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= Vyos Q2 Yy~ Tn(Xy,) for all m eN. Another application of
the above Lemma by replacmg T, by Tm , B, by T i (Yan)y P2 by QU+,
T.(B,) by Y, and @i} by P for all m yields Y,, ., ¥, isometric
extensions 8, of T, 8,,: F,, = Y,u,,, Where F,, are subspaces of Ym .2
with ¥,, < F,, and 8,,(F,) = ¥,,,, for all m ¢ N. We obtain in addition
contractive projections Put®: Yo, 0 = Fp;@: Yyppo = Youpn = 8p(Fp)-
We set Ry, = Ry, P-0Q.
Consider now a countable dense subset I" of the unit sphere of ¥,,.;
and define

= {T: (@)~ <yp| T linear isometric; x,y e I'; T(x) =y},

where (x> denotes the linear span of x.
Then certainly 2 is countable. The theorem of Hahn-Banach pro-
vides us with contractive projections from Y,,., onto <> for all x eI

Set Q,,,, = 2,0 Q and continue the induction by defining ¥, ;- L

Finally, set Z = | Y, and define a contractive projection from' 7
neN

onto X by the R,,, neN. n
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A characterization of localized Bessel potential spaces
and applications to Jacobi and Hankel multiphiers

" by |
GEORGE GASPER* (Evanston, I11.) and WALTER TREBELS (Darmstadt)

Dedicated to Ralph Boas on
the occasion of his sizty-fifih birthday

Abstract. Localized Bessel potential spaces 8(g, y), ¥ > 0, were recently intro-
‘duced by Connett and Schwartz in conneetion with ultraspherical multipliers and
characterized for integer y in terms of sequence spaces. Analogous results are obtained
in this paper for all real y > 1/q, where 1 < g < co. These results are then wused to
derive best possible multiplier criteria of Marcinkiewicz type for Jacobi expansions
by interpolating between end-point results due to Askey and to the authors and to
derive analogous multiplier criteria for Hankel transforms.

1. Introduction. In [11] Connett and Schwartz showed that localized
Bessel potential spaces S(q, y) are useful in the theory of ultraspherical
multipliers. However, one disadvantage of these spaces is that it is hard
to verify when a sequence is the restriction- (to the positive integers)
of an element in 8(g, y). Jn case of y being a positive integer, Connett and
Schwartz characterized S(g, y) by means of (finite) difference conditions
upon the sequence. The main result of this paper, Theorem 1, extends
this characterization to all ¥ > 1/g for 1 < g < co. We also give a neat
description (Theorems 4 and 5) of the imbedding behavior of the wbvy
and WBV-spaces (defined below), which are important in multiplier
theory. These results are then used to derive various multiplier criteria
for Jacobi expansions (Theorem 6) and Hankel transforms (Theorem 7).

‘To define the localized Bessel potential spaces we first recall that
the standard space of Bessel potentials L(R), y > 0,1 < ¢ < oo, is defined
by (see [20], p. 134)

L = {g e I9(0, o0): g = G, xh, lgll,, = Ihly < oo},

where the Bessel kernel @Q,(») is a function whose Fourier tramsform is
given by

= [ Gl@)e " dn = (L+op)7",

* Supported in part by NSF Grant MCS 76-06635.
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I§ is localized as follows:
decreasing for ¢ > 0 with

Let &(t) e 0°(— o0, o) be monotone

1, —1B<1<0,
o) = {1’ 0<ISIB, gy —l1_0@+1), —2B<ti<—1f3,
0, =23, 0. i< o

80 that, obvmusly, Z‘ &(t—k) = 1 for all ¢ e R. Let ¢, (1)

k=—c0

then g, € 0%(—~ o0, ), g (1) =

= (D (1~ k))"*;
0, @, (t) is monotone decreasing for t> %

and ' ¢}(f) = 1. For any measurable function ¢ on (0, oo), let g*(m)

k=—oc
= g(¢®). Then, for y >0 and 1< ¢ < oo, the space of localized Bessel
potentials is defined by
(1.1) 8(g,7) = {g: Wls@n =52 lpsg"la,y < o},
where Z is the set of all integers. We also let N = {1,2, ...}, I denote
the space of bounded sequences 1 = {m}5-, With the supremum norm
Il L = L®(0, o), 1§ and-Lg denote the corresponding spaces of
sequences and (bounded) funetions with compact support in (0, oo),
and. let C(0, o) denote the space of continuous functions on (0; co).
Generic positive constants will be denoted by C.

As is customary we shall identify a function which coincides a.e.
with a continuous function with that continuous funetion. When y > 1/g,
1 < g< oo, each function in §(g, y) can be identified with a continuous
funetion [11] and so we ean consider the restrietion of the continuous
function to the natural numbers and state the Connett and Schwartz
characterization of 8(q, ¥) for y e N as follows.

THEOREM A. Let 1 <g< o and yeN.

(@) If g € 8(q, ), 1770[ < 0“9“5(4,7) and n;, = g(k), k& e N, then

-1

s +-sup ( 2 k—lwmnkw)"“ Olgllsigns

m=1 om—1

(1.2)

where, as usual, C is a constant independent of g.

(b) Conwersely, to each sequence 1 for which the left side of (1.2) is finite
there exists a g € 8(q, y) with g(k) = n, k €N, so that (1.2) also holds with
the inequality reversed (and a different positive constant C).

Here the (fractional) difference operator 4* is defined by [5]
kA L(k+2+1)

= A7h = L rtere

Aoy 2 AT ( k ) TE+LIGA+1)’

icm
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whenever the series converges. To keep the notation compact we also
define the following (weak bounded variation) sequence spaces: for y > 0,
I<g< oo,

am_)
WbV, ={’7 €l™: Il = Mlle +SUP(Z Tt ]A’Ayﬂqu) < °°}
m21ym—1
and for >0, g = oo,

WbV, = {7 €1 [l yuo = llﬂhm+iuPIA% A% y) < oo},
=0

Corresponding to wbv,, we also consider the space s(g, ), » > 1/q,
1 < g < oo, of all sequences # for which there iy a (continuous) g € (g, 7)
such that 7, = g(k), k € N. The norm is defined by

Wllstg,sy = 8 {gllsio, )¢ 9 € 8(q; ¥) and g(k) = ny, ke N}+ |ng).
Then Theorem A is equivalent to the statement that

' vaq,y = 8(47 7))

with equivalent norms, and our extension of Theorem A to each y > 1/q
can be stated in the form

TamorEM 1. If 1 < g < co and y > 1/g, then
Wby, = 8(q,y)

1<g<< o0, yeN,

with equivalent norms.

An intermediate step in the proof of Theorem A uses the fact that
(on account of Theorem 3 in [20], p. 135) when y e N

oot sup( f [ g% (2)e — )
is an equivalent norm for §(g, y). To generalize this to fractional y we

first define for 0 < § < 1 and a locally integrable function ¢ the fractional
integral

—(6—)J(s_t)d-lg(s)d§, 0<t<o,

(1.3) Lgw =
Lo, 1> o0

and the fractional derivatives

(1) 9 p- )0y

= Tim —
@

(14)
[¥1
g = (%) @), by >0,
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whenever the right sides exist ([y] denotes the integer part of »). See
Cossar [12] and [26], § 3.3.1. Then we form the function analog of the
wbv-spaces defined for y > 0, 1 < ¢ < oo, by

WBYV,,, = {ge I”nC(0, ): I;7°(g) € ACy,, 0> 0, if 6> 0;
g(a)’ ceey g7V € ACy, ify>1,

and gl < oo},
where § = y—Ty],

om

dr\'e
'ngq,v;W = ”g”oo+ 2}:%)( |tyg(y)(t”q_t_) ’ 1 < q < o0,
om—1

and

19llco, 7 = l1glo0 =+ 117 9 (2) o

In the above and what follows AGy,, (Ii,,) is the space of functions which

are absolutely continuous (integrable) on every compact subinterval
of (0, o).

Analogously to the definition of s(q, y) we define wbv(q, ),y >0,
1< ¢ < oo, to be the space of all sequenées:sy for-which thereis aig ¢ WBY,

. ¥
such that 5, = g(k), ¥ e N. The norm is defined by

Wnllwovia, = E{lgly, s g € WBV,, and g(k) = ny, k e N}+lg).

 We shall prove in Section 5 that wbv,, and wbv(g, y) are related
as follows: h

TEEOREM 2. If y > 1/, L<g< o0 or y =1, g =1, then
whbv,, =wbv(g, y)-

with equivalent norms.

Then, to complete the proof of Theorem 1 it only remaing to prove
(in. Section 6)

TaBOREM 3. If 1 < ¢ < oo and y > 1/q, then
WBVq,'V = S(Q: )

and hence

whv(g, y) = s(q,y)
with equivaleni norms.
Before proving these theorems we shall first derive some required

fl.mdamenta,l properties of the wbv,,, WBYV,,, and I¢ spaces in Sec-
tions 2-4. The imbedding behavior of the whv,, and WBYV,, spaces is
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presented in Section 7 and then these results are used in Section 8 to
derive our multiplier criteria for Jacobi expansions. Our multiplier cri:
teria for Hankel transforms are presented in Section 9 along with several
remarks concerning related results.

2. wbv,,, spaces. In this section we present some basic properties
of the wbv,,, spaces which are needed for the proof of Theorem 2 and
for the applications.

LeMMA 1. If0 < p <y, 1 < g < oo, then

wbv,, = whv,,,

where, as elsewhere, the inclusion sign means that the identity map is con-
tinuous.

Proof. The case ¢ =1 is essentially proved in [13], § 2. A slight
modification of that proof shows that the Lemma also holds for 1 < ¢ < oo:
First note that for 9 €I we have [5], Lemma 1

(2.1) 49 Ay = 4P, a>—1,5>0, a+b> 0.
Thus, for 1 < g < oo,
o1 2"—1 M1

( 2 1 k"’]AﬁA”ﬂqu)w < C’( 2 k—llAﬁz’,: _A_}':,’:—IAanIQ)II(I‘F
1 i=

F=2m— am—

oMm_y om+-1__y
+0( 3 w7 ag 3 agpi o[
am—1 j=am
o am_3 2l
+0 3 (Y wrap 3 aprargf)
I=m+2 sm—1 Femgi—1 .

=I,+1,+41 3.
Holder’s inequality gives
om_1 ’ am_g am—1 -
| 3 appt o < 3 agptiarge( 3 4
=k j=k i=
with p = q/(g—1). Observing that the last factor on the right side is
majorized by CO(4)~#)P, 271 j< 2™, we can estimate I,, after an
interchange of summation, by
2Mm—1 i
I,< O’( Z‘ §N A1 Z‘ A%”A}':,’c‘"lA?"”Wp)lm
Jmpm—1
2M—1 .
<0 ( 2’ i Al A}zﬂr—pﬂy—n)qlﬁ) 1< C 17 lg.yso
j=om—1
uniformly in m. The sums I, and I; are estimated amalogously (use also
the method in [13]), which gives the case 1 < g < oo. Since the ease ¢ = co
i8 even simpler to treat, it is omitted.

Ee=gm—1
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LevMA 2. Lety > 0, 1 <
with

g < o0, G € C°[0, co) be monotone decreasing

1 <1
G(t) — b =
0, t>d,
where d > 1 4s fived, and let @, (1) = G(t{u), u > 0. Then there exist constants
0,, C, independent of n and u > 0 such that

Oy Inllg,piw < sup G (%) 71}l 0 < Callnllg, s

The left inequality also holds with sup replaced by sup, where a > 0.

u>90 u>a
Proof. We first prove the right-side inequality. Let 5 e wbv,,.
If » is & natural number, Leibniz’ formula gives

i@ = 3 (1) aimara i+,

. J=0
and the inequality follows as in the proof of [13], Lemma 2.

So now let y be strictly fractional. Note that by a formula due to
Peyerimhoff [18], p. 3 we have

: 1 ‘ )
@2) 2@ = n2Cm+ 3 (1) 6.0 4y + B,
j=0

where the remainder term is given by

n—p]
By =(—1)¥ S At Y AP (4M6,() - A6, (8).
n=k+1+[] J=k+1

Also note that, by [26], p. 39, p. 37, we have for any 6 > 0

ML 4°G, (R) < D) A3 A6, (5) < Oy

=0

(2.3)
t‘(d )a d.Hi<| 8 (—@—)JHG ()| ds < 0.
dt ds u =
We shall shpw that
(2.4) ' Sup AL By} << O ligllg -

For the case 0 <y <1, 21 <k < 2™, we have from (2.3) (observe that
A7, m= k41, and 4G, (5) do not ehimge sign)
oAl n—
B <2lnleds| 3 477 N 46, +
i=k

n=k+l

icm
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oo

+2lnledi| D 4777 (Guln) — 6, ()|

n=gm+1
|2m+1_1 . n—l 0
<Cinlodi?] Y 473 Y 1]+ Clnlelaaz] Y 4777
n=k+1 i=k ﬂ_:‘m+1
< Ollple.-
Analogously, for y > 1, y ¢ N, 2™ <k < 2™, we have
am+l_y
MR <2lnledi| D 4775 2 AP, 2 1426, (5)] | +
n=k+1+[7]
+0lnlleAz ™| 3 a4 Z‘ A,."lfy]_,(
n=yMm+1

oMl _

< Oyl 477071 278 AR |+

n=k+1+[v]

+Olnld | 3 4z

2 AR |
n=gMm+1

< Olinlles

uniformly in k. Thus (2.4) holds. The right-side inequality of Lemma 2

now follows easily. By (2.2)-(2.4), it is immediately obvious in the case

g =oco. If 1< g< oo, then we need but observe that from (2.2)-(2.4)

and Lemma 1 we have
M1

(X w40 me.m)f] <

f=gm—1

]
( it 3, (%) 65 s u,+unum)

< Clinllgpmo-

Conversely, let [{@,(k)n}l, g0 be uniformly - bmmded in %>0.
Fix m and choose u> 2™+, 2™ 1 k< 2™ Then

| A7 A7 — Gy ()| =JA% 2‘ AT (o — G ny) |

J=gm-tl
OG5 i}l
for % sufhelently large. By the triangle mequahty,
2moy My
(> k‘le"A”nkI“) <sup( > 5 Ap G, o) [ + Ol nd e
k=gm—1 ™ p=gm—1 ’ R R

< su}: 16 (B) 13 Hlg 10 ‘
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umformly in m, which gives the leff inequality in the lemma. The case
g = oo follows analogously.

3. WBYV,, spaces. Suppose that y >0, 1<g¢< o0 and ge WBYV,,,
If y >1 and g has compact support in (0, ), it follows from [26], Lemma,
3.14 and [27] that

(3.1) () = % f (s— 119" (s)ds ae.,
t :

which can eagily be used to show that

1 0
(38.2) ¢“@) = —f—k—_—/—ﬁf (=872 1gM (5)ds awe., 0 < p < p.
13

I'(y

Since formula (3.2) will be needed for all g e WBV,,, to derive the imbed-
ding properties of these spaces, it is natural to try to prove (3.2) by first
proving (3.1) for these spaces. Unfortunately, if ¢ does not have compact
support, then the integral in (3.1) might not converge a.e. even though
the integral in (3.2) clearly converges a.e. since, for 27 > ¢,

o0 o0 gk+1
63 [ e—trEia<o D [ g
. o7 i . ok

[ oh+1 ds \1le
—kp ¥ o(¥) q___
<02ﬁ (fwgwn8)<w
of-.

and ‘[ .ds converges a.e. Therefore for functions without compact support

we shall have to use a more delicate approach which requires the following
preliminary results:

Lemya 3. Suppose 0 < p < 8§ <1,9 e L”NC(0, ), and IS %(g) e AC,,,
for each w > 0. Then

(3.4) 172, (9" < Cllg oo,

where C depends only on 8, and I},;"‘(g) € ACy,, > 0.

Proof. From the hypotheses and the definition of ¢® it follows for
a.e. t in (0, o) that

0>0,

i =1 a s 7
(3~5? O = mﬁ:f (S—f) ®g(s)ds— m! (s—1)"°g(s)ds

=I,()+1,().

icm°

Characterization of localized Bessel potential spaces 251

Clearly,

@

Cligls [ (t—

z

FATAIGIES 8)*7 [(s—t)*"asdt < Olgll.,

and from

fr’ (L) (w)du = m f f (t— )P (dif (s—t)“’g(s)ds)dtdu

ey | (& [ o eawa) [e—uraa

-1 ° L a o ,
=?ﬂﬁ3ﬁiﬁiﬁjkhﬂ>g;!w—ﬂ g(s)dsa

1 g 5-1 g b _ 3
=ﬁmzf(zwm) if(s 2g(s)dsd —!g(s)ds

we have that IS (I,) (%) = g{=) for a.e. # in (0, w), which gives (3.4).
Since I *(g)(#) = 0 for 2> » and is continuous at # = w it only

remains to show that if 0 < ¢ < w, then this function is absolutely con-
tinuous on [a, w]. By hypothesis there is an f e I [a, «] such that

IT(g) (@) =

oLy o.

[ rwa,
x
Then, for a< 2 < o,

L)) = gy | = r0(e)as

1 d 38— p—11—
= T | I @
S S PR
—F(B—p)!(t oY (bt

— 1 Fr . a\d—p~-1
_m!sf(t sy E-1f(t) dids,

which shows that I5#(g) e AC[a, w], since the inmer integral is in
I [a, o]
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Levma 4. Suppose 1<y <2 and g e WBY,,. Then ¢* Ve AC,,,
1<i<y, and formula (3.2) holds. Also I7*(g) e AC, for 0 < u<1,
o > 0.

Proof. Let 6§ =y—1 and define

(t—2)*, t>um.

t—x)y =
(—ai lo, t<w.

Use the decomposition in (3.5) to write
I (g9 (0) =I5, (4”) () = g(o)

for a.e. #, ¥ in (0, w). Then from

~g(y)+ B, (@, y)

B, (z ,y|~0!f{t~ () l}f (s—8)™*g(s)dsds

o1

<Olgle [ =25 — (=) (0 — ) dt+
0

+0lgle [ It— s [
o—1

it is easily seen that R, (2, y) > 0 as o — oo. For, by the dominated con-

vergence theorem, the penultimate term tends to zero as m — oo, and the

last integral also tends to zero since, for fixed #, y with 0 < #, ¥ < 3w/4,

[ ]<30"'>0 a8 ©-»co. Therefore we have the representation

(0<é < 1)

o

1
Ty ) Ge—ai——

0

(3.6) 9(@)—g(y) = VT @) at

for a.e. #, y in (0, ») and hence for all «, ¥ > 0 since both sides are conti-

nuous funetions and the integral is absolutely convergent for z, 4 > 0.
Since g e AQ,, and, by (3. 3),

v
= fg(v) (t)dt

x

tends to zero as x,y — oo, im ¢ (y) ‘= I exists and

y—>00

9(y) —¢(@)

(3.7) 90 (@) =1— [ ¢ (t)dt.

In fact,;:l = 0. For if 1>0 and ¢ (w) —1 = % (s), Where |h()}'< l/2 ‘When
2> X, then

icm
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Ex(g")(D) = 05 '+ f = TP h
2X

o( X"——j(t X"‘Idt)

= (01X*/26 > o0 a8

in contradiction to Lemma 3. Similarly, I cannot be negative. Substitution
of (3.7) (with I = 0) into (3.6) and some obvious manipulations yield

Tl—f) fz fm (s —2)~2g" (s) ds dt

which shows that g € ACy, since the inner integral is in L}

X — o0,

(3.8) g(x)—g(y) =

Hence the
right side of (3.8) also equals f g' (1) dt, so

o

1
s —— _1\—2,(7) .

(3.9) 7 _F(y_l)tf (8 — 1) (s)ds; ac.

If 0 < u<1,then limg(w)(o—a)*

an integration by parts and (3.9) we have

= 0 since g is bounded, and by

610) @) = lin (- LI 0)(0)
Lo d
TIre—p iﬂﬂf (t—a)"™"g" (s
1

- rigin & [ o0 fu-orran

= (-—p)m.mdmff (t—s8)"#g’ () dids

1‘1(7_7;, f (t—a) g (@
_ 1
© P —p)IY (r—1)

B 1
I'1—p)I'ly—1)

f (t—a)" f (s —1)~2 g% (s) ds dt

fg 3)f(t z)"* (s — 1) dids

)v-f'~ g (s)ds, ae.

=*1’<y—‘p)zf


GUEST


264 G. Gasper and W. Trebels

Comparison of the first and fourth lines in (3.10) also shows that I3 #(g) e
AC, ©> 0.
If 1 < u <y, then it follows from (3.10) that

1 oo o0
=1 (%)
F(y_”)!‘f(s r=1g6)(s) dsdt.

Since the inner integral is in Li,, 9* P € AC,, and (3.2) holds, which
completes the proof.

Levva 5. If y =1 or 2 and ge WBV,,, then IS #(g) e ACy, for
0<p<l, >0, and (3.2) holds.

The proof is analogous to that of Lemma 4, except that when y=2
it is shown that if { > 0 in the formula

9@ =1— [ g"a

g“ (@) =

and ¢’ () —1 = h(z), where |h(z)| < 1/2 for w> X, then

fy
>1X[2—> 00 . as

which econtradicts the boundedness of g.
LevMa 6. If 0 <y < 1 and g e WBV, ,, then (3.2) holds.

Proof. Since the hypotheses do not imply that ¢ is locally absolutely
continuous, we have to proceed in a way which is quite different from the
proof of Lemma 4. If 0 < # < o, then

[J e

2X
g(2X)—g( =1X+ [ hp)at
X

X > oo

L
OO

o

s d 1—y
=;j;"z (s—=) %‘Im (g)(s)ds
__—:'i_ m(s_w)y—-p—lfm( —1)" ayd
i) J y 9(y)dyds
Iy—p) [

= _I’(l-/u);! -2 "g(y)dy

‘ Y d
=Tly—p [ L @®ar,

icm
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Hence

iIi,‘“(y)

at

a1

f S L

Ty —p);

for a.e. £ in (0, ) and the argument on p. 32 of [26] shows that if a > 0
and 2 is a countable set dense in (@, oo), then this formula also holds
for all w € 2 for a.e. ¢ in (0, ¢). In addition, for w e 2 and a.e. £ in (0, a)
2 I

__\P—#=1 oy 1-p
oo #‘fs g ) s+ T @)

(3.11)

=GUE(S—t)""“f(y~s)‘””lg(y)dyds

LOglo(@—t* >0 as o-—> oo (wef).

Sinee the first integral in (3.11) is a continuous function of w (0 <t < & < )
and for a.e. ¢ in (0, @) it converges as o — oo, it follows that g\¥(?) exists
for a.e. ¢ in (0, @) and that (3.2) holds a.e. in (0, a). But 4 is arbitrary, so
(3.2) holds a.e. in (0, oo).

LeMMA 7. If y = 2, then

WBV,, « WBV,, ,, k<y—1, keN.

Lemva 8. If y > 0, 1< ¢ < oo and g e WBY,, ,, then (3.2) holds.

Lemmas 7 and 8 follow by the standard arguments in [26], pp. 36, 37,
and the trivial observation that WBYV,, <« WBV,, when 1<p<g,
y> 0.

LEMMA 9. If y > 0 and 1 < g < oo, then

WBV,, c WBV,,, 0<u<y.

The proof is analogous to that of Lemma 1, with (3.2) being used
instead of (2.1) and, naturally, the sums being replaced by integrals;
therefore we omit it. The next result is an analog of Lemma 2.

Levma 10. Let- y >0, 1<¢< o0, geL® and g, = g(G,—Gy),
%> 0, where G, is the fzmotwn defined in Lemma 2. Then g e WBY,, if
and only if g, e WBYV,, for each u>0 and sup“gul\q o < o0. Moreover,
there exist constanits 01, 0, independent of g a'n,d > 0 such that
(3.12) O lglg i < SUR Wgully o < Caliglly, v

and the left inequality also holds 'wzth sup replaced by sup, where a > 0.

u>0
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Proof. Suppose 0 <y <1, 1<g< oo and g e WBV,,. Then for-
mula (3.6) holds with é = y and setting
(3.13) W) = = fw 17 (g(s+ ) —g (1)) ds

(=) 4 ’

we have for 0 < a < b that

b

f h(d)dt

1 b oo 00
ff s“"”f{(w—s—t)’,‘;‘ (10— 177} ¢ (aw) doo s it
=y J 4 0

oo

=*f(‘_“i—)7:(‘;,fg(”(w)[ofs-l-yfb{...}dms] dw

a

Clearly, {...} =0 if w < a, 50 fdw = [...dw. By considering the inter-
a

vals (0, w—Db), (w—>b, w—a), ( —a, oo) we find that the above double
integral in brackets equals zero for w>b and equals I'(y)I'(—y) for
a < w<b.Hence

b

[nwas =

and then g™ (t) = h(t), a.e.; since @ and b are arbitrary.
Now let v >0, 4,9(%) = g(s+1)—g(?), and

oo

b
f g (w) dw

a

hu(t) =

f s, 9, (8) ds.

0

— Gy () and

L(—v)
= G (1)

Then, setting H,(t)
— P (t) = [ 77 4,9(0)
0

H,(i)ds+

FH,W) [ 577 Ag(t)ds+g () [e7 AH (1) ds,
) 0
we have

am dt
([ wnoe)”
gm=1 " ) t

om

<2 ligllw(

1t 1a
4,8, )ds|ﬂ~‘-) +

2m=1

0
f S_IFV
]

icm
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oM

+”H“”°°(2mf 1t g (1) ﬁtz)l/q*'“g““’(zmi [ HO ()2 _‘?_)lla

< Oligllg, v

uniformly in m, where we used the fact that |4,H,(1)| < |4,G,(#)] -+
+ | 4Gy ()] and @, is monotone decreasing. Extending A, to 1< 0 by
letting g, (f) = 0 for < 0 and using the fact that g, is a bounded func-
tion with compact support in (0, oo), it can easily be shown that h, e
L' (— o0, co) and, by taking Fourier transforms,

(1) (v) = (—)"(g,)" (v)
where ( —v)” is defined by

(3.14)

(3.15) (——»izz)"= [o]” (cos;y—i(sgnv) sin% y).

Since the right side of (3.14) equals the Fourier distributional trans-
form of (g,)" € 8, where 8’ is the set of tempered distributions, it follows
that (g,)% (1) = hy(?) a.e. and that the right-side inequality in (3.12) holds. -

Since, for 0<ae<zs<b<g< 0w <,

1 F .
Taoy )t

and, by means of [25], p. 371, Ex. 6, the integral on the right side is in
ACla, b], to show that I ?(g,) € ACyq, @ > 0, it suffices to show this
for w 8o large that g, (¢) = 0 for ¢ > w—1. Then

157 (9 (#) = 1577 () (@) +

L7 00 (0) = sy | (=0

and extending this function to # < 0 by letting g,,(¢) = 0 for ¢ <
that the function

0, we see

fla) = I (g.) (@) = I7" (g
o0, 00) and
@) = (=) (1 —e") ()" (v),
where (—¢0)"~! i defined by (3.15). Thub, from (3.14),
(—iv)f" (v) = (L—¢")(hy) " (v)
=(hu) ()= (b (- +@))" (v)

(@ o)
belongs to L'(—
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which, by [6], Prop. 5.1.15, implies that f e AC,,,(— oo, o0), and hence
I.77(g,) € ACo,(0, o) since flw) = I,7"(g,) (=) for #> 0.

To show that I},?(g) € ACy, if g, e WBV,, for each % > 0, one need
but observe that if 0 < e <o <b< w and if % is chosen so large that
g,=4g on [a, o], then IT7(g)(w) = I, "(g,)(3) € AC[a, b]. For p=1
it easily follows by applying (3.8) to g, that ¢@,..., g%V e AC,, if

€ WBY, ., 4> 0. The left-side inequality in (3.12) is proved for y > 0
just as in the corresponding case of Lemma 2, with sums replaced by
integrals.

The remaining part of the proof for the case y > 1 is a slight modi-
fication of the proof of relation (1.2) in [27] and so it is omitted.

Furthermore, it should be pointed out that, as in [26], p. 37, if
g€ WBYV,,, y> 0, then

(3.16) g =

4. Bessel potential spaces. Before turning to the proofs of the the-
orems we shall also need the following characterization of the Bessel poten-
tial space I? by an appropriate space of hypersingular integrals.

Levmva 11. Let 1< g < oo.

(2) If y eN, then

(g([v])( ))(7~[7]) a.e.

k4
lglg,y == > g™,
k=0

(b)y If y >0 and &6 =y—[y] >0, then

Ix]
lgllg,, = Z“gmﬂq-i-v ) f 8717 A, g0V (3) ds

where Ag 98 as defined in Section 3.

Proof. Part (a) is due to Calderdén; for a proof see Stein [20], p. 135.
Consider (b). From (a) and [20], p. 136,

= [llgllgys

']

7]
gty 22 ) g™l +1g @l 51
k=0

which implies that we may restrict ourselves to the case 0 < y < 1. Let
ge Ll 1< g< oco. Then from Wheeden [31] we have

o [ agwas,<| [ agon],+

+ | J sy A,y ds], < Ol

80 {liglllg,» < Oligll,, -

icm°
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Conversely, let ¢.£ 8, 8 being the set of all infinitely differentiable
functions on (— oo, co) that are rapidly decreasing at infinity. By [20],
Pp. 133, 134 there is a bounded measure u on (— oo, oo) with

@+ ly? = (dm)” (0) (L+ o).

From (3.15),
o = (—i'v)’(cos—;f-y —{—i(sgn'o)sin% 'y)
and so letting ¢~ denote the Hilbert transform of g defined by (g7)" (v)

= —i(sgnv)g” (v) and letting F~! denote the inverse Fourier transform,
we have

H‘P”gy - ”F_l 1..’_!”]2 y[s ~ ”q

< Ofllply+ | B (=) 0”) o+ |~ — 0o ") I}

< O{lglg+ || B (—ioye”) o} < O{ lipllg + | f s A0 (0)ds | )

0
with € independent of ¢ € 8. The desired result then follows by applying
the density argument in Wheeden [31], I, p. 432.

5. Proof of Theorem 2. Since, by Lemma 9, the case y € N is already
proved in [11], we shall only consider the case y > 0, y ¢ N. Without loss
of generality we may assume that #, = 0 for any sequence 5 under con-
sideration.

‘We shall first show thatif y > 1/g, 1< g 0 ory >
7 = g(k), k € N, where g e WBV,,nL°, then

(5.1) ]ﬂnq yw Gug”g P 23

which implies, by Lemmas 2 and 10, that wbv(q, y) c whv,,.

Consider the case ¢ = co and let 2™ '<Ck < 2™ Looking at the
proof of Lemma 3 it iz clear that (3.1). even holds for y > 0 provided g
has compact support. Thus

1,¢=1,and if

oo 0 I+1

147, < 0| ZA:.%: p) f (s—3)7"1¢ (s) ds|
oo I+1
<0 Y [ 199G 2 (s—iy 1A% | ds.
=kl i=k
Fory > 0,l<s<l+1,
(8.2) | ZI"(s—i)’“lA,-‘_’;‘} <COQU+1-R)y7 =1 +1),

Ti=k

3 — Studia Mathematica LXV.3
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(use @ = y, m = [2y] in [30], Pp. B60-B61). Hence
oo I+1
A7 A7) < 0L ST (A1 =) [ lg?(s)] (s~ 17~ 1) ds

I=k 1

< Ol 577 45 )J< 1= )< O g -

l=I

g < oo and 1/p-+1/q = 1. Then (5.2) gweﬂ

qug)ll(z ( tf i (8— l)p(v—m) ds)w ,

Now let 1L <

|47 | < OZ‘ (I+1—F)"? (j g

l=Jc
" where the last factor is uniformly bounded if y >1/g, 1 < g < oo, or if
y=1, ¢ =1. Hence

Py

K Ag A7 o)
T2 1
3 S —y—1\2/0) 12
<of - k"lA%ﬂZ(zH—k)-f-lf s | 3415
k=2m—1 i=k J=k
. 2M—1 2M—1 141 oMy PUG Y I+1
. 1g Q .\ g
<0 . +0 Lodsy R
{;mzm- 1 1—21: if } ’ {lc-saé'm/-'1 1..22’"; i }
o0 oMy 281 +1 }lhz }
+0 . 2 v [ ids) =254 2,
i-;;z{kﬂm—l o 1=ptel if
A change in order of summation gives
gM—1 . 141 . ] Ve
D Ay f gP(s)%as Y (G+1=E ) < Olglypw
l=gm—1 E=gm—1

uniformly in m. X, and X, are estimated analogously and so (5.1) holds.

To prove the converse for y > 1/g, 1 < g¢< o0, and y =1, ¢ =1,
we first suppose that 7 e wbv,, has compact support. Fix j = [y]4+2
and as in [11] (note that j > 2 and our A operator differs from that in [11]
by the factor (—1)%) let -

Pt = > (*7F) =y atn,
and

_p s SV [ —w Ay, B<E<E12,
00 = Bt =5 s Ay, kLR << L

— k) and (1) is an infinitely differentiable function with

: w(t);=[(j—.t—1)a 1t < 1/6,
e =,

(5.3)

where y, (1) = p(t
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Then g¢(t) is a bounded function which vanishes identically for large ¢
and satisfies g(k) =1 for keN. Also g,¢",..., 9% ) e AC[0, o) and

(5.4) g(a)( ) = l)j_ (])( )4j"7/c-1! E<t<k+1/2,
' 2 |l (o) 4Py, E+12<t< k41,
for k =0, I ... Since it is clear that g e WBYV,; =« WBV,,, we now have

to show that W9llg, 2 < Ollnllgpme With € independent of 7. By (3.2)

§00) = 0 [ s=1rg6)is, = l+1—,
t
and hence, for k<t << k+1,
00 1+1/2
(5.5) g () =0 2 f (s —t)"(— 9 (s) AP, _,) ds +
i=k+1 €
oo i+1

+0 Y [ (s—tp(pili(s) Al n) s+
i=k+114+1/2
k+1

+0f (s—t)g"V(s)ds = I, +I,+1,.
13
Since i (i4-5) = pP(s) and, by (2.1),

Ay = 4 (A1) = D A"

1=0

- Ay”lk-{-z:'
it follows that

12 o0 oo )
LI<O[ | 3 3 Gb4 14—ty ari—drn,, | 1 9 ds.

0 =0 I=0

Now set ¢ =n—1 and use (5.2) to obtain

1/2 oo 2 .
<O [ DA n1] 3 (0 =14 T+ 15— 1" A7 |1y (5)] as
0 ne0 L=el),

"o
< 02 (%'{"1)_”-2 lAymHJcI
R
since 0 k-F1l4s—1<

3/2 and |p?(s)| < . Similarly,

(\F

Hol S C D (n4-1)74 2 A%, ppsl.

n

[]
Y

Since, by (5.4),

9D (s +T) < C(| 4 mp_i) + 14 ml), O0<s<1,
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we have
(5.6) 1L, < O(147 mpal + |4 m))

0 -
<0 2 4747 (14" Mg + 147 i)

<O D) (1) (1A Mgl + [ 470 10])

n=

c

g 0d henee for k<t< k1, ¥ >0,

(5'7) Igw) I < 0 2 W""l THt IAVWIH n—-l[+ [A 77]c-| n|+ |A "]lc+n+1|)

n=0

by (8.5). Therefore [|g® ||, < Ol and if m is a non-positive integer, then

= dt\1h
( i mgW’(t)l“T) < Oltle < Clnllg -

om—1
If m i3 a positive integer and ¢ = 1, y > 1, then (5.7) gives

om

[ 1g™ @) a
am—1
CogM—1 k4l o0
<0 Y [ 7 Y DT (A gl 1A gl + (A7) 8
Y pemom—lk n=0
o 2M—1 a1
<0 Z'(%-{—l)_'"—2 2 2 Ay ]Ay"hc.;.zl 0“"7”1,y;w
=0 fpmgm—1l=n—1
simcee
2Mm—1
D AT A il < 2l e
g1

uniformly in ¢. 1 ¢ = oo, the desired estimate follows immediately from
(5.7). If 1 < g < oo, y > L/q, then 1%~ < Ok~ (4},)%, k<t < k+1, and so
a,pphca,tlon of Holder’s and Minkowski’s inequalities to (6.7) gives

ntl 2M—1

( f]t”g(“) t)l 02 (n+1)~#2 Z ( Z ' |A1c+zA""7k+1|q)

gm—1 I=n—1 "fmgm—1
< Clinllg
which completes the proof for the case where # has compact support.

For arbitrary n € wbv,,, with 9, = 0, let g be the function defined
by (5.3). Also let % > 1 and f, be the function constructed in the same way

icm

_a<t<b. Thus g¢—» =
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as g, but with the sequence {5} replaced by the sequence {G(k [y} € 13,
where G is as defined in Lemma 2. Then g(k) =, f.(k) = G(k/u)n,
for k e N and f, e LY. Since 4y, depends only on ny, ..., 7;,; and G(k/u)
=1, k< u,it foﬂows for 0 <t < [u]—j+1 that both ¢ t) and f, () depend
only on 7y, ...,7; hence g(t) = f,(%), 0 <t<< [w]—j+1. With 1<v
< ([u]l—3j -|:_1) /@ it then follows that
gv(t) = (Gv(t)_Gllv(t)) (t) = ( ( Gl/v( ))fu( ) t} 0.
Thus, by Lemma 2, the above compact support case, and Lemma 10,
I llg,pi = OUG e /) e} lg, o = Cllfulg pirwr

= Ol(Gy— Qi) fullg s = Clgullgmmr
uniformly in o> 1, which completes the proof by an application of

~ Lemma 10.

6. Proof of Theorem 3. Since the case y e N is already proved in
Connett and Schwartz [11], we shall assume that y > 1/g, 1 < g << oo,
y ¢N.

First observe that if g € 8(q, ¥) and we have proved that g~ e AC,,
foru>0,%k=1,...,[y], where g, is the function defined in Lemma 10,
then it easily follows that ¢%~* e AQ,,. For if 0 <a<<t<b and u is
chosen so large that g—g¢, = 0 on [a, b+1], then

0

8

@=0)O0) = = Fr— [ =07 g—g)(6)ds
ra=s),) 9—9.)(8)

for 8 = y—[y] and this function can be repeatedly differentiated for
(gu)(y—k)+ (g_gu)(y_k) € ACloc' Silnilarly, if IL_" (gu)
€ AQy,, for w, %> 0, then I, ’(g) € AC,,. Therefore, by Lemma 10 and
the fact [11] that

ll9lls(g,y) = sup g lls (g,
u>0

in proving Theorem 3 it suffices to consider only functions with compact
support in (0, oo),

Also observe that in the definition of WBYV,, spaces the fact that
we decompose (0, co) by intervals of the form [2™?, 2] is unessential;
see Remark 6.2.2 in [20], p. 109. In what follows it is more convenient
to replace [2™7%, 2™] by [¢", €™']. Furthermore, if g € S(q, ), y > 1/g,
then [}glle < Ollgllsigms [11], While if g WBY,,, then lpg*l, < Olglls
< Cliglly, 5w, Where @, and g* are as defined in Section 1. These obser-
vations reduce the proof to showing that if g € 8(q, y)n L, then g satisfies
the ACy,, conditions in the definition of WBYV, , and

em1
(6.1) ( f

an

a\1
) w,g(y)(maT) SO’Hgllsm,v)
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uniformly in m e Z, and, conversely, by Lemma 11, that lf ge WBV a0 N5

then
(6.2) l\——l—— [ o P ) | < Olglgr
. (-9
uniformly for % eZ.
We shall first show for ¢ € (g, y) that
o | gmtl, oo
09 3 ( [ P(iﬁ f 5710 4y (g ogt)g (1) Vs iq—’—]})w< Ol

uniformly in m. After (6.3) is established we will then show that

00

. 1 .
(6.4) (pi(logt)g(t))? = (=3 Of s"‘“"As(¢?f(10gt)g(t))flrl)ds, a.e.

which then yiclds (6.1) because

a1

g
([ woror)™ |
em ‘ : '
@ el Vg
<Z( [ 17 pitogg)f ) < Ol s
FT=m " gm

In the following estimates we will omit the factor 1/I'(—4), keeping
in mind that it keeps the constant multiples of 1/8 and 1 /(1 —48) occur-
ing in the integrations bounded. With the aid of

k .
d J
(6.5) #4100 = 24-,k(t E) o)

i=u
and the successive substitutions s =r»—1, r =¢’, t = ¢* the left side
of (6.3) can be estimated by

o [y] m+l o

OkZMZ( f |f u—v —1—8 {6(1&-@),,((,}29*)“)(@) _
—_ a(u—u)d(‘l‘lzcg*)U)(%)}d,v ‘Qdu)llq i 2 Z‘ L.
ko

Consider the single therms of the sum. The most critical ones ocewrring
are those with & = m or & = m-+1. Let us first discuss
m+1

(f ]f “‘“"{e“‘y(qof,,g*)(f)(t+u)-e‘“((,, ) }dt{ du)”“

m
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Since ¢,, (%) = 0 for u > m+2/3,

m—i—l o Ve m+1 23 . va
La<(f % (L6106~ (g2 g (ar) dt\ du) +(mf lof o [t
m
= J77L+ Jym*

By the 1ntegm1 Minkowski inequality and a result of Strichartz [22],
§ 3, it follows for j < [y] that

Tjm < Ollpmg*lys < Clomg*la,, < Olglisigns
where we uséd the fact that if 1 e Lj, then

(6.6) 1Bllg, < 1Bllg,, glf u<i.

In view of Lemma 11 we want to replace [ in K;, by
0

=5 2/3 o0 -
f T A g wya = [ + [
0 2/3
Asg in the estimation of J;,, we have
m+1 oo " i
([ ] Aaign? )@ au) ™ < Olglsg,ns
m 2/3
so0 it remains to estimate
m+1 23 i
(1) @=e2=0 (g o) (1 w)— = (") ()} i —
m o o )
— [ 0 Ay (kg () | ) .
o
Since

l—eixte!, e W—1> —9t, @L—eH 017" =09
for 0 < # < 1, the above formula can be estimated after routine reformul-
ations by
m+i 213
O( [ | 000k D @)l + b g") D 8-+ u) } de [ au) ™
m 0 o3
< Oligg™ly,; [ 1700t < Ollgllsia,n)-
Q

8o a combination of these estimates yields

m+1 o0

< Olglsigm+0( | U 170 4, (g2, 90D () dtl du)""

m

OHyHS(q,y) + Ollmeg Hq j+é O”.‘}'”s(q )
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by (6.6) and Lemma 11. Similarly,

L1 < Cligllsians

",

so it remains to estimate 3 2 I, .. Since supp ¢, = [k—2/3, k+2/3],

k=m-4-2 j=0
w [y
2 D
k=m+27=0
o [y] mel Je—m2/8

—e( ]S

K=t je=0 m Fe—m—5/8
[

<0 33 ]

k=m--2 j=0 k—m—5/3

Gwiyl(%ﬁcg*)(f)(t + ) |t ’Qdu )1/:1
& g gl st

< Qelmishy 2 o9 * g, " < Ollgllsqany

k=m-2

and hence (6.3) is established.
To consider (6.4), we et

#i(logt)g(t), ¢> 0,
0, 1<0.

9(t) = l

Since S(q, y) = 8(g, [y]) and g, has compact support, it is clear that
s 9V € I'(— o0, o). By (6.3)
By () = f 57170 A, gt (1) ds € L* (67, o),

1 k>=m
(=9 e

for each m e Z, and, by a direct elementary calculation, it also belongs
to Ll( — o0, ¢™1). Hence we may take the (classical) Fourier transform
(b)) (v) = (— ) (—v) gy (v). On the other hand, in 8’ there also holds

-

. a \+1 :
()" (v) = (_(E) ﬁf <8-t)“'°mc<8)d8) (v)
t

= (—=1)"(—v)" gy, (0).
Hence, by the uniqueness theorem for Fourier transforms, (6.4) holds

and to complete the proof_ of 8(g,y) =« WBYV,, it only remains to show
that I°(g), g9, ..., g" Y e AQ,,.

Since g has compact support, it follows as in the proof of Lemma 10
that I57°(g) € ACy,, o > 0. Also, from the above, if » > 1, then

(—#)(g")" (v) = (—iv) gj,(0) = (—1)" 1y (0)

icm
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and hence, by [6], Prop. 5.1.15, ¢, ..., %% ¢ ACQ,,. But ¢ is a finite
sum of the g, and fractional differentiation is 1]1162:1' 5099, ..., g¥ Y e AQy,.

As mentioned before, to prove the converse we have to show that if
geWBV, ,nL7, y>1Jg, 1<g< oo, then (6.2) holds. By the integer
case of the theorem,

”fws‘l'dds(qﬂkg*)([”)(t)dsHq< “f] ds“q—i—O Fs—l—-a“‘Pkg*”q,[y]ds
0 ¢ '

S 11+ O”g”q,y;W .

‘We shall handle the term I, by essentially reading the proof of (6.3) back-
wards. So again by the integer case,

I, < Hf (1—0—3)—1-0Aa(qjkg*j([v])(t)d& “q+
o

1
- ” f A (@ g*) W (8) {s~°— (1
0

= I+ Oligllg s

e

where

< f (=60 (L= 67) (9, g*) (s + 2)ds |+
+ “j(l_e—.?)—l—d(l__ =) (0 g®) ™ (1) ds ”q+

+ |[ f 1— ™) o™ (") @ (s 1) —

+||1f(1—

Clearly, by the integral Minkowski inequality,

o™ (pug) P (1)) ds [+

e s ||, = Lot L+ I+ I,

Iy+ I+ I < Cliglly s

50 the essential term is
o o0
=([]Ja
—o0 i

By ) {e~ (v—lw(%g*)([vl) (v) —

.
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By first substituting e’ =« and then ¢ = s, observing that supp (4,p,
(logu)g(u)) A [¢"*, co) is empty, and then letting s =1+ u, one arrives at
eli+1 '

Isg(l(of

® m
o [ e {0791 (107 (s ot 0 g0+ 0) -

B 4\ d Y
o —wfur) ntogng o ))}dt )
-3 ele—2j41 0o 1/g 0
Lo
<o ([ Jef o at )y,
F=0 gk—2i—1 0 . j=0

Setting f.(4) = @, (logu)g(w), v > 0, and uring the fact that

n

a\" o
(6.7) (t —L:l?) g(t) = Zai’nfg“)(t), G, =0 for nxzl,

=0
we have )
[yl gk+1 o s ) ) o du\Ve
7,<0 ) f ’u”ft =0 4, (w0 ()t 2
=0 el— %
Bl gkl

-+

2 du,)

soz( J ‘u‘“’f 17370 A £ () dt
im0 k-1
[71;1 e+l s s i P . o du e
+0% ( J w ft {(; -}-1) —-1}f()(t+u)dt 7) .
By (3.13), (3.16) a,nd Lemma 9 the first sum on the right side is major-
ized by O Hgl]q,, 7. In the second sum the substitution ¢ = us leads to
-1 | ght1 oo au
( f 'uq:f sT (s + 1) — 13D (u(s 1)) ds : . )
i=1 O gk—1 ]
[¥1—1 r.
< 02 1fell, 1,Wf T s-1) i{ s+1)~0— —~1}ds < Cllgly,piw

by Lemmas 9 and 10. Thus it remains to estimate 2 J;. Since suppf, <
1

{u: 657 < ), sotting m = k—2j and using (6.7) we have for
j=z1
7], el
J,.gaZ( f }u«s

te=  gm—1

ek+2/3 _gm—1

IO () | D (84 w)|
ek—2/3 _gm-+1
< 06(m+1)6(ek)~a”g”q’ﬂw

a du)”q

which concludes the proof since (€%)=¢ 3 elt+1-21 ~ Q(1).
=1

icm°
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7. Imbeddings. Our results lead to some important information
concerning the imbedding behavior of the WBYVY,, and wbv,, spaces.

TarorBM 4. Let v, p> 0.
(@ If 1<p<

»

g < oo, then
WBY,, =« WBV, ;
b Ifl<p<g<oco, 1jp—1l¢g<y—pu, y>1/p, then
WBY,,, = WBV, ,;
¢ < o0, 1-1/q < y—pu, then
WBYV,, « WBV, ,;
(d) WBV,, =« WBV,,,, for
e) If 1jg<y—p, 1<g<
WBV,, =« WBV,,,.

Proof. Part (a) follows directly from Holder’s inequality and (b)
follows from the well-known imbedding property of Bessel potential
spaces [8]. For (c) first note that by (3.2)

7 o dt\Ye
( 7

() If 1<

y=1;

oo, then

* g(/‘) (?)

am—1

om ©
dat\Me
<o [|¢f -l d)

gm—1 13
om  gm 0 2k
¥ at\"
o JIF-14"e S J-
Ngm—1 { ke=mt1 gkt

Since (y —p—1)q > —1 the integral Minkowski inequality gives

dt g
“T) = I, 4,

N

8 /g
<e 19%(s) (s —n)r=r—Da=gp) = ds
1
om{ (27"[1 )
om
<O [ &g (s)|ds < O gl pom-
om—1

The sum X, is estimated analogously. Finally parts (d) and (e) follow
similaxly by straightforward computations and so we omit the proof.
Note that in (d), WBV,, = L°nC(0, oo).

On account of Theorem 2 we also have

TueoreM 5. Let y, p > 0.

a) If 1< p < g oo, then

whv,

oy < WDVy,5
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D) Ifl<p<qg< oo Ljp—1lg<y—u, y>1/p, then
Whv,, = Whv,,;
(e) If 1<qg< o0, 1—1g<y—up, y=1, then
wbv,, = wbv,,;
(d) We have
wbv,, © Whvg,y for y=1;
(e) If /g <y—p, 1 < q< oo, then
whv,, © WbV, ,-

8. Multipliers for Jacohi expansions. Fix oz f>=> —1/2 and let
L? = L, 5, 1 <p < oo, denote the space of measurable functions f(»)
on [—1,1] for which

1

Iy = ( V@) —0) 0ol < oo,

-1

To each f e L” there can be associated the formal expansion [24], Chap. 9

f@) ~ > b PP (),

fi=o
where P (z) is the Jacobi polynomial of order (a, B),

by, = BP0 = (|PEP (w)ll) 2,
and

o= [F@PED(@)(1—0) (1 +0) do.

A sequence n el™ is called a multiplier of type (p, ), notation n e ML,
if for each f e L” there exists a function f7 € L? with

(8.1) f1(@) ~ 3 mag b PEN @), (171, < Olfily,
k=0
where C is independent of f. The smallest constant ¢ independent of f
for which (8.1) holds is called the multiplier norm of 7, and it is denoted
by ||17|[Mq. We note that in deriving multiplier criteria we may assume
»
that 5, = 0.

The following end-point results concerning Jacobi multipliers are
known:
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THEOREM B. (a) I° = M;;

2a-+2 2a+2 <
s
at3p PSGxip S

(b) Whv,, = M2 if 1<

(e) wbv,, =« My if 1 <p< oo, y>a+3/2;
(@) wbv,, =« MZ if 1<p< oo, y = [a+2].

Part (a) is well-known and a consequence of the Parseval formula
for complete orthogonal expansions. Part (b) in the case a = f = —1/2
is the classical Marcinkiewiez multiplier criterion for Fourier series (see,
e.g. [32], p. 232); in the ultraspherical case a = > —1/2 it is due to
Muckenhoupt and Stein [17], and the general case is due to Askey [1].
Part (¢) is proved in Gasper and Trebels [13]. Both (b) and (¢) are best
possible in the sense that in (b) the p-range cannot be enlarged, and (e¢)
is not true for y < a+3/2. Theorem 3(a) below shows that (¢) also holds
for ¥y = a--3/2. For (d) see Connett and Schwartz [9] and Gasper and
Trebels [13].

Our aim here is to derive new multiplier criteria for Jacobi expan-
sions by interpolating between the various end-point results collected
in Theorem B. This will be accomplished by using Theorem 1 and the fol-
lowing theorem, established by Connett and Schwartz [11] in connection
with ultraspherical multipliers but which immediately carries over to
Jacobi polynomials.

TeeorREM O. Define the operator T: S(q,v)— M: by

Ty(e) ~ D mm PP (@), geSg,y), gk) =mn, keN,

f=1
and supposé that T: S(g;, y;) —~ MTi, 1 <Py, g < 00, ¥y >0, 18 continuous
Jori=0,1. If 0<s <1 and

(v, 1Ip51/q) = (1 —8)(yo, 1/Po, 1/) +5(y1, 1/P1, 1/g3),

then T: 8(q, y)—~ M3 is also continuous.

Our multiplier results are contained in v

THEOREM 6. Let a > 2 —1/2, L<p < oo, and y > 1[g, L < g < oo.

(@) If y>(2a+2)|1/p—1/2|+1/2 and y>1, then wbv,, < M3,
This result is best possible in the sense that wbv, , & My when u < (2a+2)
[Lip~1/2]+1/2.

(0) If y> (4a+4)[1/p —1/2] > 1]g,
whv,, c M. )

(¢) If y> (2a+3)|L/p=1/2], ¢> p/I2—p], then wbv,, < Mj.

2a+2 2042

< h
arsp “PSTapr M
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(We shall omit the statements of the various criteria arising when
Theorem B(d) is one end-point of the interpolation since this end-point
is not sharp.)
Proof. Part(a) follows by interpolating between parts (b) and (c)
of Theorem B. First let ¢, 6 > 0 be small. By Theorem 5(a) and Theorems
1-3 the hypotheses of Theorem C are satisfied if we choose

Yo =32+¢, yi=1, ¢=q=1+9,
Po=1+46, p,=(2a+2)/(a+3/2)+46.
Hence T: 8(q,y") —~ M3 is continuous when
0<s<l, g=14+6, » =(1—s8){(a+3/2+¢)+s,
2a+2

1/p = (L —s8) /(14 6)+5 é}.

o = W=+ 0] (22 +9)

Note that ' —(2a+2)(1/p—1/2)—1/2 > 0 and tends to zero-as & 6 — 0.
Similarly, with y,, 71, ¢, ¢; defined as above and p, = 67, p; = (2a+2)}
[la+1/2)— 6 we find that T: S(q,y’) > M} is continuous when

0<s<l, q=1+6, ¢ =1—8)(a+3/2+e)+s,

2a+2
Lp = —nds) (55 ~d),

where 9" —(2e¢+42)(1/2—1/p)—1/2> 0 and tends to zero as e, 6—>'0.

By Theorem 5 (c),

e whv,,  whv,, = M7,

where y > ' may be chiosen arbmarﬂy near y' since ¢ = 1+ § may be
chosen arbitrarily near 1; hence wbv,, « M} for y > (2a¢+2)jl/p—1/2|+
+1/2.

The fact that the (p,y)-range is best possible can be seen by the

icm

counterexample of the Cesiro kernel. Askey and Hirschman [2] have .

shown that the sequence 7, ,

[ AL /AL,

0k n
ﬂﬂ,n(k) = 10’ RN

k>mn

is not a uniformly (in ) bounded MJ-multiplier family for expansions
in ultraspherical polynomials (¢ = > —1/2) provided 0 < p < (2a+2)
[1/p —1/2]—1/2. Their proof carries over to the general Jacobi polynomial
case (use [24], § 9.41 and Ex. 91) and so 1), ,, is not a uniformly bounded
family of Jacobi ME-multipliers in the same (p, u)-range. But 7, ;, satisfies

Z,‘A |45, (R) < O
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uniformly in n> 0 (see the Remark in [26], p. 44), 80 7,, € WbV,
with p+1<(2¢+2)[1/p—1/2|+1/2; which completes the proof of (a).
Also see Bonami and Clere [4].

Parts (b) and (¢) of Theorem 6 follow easily by interpolating be-
tween (a), (b) and (a), (¢) of Theorem B, respectively.

Remarks. The special case ¢ = 3> —1/2, y e N, of Theorem 6 (a)
is contzined in Bonami [3], which also gives an extension to weighted
LPspaces. Also Theorem 6 supplements some results in Connett and
Schwartz. What seems necessary now is to extend Theorem 6 by re-
placing the Marcinkiewicz type conditions by Hormander ones: whv,,,
where the parameter » is governed by the imbedding relations in
Theorem 5 applied to Theorem 6(a), i.e. > (2a¢+2)1/p—1/2|.

Looking at Theorem 6 there naturally arises the question if one can
give similar conditions for MZ-multipliers, 1 < p < g < co. This can indeed
be accomplished by the following ides. Write {n;} = {k°n;} {#7°}; then
for appropriate ¢ > 0 the multiplier sequence {4~ °} transforms feL”
into a corresponding f° e L% Now one has only to check if {£%7,} satis-
fies the sufficient HZ-condition of Theorem 6. This again leads to “sharp”
multiplier eonditions in terms of modified weak bounded variation spaces.
Details will be given in a subsequent paper.

9. Multipliers for Hankel transforms. Fix ¢ > —1 and let L” = Lf,,
1< p < oo, denote the space of measurable functions f(z) on (0, oo) for
‘which

il = ([ 7@ paan)”

is finite. Following Hirsechman [15], we define for fe L' the (modified)
Hankel transform of order a by '

Ha];f](y) = fA (y) = f f(a‘;) (,ﬂy)—uJa(wy)m."a+ldm’

where J,(#) is the Bessel function of the first kind; thus, the Hankel
transform of order a = (n—2)/2 coincides with the Fourier transform
of a radial function integrable on R™ (see [21], p. 155). The multiplier
transformation associated with a flumtmn w(y) is defined formally by

= f W(y)f. () (zy) T (zy) yZu-de.

peL®(0, oo) is called a multiplier of type (p, p), notation pe ME(H)
if to each f e I*nIL? there exists a function U, f = f* e L” such that

(9.1) HUwfllp Clifl, (feL'nI”);
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the least constant ¢ for which (9.1) holds defines the operator norm of
the multiplier v, notation ]'fplup. Igari [16] has proved the following
“p

Interesting connection between Hankel and Jacobi multipliers of strong
type (p, p); an analogous result for weak type multipliers can be found
in Connett and Schwartz [10].

THEOREM D. Let 1<p < oo and a, > —1. Let v be a continuous
Junction on (0, oo), set p*(y) = p(ey), and denote by {yi}, the sequence for
which i, = p(sk), vi = 0. Assume y° to be a uniformly bounded family of
Jacobi multipliers (for small & > 0). Then W’IMZ’ 8 finite and

D
ll, p» < liminf i {p}l
&0+

7 DI
My arp

where || ||M, denotes the Jacobi multiplier norm.
F
This enables us to use Theorem 6 to obtain analogous results for

Hankel multipliers. We restrict ourselves to the ease ¢ = 1 (part (a) of
Theorem 6).

THEOREM 7. Let 1 < p < o0, @ > —1/2. Then
9.2) WBYV,, ¢ Mj(H) « WBV,_,,

where 0 < p < (2a+2)[1/p~1/2]—1/2 <y—1.

Proof. The right hand-side inclusion is proved in [28] for a =
(n—2)/2; the extension to arbitrary o> —1/2 is completely analogous.
For the left hand-inclusion apply Theorem D, Theorem 6(a), Lemma 2,
and Theorem 2 to an arbitrary ¢ e WBV, :

STl o S Hmint {[fyid] 2ep S Oliming [{pg}l, .0

0 504 D >0+ i
< Climinfsup [{(93)e}h,p < Climintsup lygll, .,
&0+ u>0 >0+ u>0

where v, = (6, —G3,)v°. But by direct computation fef. [267, p. 41)

d k4
(71;) Pu(et) = &' (et)

80 that for arbitrary integer m, by Lemma 10,

Nl a T i

£
f 134 (”d?) "P;(t)lT = f [t”tp,(}')(t)]T < OH'PIII,V;W
am o

which completes the proof.

Remarks. (i) On account of Theorem 3 and Theorem 4(c), Theorem 7
is equivalent to a result (in terms of localized Bessel potential spaces)
in Connett and Schwartz [11]. In the special case a = (n—2)[2, p(t) =
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(1—1)%, Theorem 7 yields Welland’s result [29] on the boundedness
of the Bochner-Riesz means for radial funetions on L?(R™).

To show that the (p, y)-range in Theorem 7 is best possible it suffices
to consider the Bochner—Riesz kernel

m(y) = mly) = L—y**, y>1,

and use a modification of Welland’s proof of the special case a = (n—2)/2
(which utilized formula (3.1) in [29]; personal communication). In place
of [29], (3.1) we shall use the fact that if f is the characteristic function
of an interval [0, £] and S .(z) = 2™°J (%), then

1
(93) Vauf(®) = [ (A—927f () Faly2)y*dy
[
= Co,, [f@)@ ([ Fopl(@*+22 —2azc089)™) sin**pip) da-
0 0
This formula follows easily by using the product formula (¢ > —1/2)

Ful@) S (yl) = [ FN)H (2,9, 2) Az
1]

O, [ Fa((@e2 4 y2e2 — 2myt* cosg)'®) sin*pdg,
0

where the kernel & (z,y,2) is symmetric in #,y, 2 and Lemma 4.13
in [21]. In view of the asymptotic formula [24], (1.71.7)
S A3) = ez Veos (4 ¢) 0 (%), @ +oo,
if [a, b], 0 < @ < b, is an interval such that
cos{(wte)>1/2, a<z<b,
and if ¢ = (b—a)/4, then, by (9.3),
Vuf(2) = 0712 g et 2ak <2< b—e2ak,

for k > k,, where k, is sufficiently large. Hence
00 b—at2nk
”me”; >C 2 f Pl y—12P 20t gy o
k=ky a+et2nk
when p < 4(a+1)/(2a+2y+1).
(ii) By Theorem 2, Theorem D, and Theorem 7 we also obtain
a necessary condition for a family of sequences y* with ¢} = p(ek),
&> 0, to be a uniformly bounded Jacobi multiplier family.
(iii) The case y =1 follows analogously by Theorem B(b) and
Theorem D, and reads as follows.

4 — Studia Mathematica LXV.3
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If p e L®(0, oo) is locally of bounded variation with
am+1
lo+sup [ Idy(®)] < oo,
m  am

2042 << 2a-+2
etz P ez

This method is due to Igari [16]; for another proof giving multi-
plier criteria even in weighted L”-spaces see Guy [14], p. 187 ; @ heuristic
proof using Littlewood—Paley functions can be found in Sunouchi [23].

(iv) It is interesting to note what happens for p =1 (or P = o0).
To this end introduce the space of functions of bounded variation of order y
(ct. [26], p. 36)

then ye MZ(H) provided 1<

< oo.

BV, = {ge ([0, o0): I;%(g) € ACy,, 0> 0 if 6> 0;

, 9, ...y 477V € Ay, and lgllay, < oo},
where § = y—[y],

lglsy, = llgle+ [ 719 ()| dt
0

and C,[0, o) is the set of all continuous functions on [0, oo} which vanish
at infinity. Denote by [L']" the set of all functions which are Hankel
transforms of some ZL*-function. Then there holds

"BV, c[L']" <BV,, O<p<at+l/2<y—1.

The left-side inclusion is proved in Butzer, Nessel, and Trebels [7], the
right-side inclusion is only a simple modification of [28], noting that
the Riemann-TLebesgue Lemma holds for Hankel transforms (see [19]).
By the same technique as in [28] one can also show
[0 e Mi(H) © WBY,,, 0<u<atlf.

(v) There is @ differentiation gap of about 1 (#+1<y) between
necessary (u) and sufficient (y) Hankel multiplier criteria. Theorem 4(d)
and the example (1—1%); show that this gap cannot essentially be dimin-

ished as long as we stick to WBYV,,, and WBV,, ,-classes. As in the Jacobi
multiplier case the conjecture for an improvement is

WBV,, = ME(H), x> (2a+2)[1/p—1/2], 1< p< co.

One result in this direction is due to Conmett and Schwariz [10] who
verified the embedding for » = [a+1]+1, a > —1/2.

icm
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Added in proof (Oct. 4, 1979): For recent results concerning the remarks on
p- 273 and p. 276 (v) see: G. Gasper and W. Trebels, Multiplier criteria of Hor-
mander type for Fourier series and applicalions fo Jacobi series and Hankel trans-
forms, Math. Ann. 242 (1979), pp. 225-240.
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Factorization in Banach algebras

by
VLASTIMIL PTAK (Praha)

Abstract. Let 4 be a Banach algebra with bounded left approximate identity
and let ¥ be a left Banach A-module. For each sequence y (n) € AF  satistying a certain
condition there exists an ae 4 and another sequence z(n)e AF™ such that y(n)
= g"z(n). 4

Introduction. 'We present a simple proof of a generalization of the
Rudin-Cohen factorization theorem using the method of nondiscrete
mathematical induction. This method is based on a simple abstract the-
orem about families of sets, the so-called induction theorem. The induction
theorem is closely related to the closed graph theorem and is nothing
more than the abstract description of a class of iterative comstructions
in analysis. One of the advantages of this method consists in the fact
that the construction of the sequence of iterations is dealt with by the
abstract theorem; this reduces the amount of work required to an inves-
tigation of the improvement of the degree of approximation which can
be achieved within a given distance from a given point. In this manner,
by separating the hard analysis part from the construction this approach
not only yields considerable simplifications of proofs but also evidences
more clearly the substance of the problem.

1. Preliminaries. Given a positive number » and a set M in a metric
space (H,d), we define U(M,r) = {ye¥; d(y, M)<r}. Let T be an
interval of the form {t; 0 <t < 1%,}, where %, is positive or oco. If A(2),
t e T is a family of subsets of B, we define its limit 4 (0) as follows

A4(0) = N (UA(s)) -
o<r S
A mapping o transforming T into itself is called a small function or a rate
of convergence on T if o(t) = t+(f)+ o (w(?))+ ... is finite for each ¢ e T.

The method of nondiscrete mathematical induction is based on the
following simple result.
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