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Method of orthogonal projections and approximation of
the spectrum of a bounded operator

by

ANDRZEJ POKRZYWA (Warszawa)

Abstract. For & given bounded operator 4 and a sequence {P,} of orthogonal
projections converging strongly to the identity operator on a complex Hilbert space
H we can define operators

Ap =Ppdlp,m ¢ P, H —~PpH.

These operators are compressions of 4 and approximate it in some way. In this
work the asymptotical behaviour of spectra of operators Ay is studied.

Notation. In the following H will denote a complex Hilbert space
with & sealar produet (-, >, L(H) denotes the space of Hnear bounded
operators on. H, F(H), TO(H) denote the sets of finite-dimensional
and compact linear operators on H. By a projection (not necessary orthog-
onal) is meant an operator P e L(H) with P* = P. Two ‘projections are
said to be ordered inm their natural order P < Q it PQ =QP =P. Py(H)
={PecFH); P =P =P

The spectrum, resolvent seb of an operator A are denoted by Z(4),
o(A) respectively. 02 means boundary of a set Q; 2, (¢) means the
eneighbourhood of the seb Q.

If1eC, Q =« C (C —the complex plane) then

a2, @) = intjo—2l,
weR

dist (", Q') denotes the Hausdorff distance between the sets &', Q.

We define (following [1], VII) & spectral set for the operator A to
be any set @ = C for which 02nX(4) is open and elosed in X(4). For
each spectral set Q the projection E(Q, A)is defined by the formula

—1
B(Q,A) = mrfR(z,A)dz,

where B(}, 4) = (A—4y} and I' = o(4) is any rectifable Jordan curve
containing 2n Z(4) but no other points of Z(A4) in its interior. It is known
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that
B(Q,A)A = AB(2, A),
B(Q,AB(Q", A) = B(Q'n0", A),
2(Alge,nm) = 2n2Z(4),
B(X(A),4) =1, and if 2 c ¢(4) then F(Q, 4) = 0.

Basic Jemmas. Two following lemmas are well known.

Lemma 1 ([3], Lemma 3.7, p. 151). If {P,} is o sequence of projec-
tions in H, P, — 1 sirongly, K € LC(H) then |P,K — K|~ 0.

Lmwnra 2 ([3], 4.24, p. 131, [1], VIL6, p. 585). If 4, B cL(H),
Aepo(d), |4—BJIR(A, A)”<2‘ then Aeo(B) and the follozomg n-
equalities hold

B (4, B) < 21IB(%, A)lI,
IB(2, B)—R(%, A)l < 24 - B[|R(4, A)IF.
It is also known that IIR(A,A)[[>( {2, Z’(A))“1 for 1ep(4).
LevMA 3. Lek Q,P,,,n =1,2,...,be projections in H such that

Q e F(H), P, 1 strongly, Pp -1 strongl'q, then there ewists a sequence {Q,}
of projections in H such tha,t

Qn<Pn: ”Q—Qn“—"o-

= @QP,+(1—@Q), note that
1B, —1{ = 1QP,— @Il = [IPr@"* —@"|.

It follows from Lemmas 1 and 2 that for # large enough there exist oper-
ators: B! and

¢8) _ IL— B < 2[PrQ* —@*.
Note that
1 =B;'B, = B;'QP,+B,'(1-Q) = QP, B;"
Multiplying this identity by (1 —@) we obtain that
' 1-¢ = (1-Q)B;". ‘
We shall show that the operators @, = P,B;'QP, satisty the thesis
of our lemma:
@n—Qu = P,(1—B;'QP,)B;'QP, = P, B;'(1-Q) B;'¢P,
=P, B '(1-Q)QP, =0.

Proof. Let B,

+(1—Q) B,

Thus @, is a projection and obviously @, < P,,;.
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The convergence [|Q0, —
computation below
HQ —inl = ”Q _‘PnBv_leP)ui
< HQ ._QPM!‘ + ”QPn _PnQPn‘E "}“”anPn—PnB;lQ‘Pu“
<@ —QP, i+ 1@ — P, QIR+ ‘IP ML ~B QPN
< “Q _PMQ;I ”Pn“ i I}P*Q Q 2 HPan ”Q”) —+0. &
The next lemma shows that the assumptions of Lemma 3 are necess-
ary.
Levva 4. Let {P,} be a sequence of projections in H such that |P,]
<K, n=1,2,3,... If for any projection @ € F(H) there evisis a sequence
{Q,} of projections in H such that @, < P, |0, —Q| — 0 then

@li — 0 follows from Lemma 1, (1) and the

P,—1 sirongly and P;—1 strongly.

Proof. Foragivenz* e H ([v*] = 1) take y € H such that [y, o*> = 1.
Define the projection @ by the formula Q2 = {2z, 2*;y then

Q*z = &,y and  QFF =",

Let {@,} be a sequence of projections such that |@—@,ll -0, @, <P,.
Then

\Pra* —a™|| = HPZQW*——Q*%*H < |1PRQ* —-Q*ll = |@P,—@l
SHQP, —@n Pl + 10, P, — QI < 1@ — QoI (K +1) — 0.

Thig shows that P} — 1 strongly. Proof of the convergence P, — 1 strongly
is alike so we omit it.
Lemmas 14 are also valid in any Banach space

Spectra and numerical ranges. The set X;(4) of wll those 4 e Z(4)
such that A is an isolated point of X(4) and H(2, 4) = E({i}, 4) e F(H)
is called the discrete spectrum of the operator 4.

The set Z,(4) = Z(4)\Z;(4) is called (Browder) essential spectmm
N. Salinas proved in [6]:

LEMwvA 5.

Z(4) = [ Z(PAlpg).

1-PePy{H)
The numerical range W{A) of an A e I(
W(4) = {(4o, ap; lol =13,

the essential numerical range is given by the formula

W(4)= ) W(A+K).

EeLC(H)

H) is defined as .
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It is known that W(A4), W,(4) are convex sets, that Z(4) < W(4) and
) R(1, 4) < (a(3, W) AgW(A)

([3], V, Th. 8.2). Then next lemma gives a usefull characterization of W,(4).
LeyiA 6. The following conditions are equivalent:
(i) 2 e W,(4),
(i) (4w, z,> —~ A for some sequence of unit vectors such that z,— 0
wealkly,
(i) ie N
l—PePf(H)
For a proof we send reader to [2] and [5].
These lemmas imply that X,(4) = W,(4) so

for

W(PAlpg).

(3) Z(ANT (A) = Z(4).

W,(A) is a convex set, so it is obvious that the convex hull of X,(4)
is contained in W,(4). N. Salinas proved in [4] that if 4 e L(H) is a hypo-
normal operator then convX,(4) = W,(4).

Projectional methods. For a given operator 4 e L(H), and a given
sequence {P,} of projections in H, we define operators

anPnA{H"EL(Hn) H, =P,H.

The following theorem holds:

TeworEM 1. If A € L(H), 2 is a subset of the complex plane such that
ONW, (A) =0 =0QnXZ(4), {P,} is a sequence of orthogonal projections
in H, P, —1 strongly then

1B(2, 4)-E(2, 4,)P,]|-~0

where

with 1 — oo,

It is known, that if P, @ are projections such that |P—@Q| < 1 then
dimPH = dimQH ([3], p. 33).

Using this result to projections H(2, 4) and B(Q, 4,,)P,, we obtain
under the assumptions of Theorem 1 the following

CoroLLARY 1. (i) dist(QnZ(4), 2nXZ(4,)} ~ 0.

{il) If 2 ¢ W,(4) then 1 e X(A) if and only if aa, Z(4,)) - 0.

Proof of Theorem 1.

I. We can choose & number ¢ > 0 in such a way that

inf{ls—yl: 2eQ, ye W, (4} >¢ and Z(4)nd(W,(4)+(s) = 0.
Now put & = W,(4)+(¢), note that the set Z(4)\@G is & finite subset
of X;(4) thus the projection @ = H(CN\G, 4) is of a finite dimension.

Because GNQ =0 so B(Q, 4) < @, Lemma 3 implies that there exists
a sequence {@,} of projections in H such that Q, <P, 1Q,—Qll—0.
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Using the projections @, @, we define some new operators:
C=Algu: 1-QH—-(1-Q)H < H,
D =A4|yp: QH—~QH < H,

On = (1—Qn)A](1—Qn)H: (1 _Qﬂ)H% (I_Qn)H < Hi

D, =@, 4lg 5 @ H—>QH <cH, < H,

Cin = 'PnGnl(l—On)Hn: (I—Qn)Hn_)' (I"Qn)Hn < Hn. < E?

B, =0,1-9,)+D,9,: H—~H,

B, = P"B”]Hn: H,~H, cH.

I have written the inclusions such as for example H,, < H because
the operators from IL(H,) are sometimes understood as the operators
from L(H,, H). -

Note that

4 = 0(1'—Q)+-DQ! Bn = (Gn(l'—Qn) +-DnQnHHn)
A-B,=(0,—N41-Q)+1-0)4Q,—D+04(Q—Q,)+
+(Q@—@,)4Q,;
this implies that

4 —B,Il < 1€, —eNniAl (I — N+ 191+ 1@+ 11— @,11)

80 -

This with the definitions of 4, and B, implies

Note also that
2(0) = Z(AIN(EN0G), (D) =Z(ANNG.

II. In this part I shall show that for # large enough £ (C,) < @G and
that there exists such number M that for n large enough

IR, CI< M 1¢6.

If this is not true we could find sequences », € H,, 4, € C such that:
ol =1, 4, ¢, and zero is a cluster point of the sequence |(C, —24,)®,}.

The norms of the operators C, are bounded by a constant ¢ indepen-
dent of «, thus

O — M@yl = 1A =10l > 1A =7 > 1

for

when JA|>r-+1.

This shows that the sequence 4, is bounded. Choosing a subsequence and
changing indices we ecan assume that 1, — A, @, — @, weakly, |(C,—1,) @,
— 0. Because 1, ¢ @ 50

6 o ¢ GN3G.
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An easy computation shows that
IO, — 29) 2,1l — 0.
Because Q,z, =0 so |Qz,] = (@ —@,)x,/—0 and for any y e H
Qo 9y = limQay, y> = 05

henee

(7) Qu, = 0.

The followmg identity holds: » .

(Awy, > — 2k = (4w, #,> — (P, (L —@,) Amn,w,,>+<(0“ IS Y

= (A, 1, —{(1—Q,) Ay, @) + (0, —10) 2, @,
= {(@n—Q) A2, 2,) +<{A(Q—Q.) @y #,) + (O — 1) By, B>
To obtain the last equality we use the relations @, », = 0 and 4Q = Q4.
This identity implies that
1K AZ,; @) — o] <2 AN 1Q —Qull + (T, — o), |l — O
but 4, é W,(4), this and Lemma 6 imply that @, = 0.
For any y € H the following identity holds:
(A= QA =22, 1> = (L= Q) (4 — 1)@, Poy) +
Q= (A —4) 3y, Poyd +{(1—Q)(A o),y y— P,y
and because

<(1—-Q")(A—-7»D)$n, ny> = < ) n,7fl/x
80

K(1—Q) (A — A, 1|
< WG —20) @, 191+ Q5 — QUIA — Aol [l -+ L — QU A — Aol ly — Pl
Hence in the limit we obtain that

(L= Q) (A — A, y> = 0,

but y e H is arbitrary, 2, € (1—Q)H so Om, = 4w,. But z, 5 0 50 4y € Z(C)
<= G\0@, this contradicts (6) and proves the statement of part IT.

OI. For n large enough X(C,) = @. This statement may be proved
like part II, but note that in the special case when P, =1, the projee-
.-tiong @, may be defined to be the previous ones. Then €, = C,, 50 this
part is a simple eoro]]ary from part II.

IV. It is enongh to prove the theorem in the case when the boundary
0% of the set Q is a regular Jordan cutve with a finite length }0R|.
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Let M; =sup [|[B(4, 4)]. (4) implies that for » large enough
AcBQ

I4—-BIEGR, A< 4 —B, M, <} - for Aedf.

Using Lemma 2 we see that for such n 62 < o(B,) andfor 140 ||R(2, B,)||
< 2M17 “R(A! A) '—R(ll Baz)” < 2M‘;7”A _Bn”‘ Hence

(8) IB(Q, A)—E(Q, B, = '

;i [, 4)~r0, B )dz“

Y7 da

Ian

9M!JA B,ll.

Because R(1,B,) = R(1, 0,) (1—Qn)+R(l, D,)@, so

(9) E('Q: Bﬂ) =E(‘Q) Gn)(l_Qyz)+E(g: Dn)Qn' .

‘We have shown in part IIL that for n large enough Q < O\G = ¢(C,)
then B(L, C,) = 0, this with (8) and (9) imply that for n sufficiently large

(10) VB(Q, 4)—B(2, D,)Q.li < “‘AFHA B,

Because for n large enough 802 < o(B,) = ¢(0,)ne(D,), 20, =&
= C\Q2 and o(B,) = o(C,)no(D,) so @ <. o(C,), 02 < ¢(B,). Hence

(1) B(Q,B,) = (B(2,0)(1-Q,)+E(2, D,)Qy)|z, = B(2, D,)Q,lx,.
The identity R(4,B,) =R(2,0,)(1—@,)+R(i, D,)Q, together with
part IT of this proof implies that for . €08 and sufﬁclently large n
IR (4, B 1@ (IR (4, Gl -+ IR (2, Dll) < K (M +23,) £ 1,

where K = supl|@,l, because ||R(Z, D)< R(A, Bl <2M,. So - for n
large enough " .

N4, — BB, BYI<IA—B, M, <} for iedQ
and from Lemma 2 the following relations hold:

02 < o(d,),
B2, 4,)—R(4, B)I < 2[4 ~B,|l3; for iedl.

Integmtmg this inequality along the curve 02 we obtain

B2, 3,)-B(Q, BI< MZIIA Byl

This with (10) and (11) imply

IB(Q, 4)—B(Q )Pnn<'~i<M-+M>||A-—Bnu»o. "
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LDMl\IA 7. If H is an infinite dimensional Hilbert space, A e L(H),
Py e Py(H), {4, )1 is @ sequence of complex numbers such that 2, € W (4),
{6,321 95 a sequence of positive numbers then there ewisis a sequence {Pn}n=l
of orthogonal projections such that:

(1) Ppya? = Ppz+<2, 8y 1D, where Puw, g =0, |7, 4]l =1;
() Z(Ang) = Z(A) gy where 4, =P Alp gy 1p— Tl < 5

(iif) 4,2,

(iv) f 4, is an interior point of W (A) then 4, =

Proof. Suppose the projection P, is just defined. Then let @, be the
orthogonal projection onto the subspace P, H-+ AP, H +A*P, H. Because
g€ Wo(4) « W((1—Q,) Al Qn)H) so there exists a unit vector a,,,
such that: [<A%,1, Bpord —Apail < 8ppn, @usy a1 = =0. In this way we
define one by one the projections P, by the formula P, ,z =P,z+
+ <2, ®py1) %y, and the numbers in = {A®,, ©,).

Note that if 4, is an interior point of W,(A) then for any Q@ eP,(H)
An€ W((1—~@)Al,_gm), hence in this case we may choose #, in such
a way that 1, = 4, = (4, 5,>. '

Note that it # = P,2 then Az { 2, 4, s0
(12) A2 =P, AP,z =P AP 2+ (A%, 0, D%y, = A, 2.

Note that A*P, = @, A*P, s0 P, AQ, = P, A, this-implies that

= Ay, 0 <M< N;

Api1@piy = Ppp Aoy = PyA%, + (A% 0, 801 By
=Py AQ b1t Ang1Bpgs = Anp1Bpiae

This with (12) shows that A,,, = 4, @ (L1l ,-rm)-

This by induction gives the thesis of the lemma.

COROLLARY 2. If P;, is a sequence of finite dimensional orthogonal
projections in H converging strongly to 1z, S is any subset of W, (A) then
there exwists a sequence Q,, such that P, < Q, e P;(H) (so Q, — 1 strongly) and

dist (Z(4,)U 8, Z(4,) >0  with n— oo,
where
‘A‘n =PnA]PnHEL(PnH)]! Zn ZQnAlQnH EL(Qn‘H)
Proof. For any &> 0 there exists a finite subset S, of § such that
dist(8,, 8) < &. It follows from the lemma that there exists a projection
Q,> P, such that dist(Z(4,)08y,, Z(4,)) <1/n hence

dist (Z(4,) 08, Z(4,) <2/n. w

This corollary explaing why in Theorem 1 and Corollary 1 the set W,(4)
cannot be substituted by any smaller set.
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