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Norm attaining operators™
by

JERRY JOHXNSOX and JOHN WOLFE (Stillwater, Okla.)

Abstract. Let X and ¥ be Banach spaces. L{X, T) and K(X, ¥) denote respect-
ively the bounded and compact linear operators from X to ¥. NA(X, ¥) denotes
the set of operators A: X — T such that jdzy) = |41 for some ) & X with izl = 1.
The main resnlts are: (1) If § and T are compact Hausdorff spaces, NA(O(8), 0())
is dense in L(C(9), C(T)). (2) It X or T is C(S) or I*(g) then NA(X,Y)nK(X, Y)
is dense in K (X, Y).

1. Introduction. We establish some notation to be used in the state-
ment of the central problem and the main results of this paper. The letters X
and Y will always denote real Banach spaces. A bounded linear operator
A: X — Y is norm attaining if there is an z, € X with llo] =1 such that

Azl = ll4} = sup {|4z): # e X and [ <1}.

The question considered in this paper is when an operator of a certain
class can be approximated by a norm attaining operator of the same class.

The letters § and T will always denote compact Hausdorff spaces,
and the (sup norm) Banach space of continuous real-valued functions on §
will be denoted by C(S). For a positive measure u {on some set 2), ' (u)
will denote the Banach space of integrable real-valued functions f: =R
with |fll = [If1dp.

The main results of this paper are the following:

TEEoREM 1. Let A: C(T)— C(8) be a bounded linear operator where 8
and T are compact Hausdorff spaces. Then for any &> 0, there s @ norm
attaining operator A': O(T)— C(8) such that 4 —-4N<e

An Asplund space is defined in §2. To put the next theorem in per-
spective we note that X js an Asplund space iff X* has the Radon-Nikodym
property (one direction is in [12], the other direction is an unpublished
result of Stegall).

* Part of this work was done while the first named author was on sabbatical
leave at the Department of Mathematics, Pennsylvania State TUniversity, whom
ho thanks for their kind hospitality. The second named author was supported in part
by a grant from the Oklahoma State TUniversity, College of Arts and Sciences.
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TEEOREM 2. Suppose X is an Asplund space and A.: X — O(8) s a bound-
ed linear operator. Then for every &> 0 there is a norm aftaining operator
A’z X—->G(S) such that A —A4"| <

T An operator is finite rank if its range is finite dimensional and compact
if the image of the unit ball of the domain is precompact.

THEOREM 3. Suppose A is a compact operator whose domain or range
is a C(8) space. Then for every s> 0 there is a finite rank norm atiaining
operator A’ such that |4 — A’ < a.

THEOREM 4. Suppose A is a compact operator whose domain or range

is an L*(u) space. Then for every ¢ > 0 there is a finite rank norm attaining
operator A’ such that |4 —A'||< e

In Theorem 4, the case where the domain of 4 is an IZ'(u) space
is a result of Diestel and Uhl ([4], p. 6).

These results are motivated by the papers [4] and [11] Let L(X, Y)
and NA(X, Y¥) denote respectively all bounded and all norm attaining
linear operators from X to Y. In [11] Lindenstrauss investigated the
problem of deciding when NA.(X, Y) is norm dense in L(X, ¥). Progress
on this problem has recently been made by Uhl [14] and Bourgain [2].
Uhl [14] shows that if ¥ is strictly convex then NA(I', ¥) is dense in
L(L}, Y)if and only if ¥ has the Radon—Nikodym property (I} = L'[0,1])
and raises the question(*) whether NA (I}, I') is dense in L(LY, I'). Bourgain
[2] shows that if X has the Radon-Nikodym property, then for any Banach
space ¥, NA(X, Y) is dense in L(X, ¥). (He actually answers problem
11 in [4], p. 26, affirmatively.)

Theorems 1 and 2 come from an attempt to answer such density
questions for C(8) spaces. Previously the two main results concerning
these spaces were the following from [11]:

(1) If S is any infinite compact metric space, then there is a Banach
space ¥ such that NA(C(8), ¥) is not dense in L(0(S), X).

(2) I 8 is a compact Hausdorff space having a dense set of isolated
points, then NA(X, ¢(8)) is dense in L(X, 0(8)) for any Banach space X.

It still appears to be unknown whether (1) and (2) remain true it §
is an arbitrary compact Hausdorff space. Also the density question still
seems to be unanswered for certain pairs of classical Banach spaces, c.g.,
0[0,1] to L', and Z* to C[0,1].

Let K(X, ¥), KNA(X, Y) and FRNA(X, ¥) denote respectively
all compact, compact norm attaining and finite rank norm attaining linear
operators from X to Y. In [4], p. 6, the problem is raised of deciding if
KNA(X, Y) is dense in (X, Y) and, in particular, the problem is posed

(1) Added in proof: It was recently shown by A. Iwanik that NA(Z, L)
= L(L’, I} (to appear in Pacific J. Math.).
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if X is a C(8) space. Theorems 3 and 4 answer this question affirmatively
(in faet we show that FRNA (X, Y) is dense) if either X or ¥ is either a C(8)
space or an L'(u) space. It still seems to be open whether the answer to
this problem is affirmative for any pair of Banach spaces X and Y or,
in particular, if X is arbitrary and ¥ =L” for 1< p < oo.

In addition to the papers mentioned above, norm attaining operators
are discussed in [1], [6] and [7].

In spite of recent progress, guite a number of density questions
about norm attaining operators appear to be unresolved. Several such
questions are listed in § 4 which contains a further discussion of these
problems.

Theorems 1 and 2 are proved in § 2. Theorems 3 and 4 are proved in § 3.

2. Proof of Theorems 1 and 2. In the sequel we identify the dual of
C(K) with the space M (K) of regular Borel measures on K. We also use
the standard representation theorem for operators into a C(K) space
(cf. [3], Theorem 1, p. 490):

LEmMs 2.1, Given an operator A: X - C(8) define u: § —X* by
w(s) = A*(6,) where &, is the point measure aé s € 8. Then, for veX,
the relationship Ax(s) = {m, u(s))> defines an isomelric isomorphism be-
wween L(X, C(8)) and the space of weak”™ continuous functions from S to X*
with the supremum nworm [u| = sup {{iu(s)ll: s € 8}. The compact operators
correspond to the norm continuous functions.

For v e M(T), |v| denotes the total variation measure. The next
lemma is & consequence of the fact that if V is an open subset of the com-
pact Hausdorft space T, then the function from 3 (T) to the reals defined
by » — (V) is weak™ lower semicontinuous. We omit the routine proof.

LA 2.2, Let p: 8 — M(T) be weak™ continuous. Let ¢> 0, sp€ 8
and an open set V in T be given. Then there is an open neighborhood U of s,
such that if s € U, then |u(s)I(V) = lu(so)|(V)—s.

LuMmaA 2.3, Let u: 8 — M(T) be weak® continuous. Then for any 8 > 0
there is a weak™ continuous u': 8 — M(T), an open set U in S, an open
set Vin T and an h € C(T) with [|h]] = 1 such that

( ) sel = |u'(s)|(V) =0,

b) [hu'(s)= Ww'll—6 for se U,

( e) k(1) —1 if $eT\V,

(@) lu—p'l<é.

Proof. Choose s, €8 such that {u(s)l=> |xll—8&/3. By the Hahn
decomposition theorem for measures and the regularity of u(s,) we can
choose disjoint closed sets F* and F~ such that u(s,) is positive (negative)
on F* (F~) and
(¥) s (s0)ll << o

(80) (BF) — pu(s0) (F) + 83
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Crarv. There is an open set ¥ in 7' and an h e ¢(T) with [A] =1
such that {(c) holds, A(F*) =1 and A{F~) = —1; in addition, there is an
open set W in T and a v e O(T) with [p| =1 such that F*uF~ < W,
w(W) =0 and »(¥) =1.
The claim follows easily by (1) choosing an Ry, € O(T) with hy(F*1) =1
and By (F~) = —1, (2) defining V = {&: —3 < hy(¥) < $}and W = {: k()
< —% or hy(t) > 2} and (3) constructing h and ¢ by normality.
Condition (x) implies that

(R —p)p(s) = lull —26/3 14(50)| (W) > llull —28/3.

So by weak* continuity and Lemma 2.2 choose an open neighborhood U,
of s, such that if s e U, then

and

(%) [ha—y)uls) > ul—o
and .
() (& (W) > ful—é.

Choose g € €(8)such that ¢(U) = 1 for some neighborhood U of s, [pll =1
and @(S\TU,) =0. Then s e U = U,. Define p': §— M(T) by u'(s)
= p(s) —o(s)puls). This u* works. For if se U, then ¢(s) =1 and so

@' (8) = (L —vp)ul(s). Since (1 —y)(V) = 0, (a) holds and (b) follows from ().
For (d) note that |ju—u'll = sup {e(s)! lpu(s)li: s e 8} But if s e S\T,,
then @(s) = 0 and if s € Uy, then

T () < L (S)H{INT) < flull — 1 (8)1(W)

since y vanishes on T¥. This finishes the lemma.

LevA 2.4, Let p: 8 — M(T) be weak* continuous. Suppose there is
an open set U = 8, an open set V < T, an s,€ U and an h e O(T) with
7] = 1 such that :

(a) if seU, then [u(s)i{V) =0,

(b) [hp(so) > lli—e;

(¢) R@®)] =1 for te T\T.

Then for any r> % there is a weak* continuous function p’: 8 — M (T}
and a point $; € U such that

(@) Ju—pli<re

(e) il “fh w(s) < ey

@ if sel, W(s)i(V) =0

Proof. Fix 6> 0 so that 3e-4- 6 <<re. Choose an open set U* such
that s, € U* < Uand if s & U* then :

(%) Thu(s) = lull—e—9.
Let M = sup {Jul{s)l: s T*}.

<0

iom°
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Case 1: Suppose M < |lull —&/3. Choose @ € T\V such that [h({a)] =1
and choose g & C(8) with p(s,) = h(a), llpl = 1 and ¢(s) = 0 for s e INT™.
Define p'(s) = u(s)+(¢/3)p(s)d,. Then letting s; = s,

Il = lul and  u—pll =ef3 <re

and
[h(s0) = [hu(so)+8/3 = Il —3e,
80
Il — B (30) < 3o < 7e.
Case 2: Suppose M > |lu||—e/3. Then choose s, € U™* so that

(%) e (sl > el —&/3.
This case follows from the

OrAM. There is a v € O(T) with 0 < |lp|| < 1 and an open set W <. T
such that

)W) > lipll —3e—6, (W) =0

and
[(—hy)p(s;) = lull—5e—38.

‘We show the lemma follows from this claim. To define p': §— M(T)
use Lemma 2.2 to choose an open neighborhood U, of s, such that if
s €U,, then |u(s)|(W)> llull—3e— 4. Choose ¢e((8) with ¢(s;) =1,
0< lgl<1 and ¢ =0 on S\U,. Define

w'(s) = u(s)—@(s)puls) = [L—o(s)plu(s).
Then [’ () < ()
' — ull = sup {o ()] lpa ()l s € 8} < sup {Iu(s)({y #0}): se Uy}
<sup{{eHI\W): se U< fs+0<rs,
since |u(s)|(W)> liull —§e—9d. Also
Il = [ 7 (s0) < fe+ 0 <7,

sinee  [hu'(s)) = [(h—hy)u(s;) = |ull—3e— 4. Condition (f) is trivial
and the lemma follows from the claim.

and

Proof of claim. By the Hahn Decomposition Theorem there are
digjoint measurable sets B* and E~ whose union is T such that u(s,)
is positive on Bt and negative on E~. Let

P={h=1nE" ={teT: k() =1 and t e B}

and N ={h = —1}nE".
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Since [k| =1 on T'\V, the two sets
(PUNNY  and [({t =1} nE)u({h

partition T\V into two disjoint measurable sets (we ignore V since
|4 (81)] (V) = 0). Since w(s,)is regular, choose twe closed sets F; = (PuN)\
\V and F, contained in the other member of the partition such that if
F = P,UF, then |u(s)|(T\V)\F) < §/6. Then h—yp,h = yp—yzy on F.
Choose the open set W with #;, =« W and choose y € C(T) with 0 < [y <1
such that y = 1 on F, and 0 on W. Then h—yh = yp—yy on F and thus

Jh—yh)plss) > [ (1) n(s:)— 016 = lu(s)| (P N) — b6.
Thus we are done if we show that
(NP ON) = [l ~§e—14,
since we get the desired inequality on f (h—vyh) p(sl) and also
()W) = lu(s)|(Fy) = lu(s)(PUN)—-6/6 >
For (=) note that |u(s)[(V)

= - 1}5E+)]\ v

()

lull —%e — 6.
= 0 and |h(t)] =1 for ¢ ¢ V imply
f(x{h=1}—l{h=—1})ﬂ(31) = fh/“(‘gl)
and thus by () and (x*) we get
(s (PUN) = [(zp—zx)u(s)
= fhy 81) —-f(x{h=1}nE— —Lhm—13nm+) £(81)
= [hu(s) +1pE)(E A = 1Ho(E A fh = —1})
= Jh#(sl)-l-]#(sl)l(T\ (Pul))
= [hau(s) +1u(s)1(T) — lp(s)l(PUN)
> 2lull—Fs— 0 — lu(s)} (PUN).
Now (#+x) follows from this inequality and the lemma is proved.
Proof of Theorem 1. Let g >0 and a bounded linear operator
A: O(T)— 0(8) be given. Let < r<1. Suppose p: 8-> M(T) rep-
resents 4 as in Lemma 2.1. Apply Lemma 2.3 (with 6 = &) to obtain I

8~ M(T), h € C(T) and open sets U = S and V < T satisfying (a)-(d) of
Lemma 2.3. Choose s, € U. Let & = [lugll—[Tpg(sy). Then 0 < &< g and
Lemma 2.4 provides g, and s; such that

lto—mll <re<re, and i~ hp(s) < ré.

Proceeding inductively we obtain a sequence u,: S -+ M (T) of represen-
tations of operators and points s, € § such that

ltam1—pall <778 and gl — [ Bpa(s,) < .

icm
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Thege operators form a Cauchy sequence. Let p’ = limpy, and suppose
A’ C{T)— C(8) corresponds to p’. Then

AR (s,) = [ (8,) > [Ty () — I’ — pall >
Since 1" g5+ llu’ — w, i — 0,

1A’ RY > sup AR(s,) = supu,} = 'l = 14"]
and A’ attains its norm at k. Also

lpaall — 7" 80 — ll” — g2l

N4 —Af =l =l < o= pall ) Bt — pucall < o (L — 1)
n=1
Thus 4’ can be made as close to 4 as desired.

Our next objective is to prove Theorem 2 regarding operators from
an Asplund space to a C(8) space. Although Asplund spaces were initially
defined in terms of Fréchet differentiability of convex functions, for our
purposes we will take the following equivalent definition (ef. [12], Lemma 3).
A Banach space X is an 4splund space if, for every ¢ > 0 and every non-
empty bounded subset B = X* there is a weak* open set U = X* such
that BNU =@ and diam(BnU) = sup {x—yl: #,y e BNU} < e. The-
orem 2 will follow from the next three lemmas of which the first two dre
quite simple.

Leama 2.5. A bounded linear operaior A: X — Y is norm atiaining <
there is a y* € ¥* and © € X with |y*|| = |z = 1 such that ||[4%]] = |4*y*|
= A*y*(x), i.e. A* is norm attaining and achieves its norm at a norm attain-
ing functional in X*.

Levya 2.6. A bounded linear operator A: X — C(8) is norm attain-
ing < there is an s €8 such that u(s) = 4*(8,) = 4] and u(s) is norm
attaining where u is as in Lemma 2.1.

Leynia 2.7. Let A: X — C(8) be a bounded linear operator with rep-
resentation u: S — X* given by Lemma 2.1. Let & > 0 be given. Suppose there
8 a norm attaining functional u* € X* with llz*| = |All and @ weak* open
set U = X" such that Unp(8) # O and, for every y* € Unu(S), lo* —y* < &.
Then there is a norm attaining bounded linear operator A': X — O(8) such
that |4'— A< e

Proof. Suppose #* and U are as given. Choose s, € § with ;4(80) eU.
Then W = {se8: u(s)eU} is an open set containing s,. Urysohn’s
Lemma provides a function ¢ e 0(8) such that ¢(s) =1, 0<p<1
and ¢ = 0 on S\W. Define p': § - X* by p'(s) = o(s)z*+ (L —p(s)) u(8).
Then

p () = p(s)llo*— u(s)l

lles(8) — <
@(s) e+ (1 — @ () lu ()} < lul

e ()l <

¢ forall se8,
for all se 8,
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and
' (s)ll = Nl = Al = [’
Thus x' represents a norm attaining operator by Lemma 2.6.

Proof of Theorem 2. Suppose A: X — C(8) is a bounded linear
operator and let ¢ > 0 be given. Let y: 8-> X* represent 4. Since || 4|
= sup {lu(s)ll: 58}, we can choose s, € § and &, € X such that {w,, x(s,)>
> A —e/2. Let U, = {&* € X*: (m,, #*) > |4l —2/2}. Then U,nu(S)
is nonempty and bounded. Since X is an Asplund space, we can choose
a weak* open set U, = X* such that diam(U,nU,Nu(S))< /2 and
UanUln,u(S) is nonempty. Let U = U,NT, and let @ € Unu(8). Then
LA = 185l = (oo, @5 > 4]l —¢/2. So by the Bishop-Phelps Theorem [1]
there is a norm attaining funectional x* such that |z*] = |4] and |z* —-:a‘,f];
< g/2. Then #* and U satisfy the last lemma since, if y* € Unu(S), then

fo* —y*l <

llo* — a3+ gy — y*) < e/2 + diam (Unu(S)) < e

and the theorem is proved.

3. Approximating compact operators by finite rank norm attaining
operators. Theorems 3 and 4 are proved in. this section by obtaining general
conditions on either the domain or the range of a compact operator in
order to insure that it can be approximated by a norm attaining finite
rank operator: Namely if either the domain has lots of norm one com-
plemented finite dimensional subspaces or the range has a large uniformly
complemented family of finite dimensional subspaces whose unit balls
are polyhedral. The proof of the next lemma is omitted.

Levara 3.1. The following two conditions on a Banach space X are
equiralent:

(I) For every finite dimenstonal Banach space F, every bounded
linear operator A: X — T and every & > 0, there is a projection P: X -~ X
such that P has finite dimensional range, |P| = 1 and |4 —AP||<e.

(IT) Given &> 0 and {7}, ..., 3} = X7, there is a projection P: X - X
such that P has finite rank, ||[P|| = 1 and for eachi = 1, ..., nthereisa yj e X*
such that |z} — P yi)<e.

Since the operator AP of condition (I) is norm attaining, these two
equivalent conditions on X imply that finite rank operators on X can be
approximated by norm attaining finite rank operators.

‘We note that not every Banach spaece X satisfies the conditions of
this lemma since they imply that X has the 1-metric approximation
property (see Johnson, Rosenthal, Zippin [8]). Thus the prednal of & re-
flexive Banach space failing the apprommqmon property does not satisfy
the conditions of the lemma.
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PrOPOSITION 3.2. If S is a compact Hausdorff space, then C(8) satisfies
the conditions of the last lemma.

Proof. We verify condition (II). Let & > 0 and
{pors ooy g} = o8y = M(8)

n
> lugl. Since p; < u for each 4, there is a g, e L'(u)
i=1
such that g; = ;2. Choose simple functions ¢; e L' (u) such that [|g;—s;idp
< /2. Let {4,, ..., 4,,} be a disjoint collection of Borel sets with u(4;) = 0
m

be given. Let u =

such that for each ¢ there ave real numbers of with s; = X ajy,,. For
i=

each j=1,...,m choose a compact set A; c 8§ with K, c 4; and
HANE) < ef2mM where M = maxiaj]. Let {g, ..., p,} be disjointly
supported functions in C(8) such that ¢;(K;) =1 for each j. Define
P: 0(8)—C(8S)by

m 1 .
Ff = E (ﬂ’ﬂ J fa,‘) .

Then P is a norm 1 projection onto span{p, ..., ¢,} For k =1,...,m,

P* 1x, b = Zm, i sinee, for fe O(8),

f Pfdp = _{( ffd.u) f Py = ffdﬂ

Soforeach s, if U; = ( Z‘ &z, o P* Uy = U;and thus

=1
lg: e — Smll + lisn— sl
f \gs— sl dps+ f184

2; Hu(ANE) < e

i=1

s —P* Tl = lgas— Ul <

“jZKj | d,“

This proves the proposition.

An argument similar to the above shows that if u is a finite measure,
then L?(u) satisfies the conditions of Lemma 3.1 for 1 < p < oo

Since any compact operator on a ¢(8) or I} (u) space can be approxi-
mated by a finite rank operator, this proves the “from” half of Theorems 3
and 4. The “into” half of these two results follow from the mnext prop-
osition.

PROPOSITION 3.3. If either ¥ or Y* is isometric o an L'(g) space,

then for any Bansch space X, FRNA(X, Y) = K(X, 7).
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We denote by 17 (Ig,) the n-dlmensmnal Banach space of real n-tuples
L= (Byy... Z‘ j#;] (= sup ]a} ]). A simple argoment shows

L(X, ¥)

y By) With |z =

that, for any n,if ¥ =17 or Y = 1% then for any X, NA(X, Y) =
(cf. [11], pp. 146-147).

If ¥* is isometrie to L*'(u), then for any £> 0 and any finite seb
{¥1s+-+s Y} = X there is & norm 1 complemented subspace B of ¥ which
is isometrie to I for some m and such that for each ¢ =1, ..., n there
is an e e B with |ly;—el < & (¢f. [10], Theorem 3.1). Also, if ¥ = L'(n)
then the same property holds with I{* replacing I} (the subspaces B are
obtained by taking the spans of finite sets of simple functions). Thus
Proposition 3.3 follows from the next lemma.

LEMMA 3.4. Let Y be a Banach space. Suppose there is a A = 1 such that
for every 8> O and finite set {yy, ..., y,} = X there is o subspace B of ¥
and a projection P of ¥ onto B such that | P|| < 1, for each.y; there is ane e B
with ly;— el < 6, and, for every X, NA(X, E) = L(X, E). Then for every
Banach space X, FRNA(X, Y) = K(X, Y).

Proof. Let a compact A: X —~ 7Y and &> 0 be given. Choose
{Y13 -3 Yoy = Y such that for each @ € X with [lz]] <1 there is a y; with
Az —9,] < ¢/84. Choose B and P as provided with § = ¢/81. Then for
x e X with |jz]] <1 there is an ¢ ¢ B with Az —e]| < /42 s0

Az —PAz] <

Thus |4 —PAl <€ ¢/2. Now choose a norm attaining operator A’:
with |[PA — 4’| € /2 and the lemma is proved.

Az —el +|[Pe—PAz| < e/2.
X—-F

4, Open problems and remarks. The following questions about norm
attaining operators between classical Banach spaces seem to be open.

QUESTION 1. Are the norm attaining operators dense in L(C[0, 1], '),
I(I, 0[0,1]), L(C[0, 1], *)?

The following special case of the mext proposition has a possible
bearing on the ¢(S) to I* problem: If 8 is a dispersed compact Hausdorff
space (i.e., it contains no perfect subsets), then

NA(C(8), TY) = L(0(S), IY).

ProrostTION 4.1. Suppose 8 is a dispersed compact Hausdorff space
and suppose Y is either a C(K) space or an LP{u) space for 1 < p < oo,
Then

NA(0®®), T) = Z(0(8), ¥)-

Proof. Sinee L™(u) is a C(K) space, Theorem 1 takes care of the
cages ¥ = O(K) or L*(u). For p finite all bounded linear operators from
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C(8) to X are compact ([9], Lemma 9) and so the proposition follows
from Theorem 3.

The results and techniques of this paper and the literature show
that if X is either a C'(8) space or an L?(u) space or if Y is either a G(8)
space or an IL'(u) space then FRNA(X,Y) = K(X, Y). In general,
a compact operator need-not be approximable by any finite rank operator,
however, the following question raised in [4] seems to be unanswered:

QuEesTION 2. Does KNA(X, ¥)
spaces X and Y?

The simplest case of this question which is unresolved is Question 6,
below.

Lindenstrauss [11] introduced the following two properties of 2 Banach
space. The Banach space X has property A if, for any Banach space ¥,
NA(X,Y) =L(X,Y). The Banach space XY has property B if, for
any Banach space X, NA(X, Y) = L(X, Y).

The remarkable paper of Bourgain [2] answers most questions about
property A. He shows that if X has the Radon—Nikodym property then X
has property A. The converse seems to be open.

QuusTION 3. Does property A imply the Radon-Nikodym property %

This guestion is equivalent in the separable case (via [2]) to:

QUESTION 4. Is property A an isomorphism invariant?

Bob Huff in [15] has recently shown that Questions 3 and 4 are
equivalent. (This faect was also pointed out to us by the referee.)

= K(X, Y) for any pair of Banach

Problems concerning property B even for classical spaces are still
numerous, however. Lindenstrauss proved in [11] that R™ equipped with
a polyhedral norm has property B and asked if every reflexive space has
property B. It is easy to show that I° and ¢ have property B. Surprisingly,
the following question is still open.

QUESTION 5. Do any of the following classes of Banach spaces have
property B: (a) finite dimensional spaces, (b) reflexive Banach spaces, (¢)
C(8) spaces, (d) L'(u) spaces, including 7,?

There are Banach spaces which fail property B (ef. [11]) but it is
not known if any classical Banach space fails B.

The most irritating problem about norm attaining operators which
is linked to property B is the following:

QuEsTION 6. Let X be an arbitrary Banach space and let R® be
3 2-dimensional Buclidean space. Can every operator from X to R’ be
approximated by a norm attaining operator?

QuEesTION 7. Can every Banach space be equivalently renormed to
have property B?
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We close with the following propositien which characterizes those
pairs of classical Banach spaces (X, Y) satisfying NA(X, ¥) = L(X, ).

PROPOSITION 4.2. Among the infinite dimensional classical Banach
spaces, i.e. L” spaces and C(8) spaces, NA(X, ¥) = L(X, Y) if and only if
X =1L%u)y ¥ =L'(»), 1<r<p< oo and one of the following holds:

(@) 1 <r ond o and v are atomic.

(b) 1 <r<2 and v is atomic.

(e) p>2, r>1 and p is alomie.

(d) » =1 and » is afomic.

() r =1, p>2 and u is atomic.

Proof. First, if NA(X, ¥) = L(X, Y) then X is reflexive since each
element of X* must attain its norm. Thus among the classical spaces,
X can only be L?(u) for 1 < p < oo. Next, let us show that ¥ cannot
be a space of type C(S): Suppose NA(ZX, ¢;) = L(X, ¢;). Then X is ref-
lexive so there is a basic sequence in the unit sphere of X*. Let {«*} be
a weakly convergent subsequence, which must converge weakly to zero.
(See I. Binger, Bases in Banach spaces. I, p. 297.) Define T: X—¢, by

1
letting the nth coordinate of Tz be (1 — ;) @ (2). Then |7} = 1 but [T

< lofl for each ¢ X and we obtain a contradiction. Since ¢, embeds
isometrically in any infinite dimensional €(S) space, ¥ cannot be of
this type. Hence we are led to consider only L” spaces.

Now, in [6] (also cf. [3], page 16} it is proved that if X and ¥ are
reflexive and one of them has the approximation property then NA(X, ¥)
= L(X, Y)iff L(X, ¥) = K(X, ¥) iff L(X, ¥) is reflexive. In [13], Theo-
rem A2, those L” spaces X and ¥ satisfying L(X, ¥) = K(X, Y) were
characterized. In case # > 1, this yields the proposition in cases (), (b),
and (c). The easy observation that a compact operator from a reflexive
space to I'(v) with » atomic attains its norm, along with [13], Theorem
A2, yields the sufficiency of (d) and (e). It remains to show that, given
7 =1, (d) and (e) are necessary. The following examples are due to J. Bour-
gain:

Bxanmpir 1. For 1< p < 2, define T: —-L'[0, 1] by

Ty = Y (1— %)wnpn

Led
n=1

where z = (2,) and (p,,) is the sequence of Rademacher functions on [0, 1].

Then
- ' ‘ 0 . 1\2 /2 12 )
et <o = [ (1—-71—) Al <[ ] <,

n=1 =

-
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Thus T} < 1. Since Te, = (1—1/n)p,, iT{= 1 but the above inequality
shows it is mot attained.

Exanpre 2. For 2<p < o define T: L7[0, 1]=L'[0, 1] by

2 H
’ If = ;’; (1 — %) [5‘ fp“dx]pn

where (p,) are again the Rademacher functions. Then T = I,8PI, where
I,: LP—>IF and I,: L*~L" are inclusions, P is the projection of I* on the
span of (p,) and § maps the span of the Rademacher functions onto
itself by &(Y a,p,) = S 1—1/n)a,p,. Since each of these operators
has norm 1, 50 does 7. But T does not attain its norm since § does not.

It is easy to show that if H is the range of a norm one projection
on E then NA(¥, F) = L(E, F) implies NA(H, F) = L(H, F). Hence
Example 1 shows that NA(L?, I') = L(L?, I') for 1 < p < 2. This com-
pletes the proof.
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