
Hence by the Holmes formula,

(D)} = r(ITP: X - X)*
= sup{IIT*PIIT": f|- o~ 1l 1}
< S0P {6, (T)at -~ 14 1}y

where we used that (T—'P)TI is a factorization of the identity on P(X),
dimP(X) = k= n.
Parts (a) and (b) together with ¢, (T) < 8,(T) < a,(T) prove Theorem 2.
We give an example in which striet mequahtles oceur in Theorem 2.
Let X be €2 in the euclidean norm, T': X — X be given by the matrix

(i g) and s, =a,,n =1,2.

Then
WT) =2, Jp(T) =1
and )
a(T) = ,(T) =V3 V5, al@) = H(T) =V3-V5,
hence
int{ag(T): [ I~ - <V3—VB<1 = (D)
and

supfan (Tt |- i~ 141} > V3+V5 > 2 = (D).
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On projections in spaces of bounded analytic functions
with applications
,by
P. WOJTASZCZYK (Warszawa)

Abstract. Projections in spaces 4 and H,, are investigated. It is shown that H.
is isomorphic t0 its l-sum and has a contractible linear group. Certain generalizations
to spaces of bounded analytic functions of several complex variables are presented.
Norm-one finite rank projections in 4 ‘and H, are described. The description shows

. in particular that 4 and I,/H, are not m;-spaces. We also investigate isometric and

isomorphic preduals of H,.

Introduction. In the present paper we consider projections in spaces
of bounded analytic functions. Our main interest lies in the space H_,(U),
the space of bounded analytic functions in the unit dise U, but generaliz-
ativns to H(U™) and H_,(B,) (the spaces of bounded analytic functions
in n-polydise and n-dimensjonal ball) are also presented. First we exhibit
a class of elementary projections which play the crucial role in our paper.
Those are projections given by linear extension operators from certain

. subsets of the fibres of MM (H ). Using those projections, we show that H,

is isomorphic to its direct sum in the sense of I,. Applying the result of
Bodkariov [2], we infer that H, is isomorphic to a second conjugate space,
thus answering the question of Rickart, asked in [22]. We show the iso-
morphic character of this result, proving that isomefrically H , has a unique
predual space (this result answers the question of Porcelli [24] problem 59)
and is not isometric to the second conjugate space of any Banach space.
This is done in Section 1.

Section 2 containg the proof that the group of linear isomorphisms
of H,(U) is contractible. This is done by using the general scheme el-
aborated by B. S. Mitiagin [17]. We show that this scheme is applicable
by a detailed analysis of certain elementary projections, used also in
Section 1.

In Section 3 we consider spaces of bounded analytic functions in
polydises U" < O™ and balls B, = (™ We are able to generalize our main
results to polydiscs. The space H,(U") is isomorphic fo ifs direct sum
in the sense of I, and has a contractible linear group. As regards the space
H,,(B,), we show that it is isomorphic to its I-sum.
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