

A formula for the eigenvalues of a compact operator

Ъъ

HERMANN KÖNIG (Bonn)

Abstract. Let T be a compact operator in a Banach space X. Let $\lambda_n(T)$ denote the eigenvalues of T ordered in non-increasing absolute value and counted according to their multiplicity. We prove that

$$|\lambda_n(T)| = \lim_{m \to \infty} a_n(T^m)^{1/m},$$

where a_n denotes the approximation numbers or any other s-number sequence in the sense of [5]. For n=1 this is the well-known formula for the spectral radius of T. As a corollary one has Weyl's inequality in Hilbert spaces. We also give an estimate for $|\lambda_n(T)|$ by the approximation numbers of T with respect to an equivalent norm on X.

1. Introduction. Let X and Y be complex Banach spaces. We denote the continuous linear operators from X into Y by $\mathcal{L}(X, Y)$, the compact operators by $\mathcal{K}(X, Y)$. Let $\mathcal{L}(X) = \mathcal{L}(X, X)$ and $\mathcal{K}(X) = \mathcal{K}(X, X)$. The approximation numbers of $T \in \mathcal{L}(X, Y)$ are defined by

$$\alpha_n(T) = \inf\{||T - T_n|| \colon T_n \in \mathcal{L}(X, Y), \text{ rank } T_n < n\},\$$

for any positive integer $n \in N$, with $a_1(T) = ||T||$. The isomorphism numbers of $T \in \mathcal{L}(X,Y)$ are defined as follows: If rank T < n, $i_n(T) = 0$. If rank $T \geqslant n$, there exists a Banach space Z of dimension $\geqslant n$ and operators $A \in \mathcal{L}(Z,X)$ and $B \in \mathcal{L}(Y,Z)$ such that BTA is the identity I_Z on Z. Let

$$i_n(T) = \sup\{||A||^{-1}||B||^{-1}\},$$

the supremum taken over all Z, A and B with the above property. The approximation numbers and isomorphism numbers are examples of s-number sequences of continuous linear operators in the sense of Pietsch [5]. If s_n is any s-number sequence, we have by [5] for any $T \in \mathcal{L}(X, Y)$

$$i_n(T) \leqslant s_n(T) \leqslant a_n(T)$$
.

Let $T \in \mathcal{L}(X)$ be an operator the spectrum of which consists of eigenvalues of finite multiplicity only. We assume always that the eigenvalues are ordered in non-increasing absolute value and counted according to their multiplicity. We denote them by $\lambda_n(T)$, $n \in \mathbb{N}$.

The s-numbers in Hilbert spaces H were studied by Gohberg–Krein [2]. For $T \in \mathcal{K}(H)$ and any s-number sequence s_n

$$s_n(T) = \lambda_n(|T|),$$

where T = U|T| is the polar decomposition of T, cf. [5], [6].

2. Estimates for the eigenvalues. C. R. Loesener [4] has shown in his these that for any matrix operator T in the complex euclidean N-space C^N ,

$$|\lambda_n(T)| = \lim_{m \to \infty} \lambda_n(|T^m|)^{1/m}, \quad n = 1, \ldots, N.$$

We generalize this finite-rank Hilbert space result to compact operators on a Banach space.

THEOREM 1. Let X be a complex Banach space and $T \in \mathcal{L}(X)$ be an operator the spectrum of which consists of eigenvalues of finite multiplicity only. Then for any $n \in \mathbb{N}$ and any s-number sequence s_n ,

$$|\lambda_n(T)| = \lim_{m \to \infty} s_n(T^m)^{1/m}.$$

Remarks. (a) This contains Loesener's result, since in Hilbert spaces $s_n(T) = \lambda_n(|T|)$. Of course, any operator $T \in \mathcal{L}(X)$ with $T^N \in \mathcal{K}(X)$ for some $N \in N$ fulfills the assumption of Theorem 1. Recall $s_1(S) = ||S||$, so for n = 1 Theorem 1 gives nothing but the formula for the spectral radius of T. (b) Theorem 1 is also valid for Riesz operators, i.e. operators with dimker $(I - \lambda T) < \infty$, codimim $(I - \lambda T) < \infty$ for any complex number λ .

Proof. We have to show that the limit in (2.1) exists and is equal to $|\lambda_n(T)|$. Since

$$i_n(S) \leqslant s_n(S) \leqslant \alpha_n(S)$$
,

it is enough to show

$$(2.2) \qquad \overline{\lim} \ \alpha_n(T^m)^{1/m} \leqslant |\lambda_n(T)|$$

and

(2.3)
$$\lim_{m \to \infty} i_n(T^m)^{1/m} \geqslant |\lambda_n(T)|.$$

(a) Both inequalities are true for n=1. To show the induction step for (2.2), we may assume that $\lambda_{n-1}(T) \neq 0$, for otherwise by the induction assumption and ordering of the eigenvalues $\lambda_n(T) = 0$ and $\alpha_n(T^m)^{1/m} \to 0$. Choose $k \in \mathbb{N}$ minimal with the property $\lambda_{n-k}(T) \neq \lambda_n(T)$. So k = 1, if $\lambda_{n-1}(T)$ has multiplicity one. Let $\Lambda = \{\lambda_1(T), \ldots, \lambda_{n-k}(T)\}$ and let $P = P(\Lambda, T)$ be the spectral projection of T with respect to the spectral set Λ , defined by the Dunford integral (cf. [1], Chapter 7) for the properties of spectral projections. Since the multiplicity of an eigenvalue λ

is the dimension of the range of the spectral projection associated to λ , we have $n-k=\dim P(X)$. Therefore rank $PT^m\leqslant n-k$ for all $m\in N$ and

$$a_n(T^m)\leqslant a_{n-k+1}(T^m)\leqslant \|T^m-PT^m\|=\|(I-P)\,T^m\|\,=\big\|\big((I-P)\big)\,T^m\big\|\,.$$

We used here that P commutes with T and that (I-P) is a projection too. The spectrum of (I-P) T is equal to the spectrum of T minus Λ , so consists of the eigenvalues $\{\lambda_{n-k+i}(T)\colon i\in N\}$. Hence by the classical formula for the spectral radius T,

$$\begin{split} \overline{\lim}_{m \to \infty} & \ a_n(T^m)^{1/m} \leqslant \overline{\lim}_{m \to \infty} \ \|(I-P)T^m\|^{1/m} \\ & = r\left((I-P)T\right) = |\lambda_{n-k+1}(T)| = |\lambda_n(T)|. \end{split}$$

(b) We prove next the induction step for inequality (2.3). Again we may assume $\lambda_n(T) \neq 0$. Let $\Lambda = \{\lambda_1(T), \ldots, \lambda_n(T)\}$ and $P = P(\Lambda, T)$ be the spectral projection relative to Λ . Then $k := \dim P(X) \geqslant n$ and $\lambda_k(T) = \lambda_n(T)$. So k = n, if $\lambda_n(T)$ has multiplicity one.

T maps P(X) into itself. Let $\overline{T} \colon P(X) \to P(X)$ be the restriction and astriction of T to P(X). But $0 \notin \sigma(\overline{T}) = \Lambda$ and hence \overline{T} is injective and an isomorphism because of $\dim P(X) < \infty$. Let $A \colon P(X) \to X$ be the natural injection and $B_m \colon X \to P(X)$ be defined as $B_m = (\overline{T}^{-1})^m P$. Then $B_m T^m A$ is the identity on P(X), and by definition of the isomorphism numbers of T^m ,

$$i_n(T^m) \geqslant i_k(T^m) \geqslant ||A||^{-1} ||B_m||^{-1} \geqslant ||P||^{-1} ||(\overline{T}^{-1})^m||^{-1}.$$

In absolute value, the largest eigenvalue of \overline{T}^{-1} is $\lambda_k(T)^{-1} = \lambda_n(T)^{-1}$, hence again by the spectral radius formula, this time for \overline{T}^{-1} ,

$$\lim_{\substack{m\to\infty}} i_n(T^m)^{1/m} \geqslant \lim_{\substack{m\to\infty}} \|P\|^{-1/m} \, \|(\overline{T}^{-1})^m\|^{-1/m} = r(\overline{T}^{-1})^{-1} = |\lambda_n(T)|^{-1}.$$

Of course, $\lim ||P||^{-1/m} = 1$, since P does not depend on $m \in \mathbb{N}$.

I am indebted to the referee for pointing out that Weyl's inequality in Hilbert spaces is a consequence of Theorem 1: Let $S_p(H)$ denote the class of compact operators $T \in \mathcal{X}(H)$ in the Hilbert space H for which

$$\sigma_p(T) = \left(\sum_{n \in N} s_n(T)^p\right)^{1/p} < \infty.$$

Then for $0 < p, q < \infty$ with 1/r = 1/p + 1/q (cf. [6])

(2.4)
$$\sigma_r(ST) \leqslant \sigma_p(S)\sigma_q(T), \quad S \in S_p(H), T \in S_q(H).$$

WEYL'S INEQUALITY. Suppose $T \in S_p(H)$ with 0 . Then the eigenvalues of <math>T are absolutely p-summable with

$$\left(\sum_{n\in\mathbb{N}}\left|\lambda_n(T)\right|^p\right)^{1/p}\leqslant \left(\sum_{n\in\mathbb{N}}s_n(T)^p\right)^{1/p}$$
 .

Proof. Given $\varepsilon > 0$ and $N \in \mathbb{N}$, there is by Theorem 1 a positive integer m such that

$$|\lambda_n(T)| \leqslant (1+\varepsilon)s_n(T^m)^{1/m}$$
 for all $n=1,\ldots,N$.

Hence

$$egin{align} \left(\sum_{n\leqslant N}\left|\lambda_n(T)
ight|^p
ight)^{1/p}&\leqslant (1+arepsilon)\left(\sum_{n\leqslant N}s_n(T^m)^{p/m}
ight)^{1/p}\ &=(1+arepsilon)\sigma_{n/m}(T^m)^{1/m} \end{split}$$

and by (2.4),

$$\leq (1+\varepsilon)\,\sigma_n(T)$$
.

Another consequence is the

COROLLARY. Let dim $X=l<\infty$ and $T\in \mathscr{L}(X)$ be invertible. Then for any s-number sequence s_n and $1\leqslant k\leqslant l$

$$|\lambda_k(T)/\lambda_{l-k+1}(T)| = \lim_{m\to\infty} \left(s_k(T^m)s_k(T^{-m})\right)^{1/m}.$$

Proof. The inequality

$$i_{l-k+1}(S)\,a_k(S^{-1})\leqslant 1$$

holds by [5]. Hence by Theorem 1,

$$egin{align} |\lambda_{l-k+1}(T)| &= \lim_{m o \infty} i_{l-k+1}(T^m)^{1/m} \ &\leqslant \lim \, lpha_k(T^{-m})^{-1/m} = \left(|\lambda_k(T^{-1})|\right)^{-1} = |\lambda_{l-k+1}(T)| \,. \end{split}$$

Therefore $|\lambda_{l-k+1}(T)| = \lim_{\substack{m \to \infty}} a_k(T^{-m})^{-1/m}$. A similar argument shows this for the isomorphism numbers and thus for any s-number sequence. Let $\|\cdot\|_1$ be an equivalent norm on X. We write

$$\|\cdot\|_1 \sim \|\cdot\|$$
 and $\|T\|_1 := \|T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_1)\|$.

Then by Holmes [3] there is another formula for the spectral radius of an operator $T \in \mathcal{L}(X)$,

$$r(T) = \inf\{\|T\|_1: \|\cdot\|_1 \sim \|\cdot\|\}.$$

This formula has only a weak generalization to s-number sequences. Let $s_n(T)_1$ denote the s-numbers of T with respect to an equivalent norm $\|\cdot\|_1$ on X.

THEOREM 2. Let $T \in \mathcal{L}(X)$ be as in Theorem 1. Then for any s-number sequence s_n and any $n \in N$,

$$(2.5) \quad \inf\{s_n(T)_1\colon \|\cdot\|_1 \sim \|\cdot\|\} \leqslant |\lambda_n(T)| \leqslant \sup\{s_n(T)_1\colon \|\cdot\|_1 \sim \|\cdot\|\}.$$
 Both inequalities may be strict in general.

Proof. (a) To show the first inequality for the approximation numbers a_n , let $\Lambda = \{\lambda_1(T), \ldots, \lambda_{n-k}(T)\}$ and P be as in part (a) of the proof of Theorem 1. Then by the mentioned formula for the spectral radius

$$\begin{split} \inf \{ a_n(T)_1 \colon \| \cdot \|_1 \sim \| \cdot \| \} &\leqslant \inf \{ a_{n-k+1}(T)_1 \colon \| \cdot \|_1 \sim \| \cdot \| \} \\ &\leqslant \inf \{ \| (I-P)T\|_1 \colon \| \cdot \|_1 \sim \| \cdot \| \} \\ &= r \left((I-P)T \right) = |\lambda_n(T)| \,. \end{split}$$

(b) We show next $|\lambda_n(T)| \le \sup_n i_n(T)_1$. If this supremum is infinite, nothing is to show. As in (b) of the previous proof, let $\Lambda = \{\lambda_1(T), \ldots, \lambda_n(T)\}$ and $P = P(\Lambda, T)$ with $k := \dim P(X) \ge n$ and $\lambda_k(T) = \lambda_n(T)$.

We may assume $\lambda_n(T) \neq 0$. Then $\overline{T} \colon P(X) \to P(X)$ again has an inverse and

$$|\lambda_n(T)|^{-1} = r(I\overline{T}^{-1}P: X \to X)$$

is the spectral radius of $I\overline{T}^{-1}P$, where $I: P(X) \to X$ is the injection. Hence by the Holmes formula,

$$\begin{split} |\lambda_n(T)| &= r(I\overline{T}^{-1}P\colon X \to X)^{-1} \\ &= \sup\{\|I\overline{T}^{-1}P\|_1^{-1}\colon \|\cdot\|_1 \sim \|\cdot\|\} \\ &\leqslant \sup\{i_n(T)_1\colon \|\cdot\|_1 \sim \|\cdot\|\}, \end{split}$$

where we used that $(\overline{T}^{-1}P)TI$ is a factorization of the identity on P(X), $\dim P(X) = k \geqslant n$.

Parts (a) and (b) together with $i_n(T) \leq s_n(T) \leq a_n(T)$ prove Theorem 2. We give an example in which strict inequalities occur in Theorem 2. Let X be C^2 in the euclidean norm, $T: X \to X$ be given by the matrix

$$\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $s_n = a_n, n = 1, 2.$

$$\lambda_1(T)=2, \quad \lambda_2(T)=1$$

and

$$a_1(T) = \lambda_1(|T|) = \sqrt{3 + \sqrt{5}}, \quad a_2(T) = \lambda_2(|T|) = \sqrt{3 - \sqrt{5}},$$

hence

$$\inf\{a_2(T)_1\colon \|\cdot\|_1 \sim \|\cdot\|\} \leqslant \sqrt{3-\sqrt{5}} < 1 = |\lambda_2(T)|$$

and

$$\sup \{ \alpha_1(T)_1 \colon \| \cdot \|_1 \sim \| \cdot \| \} \geqslant \sqrt{3 + \sqrt{5}} > 2 = |\lambda_1(T)|.$$

References

- [1] N. Dunford, J. T. Schwartz, Linear operators I, Interscience, New York 1967.
- [2] I. Z. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Moscow 1965.
- [3] R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), pp. 163-166.
- [4] C. R. Loesener, Sur la recherche des valeurs propres de matrices mal conditionnées, Thèse, Université des sciences et techniques du Languedoc, Montpellier 1976.
- [5] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974), pp. 201-223.
- [6] Nukleare lokalkonvexe Räume, Verlag Akademie der Wissenschaften, Berlin 1969.

Received November 15, 1976
Revised version April 3, 1977 (1226)

On projections in spaces of bounded analytic functions with applications

by

P. WOJTASZCZYK (Warszawa)

Abstract. Projections in spaces A and H_{∞} are investigated. It is shown that H_{∞} is isomorphic to its l_{∞} -sum and has a contractible linear group. Certain generalizations to spaces of bounded analytic functions of several complex variables are presented. Norm-one finite rank projections in A and H_{∞} are described. The description shows in particular that A and L_1/H_1 are not π_1 -spaces. We also investigate isometric and isomorphic produals of H_{∞} .

Introduction. In the present paper we consider projections in spaces of bounded analytic functions. Our main interest lies in the space $H_{\infty}(U)$, the space of bounded analytic functions in the unit disc U, but generalizations to $H_{\infty}(U^n)$ and $H_{\infty}(B_n)$ (the spaces of bounded analytic functions in n-polydisc and n-dimensional ball) are also presented. First we exhibit a class of elementary projections which play the crucial role in our paper. Those are projections given by linear extension operators from certain subsets of the fibres of $\mathfrak{M}(H_{\infty})$. Using those projections, we show that H_{∞} is isomorphic to its direct sum in the sense of l_{∞} . Applying the result of Bočkariov [2], we infer that H_{∞} is isomorphic to a second conjugate space, thus answering the question of Rickart, asked in [22]. We show the isomorphic character of this result, proving that isometrically H_{∞} has a unique predual space (this result answers the question of Porcelli [24] problem 59) and is not isometric to the second conjugate space of any Banach space. This is done in Section 1.

Section 2 contains the proof that the group of linear isomorphisms of $H_{\infty}(U)$ is contractible. This is done by using the general scheme elaborated by B. S. Mitiagin [17]. We show that this scheme is applicable by a detailed analysis of certain elementary projections, used also in Section 1.

In Section 3 we consider spaces of bounded analytic functions in polydiscs $U^n \subset C^n$ and balls $B_n \subset C^n$. We are able to generalize our main results to polydiscs. The space $H_{\infty}(U^n)$ is isomorphic to its direct sum in the sense of l_{∞} and has a contractible linear group. As regards the space $H_{\infty}(B_n)$, we show that it is isomorphic to its l_{∞} -sum.