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STUDIA MATHEMATICA, T. LXV. (1979)

On a singular integral
by
CALIXTO P. CALDERON (Chicago, TIL)

Abstract. The commutator singular integral
pv. [ K (o~ y}F (o)~ F@)te)dy

{where K (x) is even, positively homogeneous of degree —x— 1, integrable over the
unit sphere of R?)is studied when

grad Fe LP(R"), 1<p<mn, geIlZ(R"), 1<lp+1lfg<{n+1)/n.

0. Introduction. The purpose of this paper is to extend results in [6].
Yet k(x) be positively homogeneous of degree —n—1, even and locally
integrable in |z| > 0. Let F(x) have first order derivatives in the distri-
butions sense in LP(R"), 1< p < co. Let g(x) be a function in LZ(R™),
1< g < oo. Assume that 7 is given by 1/r = 1/p+1/q, p and ¢ not infinity
simultaneously. Consider now the operator

(0.1) T(F,g)=pv. [{F(@)~Fy}E(o—y)g(y)dy.

Rn
It has been shown in [2] that, if » > 1, the above limit exits in I” norm;
furthermore, the principal value converges a.e. (see [1]). Ifp = oo, r =1,
q = 1, it is shown in [1] that T(F, g) converges a.e. provided that smooth-
ness is assumed on K (») (for example (7).

In the paper [6] it is shown that if r = 1, p is such that 1 < p < oo,
then (0.1) exists a.e. and in L'(R™)-norm; no smoothness condition is
assumed on K. (*) In addition, if the following smoothness condition is
agsumed on K:

(0.2) K (z+h)— K

jxi >4k}

(@) =] de < C.

() In a non-published paper Pointwise estimates for co tator singular in-
tegrals B. Bajsanski and R. Coifman have shown a very similar result, but weak type
instead of strong type, and making the following smoothness assumption on the kernel:

[ |E@+h)—E(@)|do < 0-hf’,

lal=1

0<d< 1.
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(here C does not depend on #), then T(F,g) exists in L'-metric and a.e.
provided that p > n, g > 1. Notice that in this case » > n/(n-+1). Our
task throughout this paper is to extend and improve this result. In the
first place, we are going to get rid of the smoothness condition (0.2) and
also of the unnecessary restriction p > n. We are going to study the cases

1<1l/p+1llg<(n+1)/n,

and also the limiting cases p =1, g = n, r = q/(g-+1).
Our results arc the best possible ones in the sense that for every pair
P, q such that

I<p<n

(0.3) iI<p<n, q=z1l,n=22,1l/p+1/¢g> (n+1)/n,
there exigt two functions F and g that satisfy
(0.4) grad F e L*(R™), g¢eL%R"

and T(F, g) = oo on a seb of positive measure. This is shown by using
a very elementary example.

1. Definitions and statement of results. Given a function f, real valued
and measurable on R”, the symbol {fl},, 1 < p < oo, will denote the usual I?
norm with respect to the Lebesgue measure. )

6 .
The symbols Fa{_’ ©=1,2,...,n, denote the derivatives of f
(3
in the distributions sense. gradf will stand for the vector

(L1)

(22,2

" 0wy’ " O,

and, whenever it makes sense,

(1.2) ligradfil, = (R[ (Zﬂ;

‘When p = oo, we have instead

of

2 \Up 4
50;;) dm) if 1<p< oo,

(1.3)

Z)IH
1

n a
lgradll, = esssup (2159{—
1

I f>0, B(f> J) will denote the set of points in R" where f exceeds
A> 0; |E(f > A)] denotes its Lebesgue measure. Throughout this paper, ¢
will denote a constant, not necessarily the same at each occurrence.

K (x) will denote a positively homogeneous function of degree —n—1
satisfying either properties (P,) or (P,).

icm°
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(Py) K (o) is even and
(1.4) f |E (#)|do < oo.

Here 2 denotes the unit sphere and do is its “area” clement.
(P,) K (%) 48 odd and

(1.5) f]K(m)uog+ 1K (%)|do < oo,

(1.6) [E@)zde =0, i=1,2,..,n.

We shall oceasionally write K(#) = Q(z)|z[~"+Y, where Q(z) is
a homogeneous function of degree 0.
Assume that ||grad F||, < oo for some p > 1 and g e L¢(R"), q=1;

*
then T (F,g) is defined as

1.7 i’(F,g) = Sug IT(F, g)l,
where
(1.8) T(F,9) = [ {Fl@)—Py)}K@—y)g(y)dy.

lz—vl>e
TamoREM 1. Suppose that |grad Fll, < oo and g e L{(R™), 1 <p < n,
¢>1,1<1p+1/g< (n+1)/n. Then, if K satisfies properties (P;) or (Py),
we have
(i) T.(F, g)(x) converges a.e.
(i) If r is given by 1)r = 1/p+1/q, the following estimate holds:

* ¢
|B(T(F, 9)> 2)| < - llgrad 7' |I; liglly - (%)

Here C does not depend on F or g.
The case p = 1 is covered by the more general result:

. or
THEOREM 2. Suppose that T = o ©=1,2,...,n. The p, are

i
finite Borel measures defined on R Let us denote by v; their respective

variotions. Assume that ¢ = n and r = q[(q+1); then we have
(i) T.(F, g) converges a.c.

n

* ¢ r
(i) [B(Z(F, g) > 1)| < 7(2 v (B Il

Here O does not depend on u or g.

() In the case 1< p < n actually strong type holds, nevertheless, we have
not included here these result because it follows from the weak type estimates by using
techniques very similar to the ones in [6] or [8].
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Observation. In Theorem 1, the limiting cases occur when 1/p 4
+1/q = (n+1)/n, while in Theorem 2, the limiting case is ¢ = n.

THEOREM 3. Let p and q be such that
I<p<n/l+a), n22,0<a<,¢>1, 1fp+1/g> (n+1)n.
Then there exist two functions F and g such that
(i) llgrad P, < oo, g e L*(R").
(ii) T(F, g) = oo on a ball.
(i) K can be chosen to be C~ in R™—{0}.

2. Proof of Theorem 3. Consider K satisfying properties (P,) or (P,),
being 0% in R"— {0} and having the value

1
(2.1) K(x) = W
for » belonging to the cone
(2.2) kY al<a,

2
large % and 0 < .
Let > 0 be given by § = n— « and define ¢ to be

1
(2.3) g@) = I
if # belongs to the truncated cone,
(2.4) kYa<al, O0<m<d
2

and zero otherwise.
F(x) is going to be chosen ¢ in R™— {0} and satisfying

(2.5) Plz) =
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Let now 2 be a point in a neighborhood of @, = (—2¢, 0, 0,...,0)
such that we have

{2.8) —f{F(w)—F(y)}K(mhy)g(y)dy =fF(y)K(w—y)g(y)dy

Here the neighborhood of #, is chosen small enough so that F(z) = 0 and

0 n R
|K(m——y)]>mﬁ for ka;<y§,0<y1<A.

Finally, it is very easy to check that
llgrad Fl|, < oo ‘for 1<p <n/l+a),
@9 lgl, < o for 1<g<n/p.
This finishes the proof.
3. Auxiliary lemmas.
3.1. LeMMA. Let F(x) be given by the integral

(3.1.1) Fz) = fK(m—y)d,u,
Q

where Q is a cube, u a finite Borel measure defined on R™ and such that
fdp=0. K (x) is a homogeneous function of degree — (n—1), C* on R™— {0}
Q
Call 5 the diameter of Q, v the variation of i, Y, the center of Q. Then, if d(x;, Q)
>56, 1 =1,2,we have
(i) 1F(my) — T ()]

8 n é
Mty — M OV [y — [t
Here O does not depend on 8, Q or u.

Proof, Without loss of generality we may assume that |z, —y,l
< |23 —9ol. Consider also a third point Z, selected so that

<G[m1——m2¢{ }'"(Q)-

(3.1.2) e~ 21 < Blay—m|, ©=1,2,
and algo )
(3.1.3) v [@—y,! > %le_yu]

for any @ belonging to the polygonal (%, Z, ®,).
It is very easy to check that such a pomt Z always exists, provided
that d(z;, Q) > 54, 4 =1, 2. :
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Consider now F(a,) — F(x,) = F(z,)—F(Z)+F(Z)—F (). By using
the mean value theorem we get

F(w5) —F(2) = |wy— 2| [ Ky(s:~y)dp,
Q

(3.1.4) X
F(2)—F(2)) = |Z—m| | Ey(s,—y)du,
Q

where s; eﬁ and s, € Zw, and K, and K, are homogeneous functions
of degree n (directional derivative of s the kernel along the directions of EZ
and 'Z?g, respectively).

Now, using the fact that du has vanishing integral over @, we obtain

B15) |Flm)-F(Z)< I%—Zlmégx HE(8: — ) — Ky(se— 90 (9),
yel

i=1,2.
In turn, the right-hand member above ean be dominated in the following-
way:
é
(3.1.6) Iy — Zmax |Ky(s; — ) — K (s;— o) |#(Q) < Olay— 2] ———.
veQ 18:— ol

By using (3.1.2) and (3.1.3) one obtains immediately (i). This finishes
the proof.

3.2. LEMMA. Let F be such that ligrad F'|l, < oo, where 1 < p < n.
Let © be any point in R" and Q an arbitrary cube centered at x having edges
parallel to the coordinate azes. Then we have the Sfollowing inequality :

. 1 |Fl@)—Fy)
(i) (—Iaof —

where 1ls = 1[/p—1/n, diam(Q) = & and the supremum s taken over all
cubes” I, centered at & and having edges parallel to the coordinate ames. The
constant G, , depends on p and m only.

O \2\ 12
Here |gradF ne .
o enazymaon (35
The case p = 1 is covered by the more general result:

s s 1 ip
dy) < O, 5up (—— f lgr&dFlpdy) )
Il

Iz

oF

Suppose that F is such that W =ty % =1,2,...,n, where the s
k2

are finite Borel measures defined on R™. The v)s are their respective vari-

ations. Denote by ll}F (w) the following mamimal operator

e[ L [|P@-Zw)
i — s wa i)

ni(n—1) ](n—- 1)/n
s
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where the I, have the same meaning as above and d(I,) stands for diameter
of I,. Then the following estimate holds:

s

p 0
(i) IB(ME > 1)< — > n(R?).
)

1

1]

Here the constant C depends on the dimension only.

Proof. Let o(y) be a 0P function equal to 1 over @ and 0 in the
complement of 2Q (dilation of @ by the factor 2 about its center) and
such that [0p/dy,l, <46, ¢ =1,2,...,n. Here § denotes diameter
of @. Consider now the auxiliary function

(3.2.1) () {F(@)—F ()},
where 2 = center of @.

Apply Sobolev’s inequality to (3.2.1) if p > 1 or Gagliardo-Niren-
berg’s one if p = 1 (see [9], p. 129) and get

322) ([ 1P@)-Fo)ra)”
Q

<O( [Igaazay)”+c (s P (@) - F(y)”day) .
2Q

s2<lz—yi<ds

Here ¢ does not depend on F, § or @ and s is given by 1/s = 1/p —1/n,
1<p<mn Let us turn our attention to [F(2)—F(y)| and write y as
Y = @+ra, where ra is the polar expression for y — z.

Consider now the inequalities :

(32.3) |F(z)—F(z+ra)[? < C? [ [ lgrad ' (a+ sa)| ds”

. 36
< 0(35)17-1] lerad F(w+sa)[?ds, p>1.
0
Thus, we have the estimate

(324) 6 [ [Flo)—F(y)lPdy

Sle<lz—y| <86

38
=067 [do [ |P(@+ra)—F(a)Prdr
x 82
38 34
<05~1fd,, f 7 “’d'rf |grad F (2 +sa)[P ds.
[

x 8/2
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Interchanging the order of integration in the last integral above, we get
33
(3.2.5) o5t f do f lgrad ¥ (s + sa)[P ds
z 0

which, in turn, equals

1
(3.2.6) ¢! ——— lgrad F(y)|* dy
lz—yl<3s lz—yl
and, consequently, it is dominated by
1
(3.2.7) 0 5" Sup f lgrad FPdy.
1 Ll

Bringing back this estimate to (3.2.2) we get (i) and (ii) for the case of
absolutely continuous measures.

In order to face the general case, consider a modified definition of .Zlh?’,'

namely
(32.8) M F(z) = Sup ( ! f‘_ll_ﬂ(m_)a_ﬂ/l

7
1<i<n \ [ 12)
1 z I

nf(n—1) (n—~1)/n
dy) ,

where the I’ are cubes centered at @, having edges parallel to coordinate
axes and their diameters diam(I) = 8, i =1,2,...,N, are rational
numbers. When we let ¥ go to infinity, the §; take all the rational values;

* * *
thus M, 74 MF. We have for MyF the following inequality:

« ¢ < rloF
3.2.9 B(MuF > )| < — ll
(3.2.9) J<A>)1<Z%fa%y
=1 pn

I or
provided that a—y— eL}R"), i =1,2,...,n. Here ¢ does not depend
onl, Nor F. Let p,(y) be a O aproximating unit, that is p,(y) = (e ly),
where y € 0P and

[vw)dy =1.
BN

Qall 7,(y) the convolution vy, xF, where ¥ is such that

’ : oF
(3.2.10) ‘ —_— = i =1,2,...,m
ayj By gLy iy Ty

where the g, ave finite Borel measures and v; are their respective vari-
ations. S
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From Young’s inequality we have

&

(3.2.11) 1

< Iyl »(R™).
it 9y 1. 1
Also, from the very definition of the 7, (y) it follows that
(3.2.12) . F (z)—> F(z) a.e.,
(3.2.13) [e) Py~ [g) Fy)ay
I I

for every cube I and for every g e I"(I); consequently

B (@) —F.(y)

1 nf(n—1) (n—1)/n
— dy)
(3.2.14) (II;I f 5
I
1 f lF(w) —F(y) nf(n—1) )(n-l)ln
—_ d
tends to (lIil g y Y

x

for 1<i< N and for a.e. # in R™ Now, using (3.2.9), (3.2.10), (3.2.11)
and (3.2.14) we obtain

. 0w .
(3.2.15) \B (M F > 1) < Tg:vj(ﬂ ).

Here C does not depend on N, 1 or g. From (3.2.15) and the fact that
i NFTIIZEF we have (ii) in the general case.
3.3. LemmA. Let K,(Y) be defined by

K,(y) = (),

L3
En+l + Iyln-(-l

where 2(y) = Q(|y|) is @ homogeneous function of degree 0 absolutely in-
tegrable over the unit sphere of R". Consider the operator

E(f) = ng B, (@—y)f(y)dy,
fe

k

where the Q, are pairwise disjoint n dimensional cubes, with edges parallel
to the coordinate axes, 8, denotes, as usual, the diameter of Q. Then, we have
the following estimate: '

@) nl?(f)n;.kopZQ If Py,
1 Qp

1< p < oo; 0, does not depend on f.
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Proof. The case p =1 follows from Fubini’s theorem after taking
absolute values. For the case p > 1 we shall use the following auxiliary
maximal operator:

(3.3.1) fla) = Si:g [ 1B (m—)1f () dy.

An application of the method of “rotation” (see [5]) gives the following
inequalities:
*
(3.3.2) 1F1l; < Cglifllys
0, depending on g only.
Let f belong to LP(R") and ge LP®9(R" and consider the ex-

Ppression
(3.3.3) Ing(f)dw].
R .
The above integral is dominated by
J(Y [iEs@—9l1fw)dy) 19(@)do
k&

R k Q

1< g< oo

(3.3.4)

Interchanging the order of integration, we get
(8.35) 3 flf D ([ 1B (2 —)1g()|da)dy < > f

* x
which, in turn, is dominated by

(8:5.6) (3 [P @) ooy ([ 19170 ).
% O

The above inequality yields the desired result for 1 < p < oo.

lg(y)d?/

4. Proof of Theorem 1. Construction of the set G and the partition of 7.
Let fe LP(R"), L<p<m, =0, |fl, =1. Let F be given by

1
)= [ iy
sn Li 25 — y]n 1

4.1. The set A;. Let us fix 1 > 0 from now on and consider the family
of cubes {I,} associated with f and 1 satisfying the properties:

(ap) The I, have edges pa:callel to the coordinate axes.
(a;) f"(w)<l" a.e. in R”-—UIL
(ag) I; n; =0, i #£].

(8s) ¥ < ff"dt<2"l’

(4.0.1) o

icm
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Here 1> r> nj(n+1) (for details see [6]). Write f = f,+f., where

f in R*-UI,,
1
(4.1.1) fi={ w o
Z' mye,(2)  over U I.
1 1
Here m;, = 7 I 71 f fat, k=1,2,... and g, (») is the characteristic function
of I.

f> is defined in the following way:
(41.2) fo = D (F (@) —m) o (@)
1
F,(z) and F,(«) are the potentials:
1 ,
(4.1.3) Fy(0) = R{Wfi(y)dy, i=1,2.

From (a,) it follows
f Py =

Let us denote by 101, the dilation of I, by the factor 10 about its center.
The set A4, is defined to be the union:

(4.1.4) iU Ll <—

(4.1.5) U 10Z;.
1
From (4.1.4) we get
107
(4.1.6) 14, < T

4.9. The set 8,. Given the family {I,} defined in (4.1), associated with it
we define the funection 4(2):

A'(@) = 2”

Here t, and &, denote respectively center and diameter of I.
8, is defined to be the set

(4.2.2) {»; A(x)>1}.
From Chebyshev’s inequality we have

(423)  18l< RfA(m)dw - (f l_wL_ll?/de)Zl: Ll < %

&

(4.2.1) Pt

tk|n+1 Ml -
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4.3. The set J,. Consider the family of cubes {B,} satisfying:
(by) The B, have edges parallel to the coordinate axes.
(b)) B;nB; =@, ¢ #j.

(ba) —lg—T f]gra.ngll’dy < C, 2", 0, depends on n only.
g

(=]
(bg) In R*— | B, we have
1

f]gradli’zlpdyg 7 a.e.
I.'Z

(Here the I, have the same meaning as in Lemma (3.2).)

i (4
b,) 2 1Byl <= flgl‘aszlpdy-

In order to eonstruct the family {B.}, apply ([9], p. 19, paragraph 3.5)
to |grad F,|? with a = A",

Now, 3, is defined to be the union U B, . Thus
(4.3.1) AR f lgrad Fp7dy.

Using the definition of F,, we have

(4.3.2) 1702 < O IfallE < Oplifll, = Cp-
Here 0, and C, depend on p only.

Therefore
(4.3.3) RARS o

where O, depends on p only.

4.4. The set G, and some properties. G, is chosen to be open and satis-
fying:
(1) @& o 4,u8;ud,;.

C
(2) 164 < 20144+ I8l +13) = 7

Here (, depends on p only.
Conmder for G4 & covering by cubes of Whitney’s type (see {9], pages 16
and 167). That is,

(4.4.1) G = QQm

é,ﬂé :ﬂ, '(47/:.7"

icm
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Calling 8, the diameter of @, and C(G,) the complement of G; we have
(4.4.2) 8, < dist(Qy, C(()) <46, Kk =1,2,..

*
For each cube @, we construct a larger cube @, such that

(4.4.3) 0.2Q, Ek=1,2,...,

(4.4.4) 6L is centered at v,, y,eC(@y), %k =1,2,...
*

(4.4.5) 1@l < Co1Qul, %=1,2,...

Here C, depends on the dimension only.

4.5. Behavior of Fy(y) on Q. From the definition of @, and ék we have

— I3 s _ s 1/s
(451)( 1 me/) (1) dy) <o(} [| P2 dy)'
Qp

O 9
Now, using the fact that yk e 0(@,) and Lemma 3.2, we have

(rar J |45

where 1/s = 1/p— ll'n,, 1 <p <n.

4.6. Behavior of A(z) on C(@,). Since §; = &,, we have for # € ((G,)
(4.6.1) A(w) < 1.

4.7. Behavior of F, on 0(G,). Recall the definition of F,: ‘

Fylo) = 2 f l;f y’:ff_) a.

We are interested in estimating [Fa(wl)—Fz(mz)] for w, e O(@), + =1, 2.
Apply Lemma 3.1 to the terms

(45.2)

) < onre,

(4.7.1)

F(y)—my p)

(4.7.2); p——

F(0) =

and get the estimate

(47.3)  |[Fa(wy) —Fa(as)]

< D 1B (@) - PP (@)
1

o ) & 2
< — L L f dat
< Ol ‘”2'2.:1 (s;:+1+|aa1—zk|“+1 + sz+‘+1wa—tkl“+‘),,.f

L (A (w)+ 4 (”z)) 0@y — 4.
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From (4.7.3) we conclude that
(4.74) | Fy@)— Fy(m,)] < OFPloy,—mg), ;€ 0(6y), § =1, 2.

4.8. Proof of the basic result. We have fixed f >0 such that ||f|,=1,
1<p < n. Wehavefixed 1> 0 and 1> > n/(n+1). Take now g belong-
ing to L2(R"); 1fr = 1/p+1/g; and [g], = 1.

To begin with, we have

* * *
(4.81) I, ) < T(Fy, 9)+T(F,, g).
From Theorem C in [6] (p. 162) it follows that

> G
(4.8.2) | B(T(Fy, ) > 2)| < Tq Ifillosgq—y g lg-

Let us dominate f; in the following way:

,
(4.8.3) fele-1 = f'f/(q_l)_pff < Cp AP
Using the above estimate in (4.8.2), we get

{a/(e—1)—p)

A

* c
(4.8.4) |B(T(F,, 9) > 4)| < -
Here € does not depend on i, F or g.

Our next step will be to get analogous estimates for f;’ (Fq, 9). We
are going to define an exceptional set where # has to be away from. Our
exceptional set is going to be defined as

(4.8.5) 66, = | 6Q,.
1
That is
loj
(4.8.6) 1664] <~

Consider now » ¢ R*—@, and s > 0; decompose g as g, -+ g,, Where g, =g
over 0(G,) and zero otherwise and g, — g—g,. Let F,(y) be the Lipschitz
extension of 7, from O(@,) to the whole space (se¢ [9], p. 174). The above
remark and 4.7 give '

(4.8.7) 117’2(3!1) _17'2(?/2)1 < OFPly, —y,, y; e R" 4 =1,2.
On account of the definitions of g,, g, and F,, we have

(4.8.8) T,(Fy, 9) = To(Fs, g,)+T.(F,, g1).

Since ||grad #,],, < CA™?, the following estimate holds (see [1]):

* o, - = Y
(4.8.9) BT (Fy, g) > )| < <2 lgrad Pl Il < -

Here 0, does not depend on ¥, g or 1.
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Let us return to 7,(F,, ¢;), whose expression is

T (Foy gs) = {Fa(z) —Fo(y)} K5 —9) g (y) dy .

&k QpNC(By{z))

(4.8.10)

Here G’(Bs(m)) stands for the complement of the ball of radius & centered
“ w.Let the g, be the points defined in (4.4.4) and consider
(4.8.11) Py (@) — Foly) = Fo(@)— Fa(Yz) + Fa(ys) — Fa(y)
In turn, we have
(4.8.12) Fy(2) = Falyy) = Fy(@)— Falyy)
= Fy(2)— Fy () +Fa(y) — Faly 1)
Call M(0,g) the following expression:

4813)  M(6,9) =D [16(y)— 61K (z—9)llg(9)ldy.
477

k

Taling into account (4.8.11), (4.8.12) and (4.8.13), we have
(4.8.14) T(Fs, 92) (@) < T(Fa, go) + M (Fy, g)-+ M (Fs, g).

* ~
We handle 7'(F,, g,) in the same way as we did with T(f,, ¢,) and get

(4.8.15) |B(T(Fs, g2) > )] < ,12
Call now
| Fy(y) — T,
w) = )| R i)
and

R(y) =5]

where y,(y) are the characteristic functions of the cubes @,. Notice that

Fy(y) “ﬁz(?/k)
0

we have

Fz((‘/)“ﬁz(yk)
9

g v (),

v, (¥) < O¥'?. Keeping the notation of Lemma 3.3,

M(Fsy, g)(2) < O-K(h)(2),
(4.8.16)
M(F,, g)(z) < C-E(h)(2)

for # e R"— 6@,. Here ¢ denotes a constant independent of 4, F and g.
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From Chebyshev’s inequality and L.emma 3.3, we have

* (4 —
(4.8.17) |B{T(F3, g2) > 23| < -z 1K (Rl

1661+

<%0l Jura<s

Here € does not depend on 2, ' or G.

Let us turn our attention to A(y). In the first place h(y) e L}(R™),

where 1/l =1/s+1/g and 1/s =1/p—1/n. Notice that I =1 when
r =nf(n+1).

Our second task is to estimate [[h|}.

From the definition of & it follows

Fyy)—F, y
(4.8.18) [RI} = Fuly) —Falty) lg(y)ldy.

Applying Hélder’s inequality with exponents (s/l, ¢/l), we get

(4.8.19) g(qkf w&"— ) ( f lqudy)

From (4.5.2) it follows

‘ i —F s
(4.8.20) ( [ M

Qr &

Bringing (4.8.20) to (4.8.19) and applying Holder’s inequality to the

series, we get
r 00
& s
o i ( > [ 1arat)
1 Qr °

¢
Using the fact that |G4] < 7 we have

Us Il
dy) < 0 Q1.
(4.8.21)

<of5i.
Applying Chebyshev’s inequality and Lemms 3.3 with exponent I, we have

(4.8.22) Il <

* ¢ _ c
(4.8.23) | B(T(Fs, g2) > )| < 1G]+~ IE W < o7 +—7 Ikl
1

- 1
< O = fj‘ )

Here @, does not depend on F, g or 4.
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Collecting estimates, we have

* c
(4.8.24) |B(T(Fy, g) > 4| < -
where ¢ does not depend on F, g or 4. The case f > 0, ||ff, # 1 and |gll, # 1,
follows by applying (4.8.24) to

T(If 157, lgly*9)

and the general case follows by decomposing f = f, —f_.

The pointwise convergence follows from the maximal inequalities
and from the fact that the operator converges everywhere for F e C9
and g e CP.

(4.8.25)

5. Proof of Theorem 2. Construction of the 'set &, and the partitions
of ¥. Consider the following representation for F':

~ n . 7— .
7(a) —O;’f s i e

oF )
(see [4], p. 110). Here C, depends on n only; o = M where the g
i

(5.0.1)

are Borel measures. Call F;(z) the integral:

Gf{w i ¥

5.1. The sets A] and the functions F) and FU). Call » the variation
of u; and let

(5.0.2)

(5.1.1) (w) = Sup (1),

!1 |
Where the I, have the meaning of Lemma 3.2. Assume in addition that
ijj(R y=1,j=1,2,..,n.
The exponent r satisfies

(5.1.2) r =q/(g+1),

where ¢ > n; consequently, 7 > n/(n 4-1). Let us fix 1 > 0; the open set A;.
is going to be defined to satisfy the following conditions:

*
y(@) < A7
The singular part of u; lives in Af.

(5.1.3)
(8.1.4)

in Rr—A].
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(5.1.5) kL:jl If is a Whitney covering of 4] (see [9], page 19).
(5.1.6) |49 < 107

(5.17) 117 f oy < OF.

The constants involved depend only on the dimension. Associated with 43,
we have the decomposition

(5.1.8) ;= fi (@) dw+dv;,
where 7;(B) = u,(AinE) for any Borel subset B and
@) <A ae., fi(@) =0 on 43
Using the above properties, we decompose y; in the following way:
(5.1.9) ap; = [P (@ydo+dp®, j=1,2,..,n
where

fj(w) if  ®eR"—A5,

5.1.10 Do) =

( ) ) il fd"‘? =mi over I,’L‘.

Call ¢f () the characteristic fu.nctlon of Zj. Then we define duf® in the
following way:

(5.1.11) ap? = du,— (jmiqa{(m))dw
k=1

Altogether we have the following properties for f{* (z)

<01 ae.,
(5.1.12) i=12,...,n.
170, < 0, T
Here C depends only on the dimension, once we know that 2 v ( =1,
ji=1,2,...,n
For ,u(2) the following holds:

(5.1.13) 4 lives on 43,

(5.1.14) fau =0, k=1,2,.., j=1,2,..,n.
J

(5115) [P <ONIL), k=1,2,.., j=1,2,..,n.

i
Iy
Here df" stands for the variation of duf.
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We are going to decompose now Fy(x) = F}’)(m)—[-li',(ﬁ) ().
@) =0, [ 2wy,
(5.1.16) o
O (a) = C, f .
o — yl” =

The set A, is going to be defined as
n o0

4, =U Uomg,
F=1 k=1

I about its center by the factor 10.

(5.1.17)

where 1017 denotes the dilation of
It follows that

c
(5.1.18) 1y < -

5.2. The sets 8 and the functions A'(z). Let us denote by & and #,
respectively, the diameter and the center of Ii. The functions 4'(@) are
defined in the following way:

oo

. Ei .
o) = 3 e o -

k=1

(5.2.1)

Call 8] the set {z; 47(z) > 1}. As in Theorem 1, it follows that

¢
(6.2.2) 189 < 7
n
Calling 8, = U 84, we have
j=1
c
(5.2.3) 18l < =

5.8. The set B;. The set B, is defined in the following way:
(1) B, is open, and in R*— B, we have

1 (50) —F(y) nf(n—1) {(n—1)/n
ydvad f )

o(I)
Here 6(I) denotes diam ( m), the I, have the same meaning a8 in Lemma 3.2.
(2) The measure of B, does not exceed

¢
Z;'.

< X.

(5.3.1)

(5.3.2)
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Whitney’s covering lemma ensures the existence of B, with ¢ in
(5.3.2) depending on the dimension only.

5.4. The sets J4. Let us return to the functions F{Y,§j =1,2,...,n
given by the convolution operators
V(@) =G, f Y gy

(5.4.1) pa—

Notice that (a—Z—Fj“‘)’) = 0% f, where (' depends on = only.

1

Since T’a;’ is 0® in R*— {0} and homogeneous of degree 0, it is a mulbi-
»
plier for p such that 1 < p < co.
Hence
' o ; -
(5.4.2) Bwl < O lfPl,, for 1<p<oo,i,j=1,2,..,n
7 v

Consider now the Mary Weiss maximal operators:
IFfD (@) — B (3)]

*
4. M (z) = Su
(5.4.3) I (@) ”ER]% P—
The sets J] are defined to be:
(5.4.4) = {o; fP(@)> ).

Tt follows from [6] (Lemma 1.4, p. 144) that
(5.4.5) Wli<o f Ordy  for m>mn.

Using now the fact that f}" < 01, we get from (5.4.5)

c
(5.4.6) RS -
where O does not depend on A or F. Let us define J; to be the union

n» a
(5.4.7) ={J Ji.
§=1

Thus

¢
(5.4.8) [l < 7

B.5. The set @,. The set G, is defined to be open ‘and satisfying
(55.1) @, > A; US,UB,UJ,
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and also
(5.5.2) 1G] < 2(14;) 41831 + 1Bal + 134l «
Consequently,
¢
(5.5.3) G4l < gk

where O does not depend on F or A.

5.6. Properties associated with @;. Call 0(G,) the complement of @,;
then if x,e C(@,;), ¢ = 1,2, we have -

(5.6.1) | B0 (ay) — FP ()] < OA |y — ] -
The above inequality follows from the definition of J,.

On the other hand, from Lemma 3.1 and the definitions of A(z),
we have

{(5.6.2) ]F](2) (1) —Fj(” ()] < 027 (Aj(ml) + Aj(ma)) {3, — ]

< O |y — 5] -

~ From (5.6.1) and (5.6.2) we get

(5.6.3) | B (21) — F ()] < OA7 |, —

where € does not depend on 4 or F.

Bsl4

5.7. Then behavior of F on &,. Let |_J @, be a Whitney’s covering for G, .
1

Let y,,, 6, have the same meaning as in 4.4.
Since B, = G, we have

fl yk) Fly) 'nl(n~u dy)(n—wn

(571) E=1,2,..

< oY,

le[

The argument is the same as in 4.5.

5.8. Outline of the proof. The exceptional set is 6G,; has the usual
meaning. Thus

¢
(5.8.1) 6@,] < -
Consider g ¢ L? and |jg/l, = 1. Asin Theorem 1, we decompose g = g+
-+ g2, Where g = g; over C(@,) and zero otherwise and ¢, = g—g¢,. F(¥)
stands for the Lipschitz extensmn of F(y) from O(@,) to the whole space.
Clearly, we have

(5.8.2) 1 () — Flya) < OF Iy, — 9.
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Now, for # e R*—6G,, we have

(5.8.3) TR, g) (@) = T (F, g1)(@)+ T(F, g2) (%)
Consequently
(5.8:4) 1@, <T@, g)+T(F, ga)-

E’ (F, g) is handled in the same way as T (¥, g,) in Theorem 1. As in The-
orem 1, we have for # e R"—6G,

(5.85) P, g) < T, g0+ M (F, )+ M (F, g).
The operators M are handled in the same way as in Theorem 1. The only
difference is that s = n/(n—1) and 1 is given by 1/l = (n—1)/n+1/g.
On the other hand, I =1 if ¢ = n.

The general case when »(R") = 1 and Jigll, # 1, is obtained from the

preceeding one applied to

1
—F
for the part (ii). 2v(RY)

5.9. The pointwise convergence. Let us choose 1 large and define

(5.9.1) H(y) = ) {Fy) —F )39 (5) v (9),
1
(5.9.2) Hy) = X F @) —Fubs@)v®),

where the v, (y)’s are the characteristic functions of cubes Q. Repeating
the construction of the preceding paragraph, we have for # e R"—6Ga

(3.93) T.(F,9) =T.F @) +T.(F,g)+ [ Kl—yHy)dy+
lz—ul>e
+ [ Ke—9H@dy.
la—y|>2
T(F, g,) and T,(F, g,) converge a.e. as &~ 0. On the other hand, keeping
the notation of Theorem 1, we have for # € R*—6G,

[ 1R (2 —9)IH (9)|dy < O () (),
R

(5.9.4) o

[ 1K (@—y)11H (y)| 8y < OK () ().

Rn
Thus, the third and fourth terms of (5.9.3) are absolutely convergent
integrals for a.e. # in R™—6G;. Since 4 could be chosen arbitrarily large,
the pointwise convergence a.e. follows. This finishes the proof of Theorem 2.

(y) and [lgll;*g- This finishes the proof
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