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Factorization in Banach algebras

by
VLASTIMIL PTAK (Praha)

Abstract. Let 4 be a Banach algebra with bounded left approximate identity
and let ¥ be a left Banach A-module. For each sequence y (n) € AF  satistying a certain
condition there exists an ae 4 and another sequence z(n)e AF™ such that y(n)
= g"z(n). 4

Introduction. 'We present a simple proof of a generalization of the
Rudin-Cohen factorization theorem using the method of nondiscrete
mathematical induction. This method is based on a simple abstract the-
orem about families of sets, the so-called induction theorem. The induction
theorem is closely related to the closed graph theorem and is nothing
more than the abstract description of a class of iterative comstructions
in analysis. One of the advantages of this method consists in the fact
that the construction of the sequence of iterations is dealt with by the
abstract theorem; this reduces the amount of work required to an inves-
tigation of the improvement of the degree of approximation which can
be achieved within a given distance from a given point. In this manner,
by separating the hard analysis part from the construction this approach
not only yields considerable simplifications of proofs but also evidences
more clearly the substance of the problem.

1. Preliminaries. Given a positive number » and a set M in a metric
space (H,d), we define U(M,r) = {ye¥; d(y, M)<r}. Let T be an
interval of the form {t; 0 <t < 1%,}, where %, is positive or oco. If A(2),
t e T is a family of subsets of B, we define its limit 4 (0) as follows

A4(0) = N (UA(s)) -
o<r S
A mapping o transforming T into itself is called a small function or a rate
of convergence on T if o(t) = t+(f)+ o (w(?))+ ... is finite for each ¢ e T.

The method of nondiscrete mathematical induction is based on the
following simple result.
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(1.1) TeworEM. Let Z(r), v €T be a family of subsels of a complete

metric space (H, d). Let o be o rate of convergence on T. If
Z(r) < U(Z(w(r)),r) for each re T,

then Z(r) = U(%(0), o(r)) for each r e T.

The proof is an exercise; the principles of the method of nondiscrete
mathematical induction are expounded in the Gatlinburg Lecture [12].

Let A be a Banach algebra without a unit. We shall say that 4 pos-
sesses a left approvimale unit of norm f if A4 satisfies one of the following
two equivalent conditions

1) for every a € A and every ¢ > 0 there exists an e € A such that le| <
and
lea —a| < &;
(2) for every finite sequence ay, ..., a, € A and every &> 0 there emists
an ¢ e A such that le| < B and
lea;—a;l <& for 4=1,2,...,%.
A proof of this equivalence is given in [2].
Let F be a Banach space which is a left 4-module, |axz| < |a|lw] for

& € 4, # € F. We shall denote by F, the closure in ¥ of A¥. If condition (1)
Or (2) is satisfied, it is easy to show that

(8) for every finite sequence @, ...,a,€ 4 ond z,,...,%, cF, and
every &> 0 there emists an e eA_, le] < B such that

lea;—a;l <e for i=1,2,...,n,
lew; —m;) < e for j=1,2,...,m.
We shall need the following simple lemma, the proof of which may
be left to the reader:
(1.2) For every n €N and all compler a, b
la+5]"" < lalV™+ {b[¥".

As usual, N denotes the set of all natural numbers.

We shall assing to each Banach algebra W and each Banach left
W-module E a new structure (W, E)" = (W, B d°,0) which consists
of W, a linear space B, a mefric d° on B’ such that (E°, d°) is a complete
metric space and a mapping o of W x B’ into E°. This is done as follows.
Let a, be an arbitrary sequence of positive numbers. We shall denote
by E° the set of all funetions z: N — WE~ such that

llell = sup a fe(m)™ < oo.

Tt follows from Lemma (1.2) that B° is a linear space ; equipped with the
distance funetion d° = ||z, —z,|| it becomes a ecomplete metric space.
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For each a € W and each z € E° we define v = aoz by setting w(n) = a"2(n).
Clearly, « € E° and llaoz| < |a|fiell. If A is a scalar, we define v = 1oz by
setting o(n) = 2*2z(n). Clearly, 1oz e E” and [[Aozl = |A|[lz]l. Also, Aoaoz
= (Aa)oz. '

Let A be a Banach algebra without & unit. We shall denote by B
its unitization. The multiplicative linear functional on B which has A
as its kernel will be denoted by f. The mapping P defined by Pb = b—f(b)
is a projection of B onto 4. The set of all invertible elements of B will
be denoted by G (B).

If F is & Banach left 4-module with |zy| < |»]|y| for 2 € A and y e F,
then F is also a left B-module in an obvious manner; the above inequality
remains valid for # e B as well. If A has a bounded approximate unit,
it is easy to see that (By)~ = (Ay)~ for each y e F.

(1.3) Let W be a Banach algebra; for each pair uw,v e W and each n ¢ N

n
Pt — oyt = Zvn—%(,u_u)uk-d.
1

Proof. By induction.
The following technieal result will be used in the sequel.

(1.4) Suppose b, ¢, w, e are elements of a unital Bamach algebra B
and a a compler number which satisfy the following relations

w) <3/4, ¢=A+w), w=uale—1)b.

Then o] <4 and ¢—1 = —ow = —ac(e—1)b.
If F is a Banach space which is a left B-module, then, for each n & N
and, each y € T, the following estimates hold

[((Bo)" — ") 9] < lat D] (4 b)) max [(e—1)By1,

1<k<n
|(Be)—b") y| < (B 101" Iy!-
Proof. The second estimate is immediate since
[{(@o)"—b") y| < (bel™+ 161" ly] < 1B"(4"+1) |yl

The first estimate is a consequence of Lemma (1.3) and the relation
c—1 = —ow:

K3

—a Y (boy R (e— 10"

1

(bc)”—‘ P o= Zn (bo)”“kb(c—l)bk—l = MGZ(bo)""kb(}(e—l)bk’

il
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2. Power factorizations.

(2.1) TumorREM. Lét A be o Banach algebra with o left approvimate
wunit of norm B. Let F be a Banach space which is a left A-module. Let a,,
be an arbitrary sequence of positive numbers. Let y (1), y(2), ... be a sequence
of elements of AF~ such that

lim oy (n)["* = 0

and let € > 0 be given.

Then there ewists a sequence z(n) € Ay(n)~ and an element a € A such
that .

y(n) = a"=z(n) for all neN,
o] < B,

z(r)—y(@n)| <are® for all neN.

Proof. I. Let B be the unitization of 4 ; the letters f and P will have
the same meaning as in the preceding section. Construct (B, F)°. The letter
U will stand for the set {w e 4; |»| < §}. Let B be the complete metrie
space obtained by equipping the set 4 x (Boy)~ with the distance

1 1
APy, Pa) = T, max {— |61 — a4, Sl zz[‘l}
if py = [ay, 2,1, and p, = [ay, 2,]; the closure (Boy)™~ is taken in the metric
d°, the number  is a constant to be chosen later, 0 < w < 1. (We shall
28+1

see that w =
2842

is a possible choice.) For each b e G(B) seb

p(b) =[P(b™

For each positive r <1 set

Y, boyle B.

W) = {p(b); b e@(B), fb-Y <,

In particular, [0,y] = p(1)e W(1).
IL Fix n eN and consider the nth coordinate of aocz—y if [a,2] e
W{r). We have

dlp®), p(1)) <

(1—-1")}.

—

(B —F))a(m) — g ()
— bra(n)+ (2 () (b'l)""‘(—f(b‘l))") 2(n)—y(n)

n

= 2(n) X (=1)* (}) 072y 45(0)

icm

.
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whence

Ia z ) J(’ﬂz lln—k,rlc

o S

= le(@((I7" +7)"~

Sinee (b7 < [PY+IF(07
la] < (1 —7), we have

]b lln)

< lo|+r and since [a,2]e W{r) implies

o) (|6 + ).

|a*z(n) —

ym)<

Tt follows that [@, 2] € W (0) implies aoz = y.
IIT. We intend to show there exists an w such that

W(r) = U(W(awr),7)

Having proved that, it will follow from the Induction Theorem that
W{1) = U( (0),1/(1 ) this means that there exists a p = [a, 2] €
W(0) with d{p,p(1 ))<1/(1 o), in other words, aoz =y, lo} <8,
le—yll <.

IV. Now let p(b) e W(r). We intend to show that the pair p(d')
corresponding to a slightly perturbed b’ = be will satisfy

rlz(n)|n(B+2r)""

for each 7> 0.

p(b') e W(wr)nT(p(b), 7).

For this it suffices clearly to construct ¢ in such a manner that

(1) [P —Pb7Y < (1—w)fr,

(2) f(e™) = o,

(3) b'oy—doyl< (1—w)er.

‘We shall see that it is possible to satisfy these three conditions by
constructing a ¢ for which

(4) ¥~'—b"! is 2 scalar multiple of ¢e—1 for a suitable e e T.

Such a choice —if possible —has the following consequences: assuming
B~1—p~! = a(e—1) for some scalar a, we have

—a = fla(e—1)) = fp' ' —b7") = fleT =D)f(p7) = (0 —1)f (57
whenee ’
P —b"Y) = Plale—1)) = ae,
b—b = —b'()'"'—b"N)b = —ab'(e—1)b,
¢ = (1—a)f(p™").
For shortness, set w = a(¢—1)b. We have thus b'—b = —b'w, whence
b (14w) = b. Tt follows that a suitable choice of ¢ will be ¢ = (14w)™*

provided |w|<1. Now w =a(e—1)b = a(e—1)Pb+a(e—1)f(b) =
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=u(e—1)Pb+ (L —w)(e—1), whence
w| < lalie—1)Pbj+(1—w)(B+1).

Now choose o = (28+1)/(26+2) so that (L—ew)(f+1) = 1/2.

An e e U may be chosen go as to have

(8) laji(e—1)Pb] <1/4

so that jwj<3/4 and |¢|] < 4

Now choose an m e N such that

a; 5B |y ()" < (L —w)er

for all 5 > m. Having chosen m, choose ¢ e U which satisfies (5) and at
the same time

2(4]?)})" max |(e—1)b*y(n)| < min (g, (1—o)er).

T 1<k, n<m 1<<t<<m
According to Lemma (1.4) this implies [beoy—boyl < (1—w)re. The
proof is complete. '

As a corollary, let us prove a theorem obtained recently by G.R.
Allan and A.M. Sinclair [1].

(2.2) TemoREM. Lef A be a Banach algebra with a bounded left appromi-
mate identity bounded by B and let F be a left Banach A-module. Let a, be
a sequence of real numbers such that a, > 1 for all n and a, — o0 let 6 >0
and let m e N.

If y lies in the closed linear span of the set AF~, then there are an 6 ¢ A
and 2y, 25y ... in F such that

(1) ¥y = a2,

2) lal< B

(3) 2 4y,

4) ly— z,,]<6for h=1,2,

(8) Izl < aj yl for all jeN.

Proof. Let y(n) be the sequence obtained by setting y(n) =y for
all #» e N. Since a, — oo, we have lima,!ly(n)|Y" = 0. According to The-
orem (2.1) there exists, for each ¢ > 0, a sequence z(n) e Ay~ and an el-
ement ¢ € 4, |a] < B such that y = y(n) = a”2(n) and [2(n)—y|< ol

- for all n e N. To satisfy (4) of the present theorem, it suffices to take &
such that o< for » =1,2,...,m. To satisfy (5) of the present
theorem, it suffices to take & such that & < (1 — o ™)|y|* for all n e N.

m,
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