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Singular integral operators with complex homogéneity
by
J. M. ABH, P. F. ASH, C. L. FEFFERMAN, and R. L. JONES (Chicago, 111}

Abstract. We consider various approximations to singular integral operators.
For example, we consider approximating the Hilbert transform by convolving with
2=z~ and then letting y — 0+. For this procedure norm convergence holds but,
surprisingly, pointwise econvergence fails. We also consider higher dimensional gen-
eralizations and more successful approximating procedures.

1. Introduction. Let f be an integrable function on the real line R.
The Hilbert h.msform f is the principle value convolution of f with the
singular kernel (=¢)"!. At almost every point, the _integral defining f
converges, and hence f exists [18]. The existence of f is a central fact in
the theory of real and complex analysis, and one which has been
susceptible to a wide variety of generalizations.

A. Calderén suggested a possible new approach to the problem of
establishing the conjugate functions existence. In one dimension his
idea was the following. Each positive real number y gives rise to a kernel
(=87 R

If (1) for each y, convolution with the associated kernel would eon-
verge to a function (in some sense) and (2) the functions f, () would tend
to f(a) as y =0, then we would be on our way to getting a novel per-
spective on f and its generalizations.

Step (1) of this program was carried out successfully in [12] where
B. Muckenhoupt showed that f, exists almost everywhere for each fixed
mior fel?, 1< p< oo,

Step (2) of the program started out well when B. Muckenhoupt also
showed that f, - fin I* norm, i.e., that

oo

Uf,—fle = ( [ 1f.(0) —fl@)Pda)">0 as  p—0. [12]
‘We were further encouraged when we found that rather weak conditions

on f — the Fourier transform of f — guaranteed that f, tended to f at
almost every point. (Theorem 2.1.) Unfortunately Theorem 2.4 shows
there are reasonably good (L7, for all p, 0 < p < co) funections f such that
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]i_m[ [yl = 40 at every single point (and hence [, certainly does not go
p->0

to f pointwise).

The above program can also be carried out in the Fourier series set-
ting. Part (1) of the program was carried out for series by Mary Weiss
and Zygmund [15]. Since our results, both positive and negative, are
more transparent in this setting; we first present them for series (The-
orem 2.2) and then transfer them to the line. Theorem 2.2 is the major
result of this paper.

In Section 2 we study the above program in one dimension. In Section
3 we generalize the positive norm convergent aspects of these results to
higher dimensions. Finally in Section 4 we examine other approximations
to the Hilbert transform. In particular convolution with either
(mo) " o|CHEO-) 55 0, or with the (C,2) mean of ()™ o]~
vields a suitable approximating process. Whether convolution with
(m2) M1 —|o|~?)/(iyIn|e|) which is the (C,1) mean of ()™ o]~
yields a suitable approximation process we leave as an open question.

The letter O will denote a positive real number, not necessarily the
same from line to line. .

2. One dimensional results

THEEOREM 2.1. If fe I'(R) or if T is of bounded variation on R and
tending to 0 at 4 co, then Jolz) — f(m) as y—0 for almost every w.
We postpone the proof to the end of this section for dramatic effect.
All the operators mentioned above have direct analogues in the
Fourier series setting. The analogue of the Hilbert transform fis the
-1
conjugate function — principal value convolution with (?mcot ;) — and

4

will also be denoted by f. Here

l ki Up
Il = (—é: f iflpdt) .

and if f e L*(T) has Fourier series

S[F1@) = Yf,e,
the analogue of f, — which we will again denote by f, —is the function [15]
with Fourier series

S[fy](«’”) = an( —isgnn) [n|" e,

Observe that formally fy—>fas y— 0 in the sense that the Fourier series

of S[f,] becomes X fn(—isgnn)einz, which is the Fourier series of the
conjugate function f.° :

icm°®
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The following theorem discusses the extent to which this formal
interchange of summation and limit is justified.

THEOREM 2.2. If f € TNT), [If,—flla— 0. However, there is & funotion
g e LP(T) for each p < co with the property that g,(x) diverges as y — 0
at every point x.

Proof. The positive part of the assertion is easy. One writes f = p+b
where p is a trigonometric polynomial and b has small Z? norm. Since
both b, and b are obtained from b by multipliers which shrink the modu-
lus of every Fourier coefficient (|—isgnninl*| =1, n 0, sgn0d = 0),
from Plancherel’s theorem we have

1B, —Blla < 1B, s+ 1Bl < 2 Ble-

Also it is immediate that the p, converge uniformly to $ so that ||p, —plls
< suplp,—p!} is small if y is small. N

We now pass to the more substantive and surprising part of the
proof. Take the function g to be

0 8%
g'L.. x

g(z) = g/‘f Py
Since 3n~? < oo, g(#) € L*(T), and the series is 8[g]. Further g is. in every
I, p < oo, since S[g] is (quite) laeunamz ([18], vol. 1, p. 215). S]znce §'[g]
hag only terms with positive indices, S[g] = —i8[g]. The series S[g7,
being lacunary and I* is consequently easily seen to converge a.e. ([18],
vol. 1, p. 203, Theorem 6.3).

Similarly for each y the series

% 28" '
8,[g1@) = —i X (2"
=1

converges to the I* function g, a.e. To complete the counterexample we
must show that limg,(») does not exist.

=0 Ky . -
Here is the Zentral idea. Keep x fixed! Then g, (2) is immediately
seen to be a lacunary Fourier series in the variable 6§ = yIn2., In fact,

& e
gyl@) = —i D 6.
v Li\ n

n=L

But now our series has the form

3 — Studia Mathematica LXV.1
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where 3'|g,l = 3 n7' = oco. On a dense set of 6%, and in particular for
a sequence of §'s tending to 0, Reh(f) = + co by the lemma. below. Thus
hmh(e) = hm g, (@) does not exlst This is what was to be shown, since »

Was arbltrary

Leaa 2.3, If 3leal = oo, then for a dense set of 6's Re(D]p,6™")
= -} oo.

Proof. Given any interval I we will find a 6* e I so that Re( 0,6"")
= co. Choose I so large that ¢ has a full period as 0 varies over some
interval J <= I. For some subinterval I, < J we have

{arg( QVB'B oY’ eIy} = (—n/d, w/4) Iyl = 31J].

In other words we have ahwned the Nth term of the series to be “mostly
real and positive”. Next ¢®" ™% has a full” period as 6 varies over I
s0 choose Iy., to be a subinterval of Iy with |Iy,,| = §|Iy| and
mg(gNHewM“’) €(—m/4, wjt) for fely,,. This “aligns” the (N-1)
term. Proceed inductively and finally let 6* be the unique member of
(M I,- Then

n>=N
o0
e 3 eut) >

n=N

and

2 lenICOS — =27 3 jg,] = oo,

n=N

_ The above lemma is well known ([7], p. 397, [17], pp. 77-78). The
terms 8" were chosen to make the lemma easy; actually the lemma is
true with 8" replaced by %, , where %, ., [k, > q > 1, although then the proof
lies deeper ([17], [18], vol. 1, pp. 247-250).

Theorem 2.2 has an analogue when the eircle T is replaced by the
real line R. In this setting the Hilbert transform f(#) is now the principal
value convolution of f with the singular kernel 1/z Here the analogue
of the map S{f]— 8,[f]is given by

K fofy=frl)=lm | f@ y{l ey 1o

&0 s"l>|y]>s lZ/[HW j

THEOREM 2.4. If f e I (R),

W=l = i@ ‘fy(ﬁ)lzm)l/ﬁe 0 as  y0.
' However, there is a fuiwtwn h{z) EI)’ ) for each p, 0 < p < oo, with the
property that h,(x) diverges as y — O at every point ».

Proof. We begin with the identity

5 ” 2 a2
(2.1) 0e=T/ — tanh 5 f 1, = 4,171,

icm
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which is equivalent to proving that A K, is an isometry of I*(R). For
this it suffices to show that 41K, flxes the I? norm of the characteristic
function of each interval [a, b] ([2]) For such a characteristic function y

o0 b
1 R —m) 2
22) i, = [ | [ SR aofy

oo

- [ ly=vrr—ty—ar pay
=yt J D

= o7l Y?
= _i sin’ (2111 P dy
4(b— —
(n Za) ‘ smﬁ(zln{ z—1 )dm
L 2 | o
where the last step follows from substituting z = —:—Z—_—g—. Let
—a
j #—1 | 1 " p—1
I p !. Then du = de I »e(0,1), & = — et
S0 = L and dv = — ———— du. However, if 0,1 w21
FrL =@ +1)" u. However,if # ¢ [0,1], " = ’
gu
50 dy = mdu. Thus
= to—1 | - R —11
@3) | smﬁ(iln[- ‘)dm - f+f+fsin2(1m o1 g)dm
—% iz o b i 2 7

— ¥

N ¢ C [ waf?
_f sin2 (5“) m(e“—l)“ du -+ J sin (Eu) 1) du +

0 eu '
+_£Sm2(gﬂb)m du

anﬁ( u)[ ¢ ’7 < ]du
) (" —1)2 T (1)

F . ¥y coshu
= _‘(\ SlD.2 (-?: ’M) m du

o


GUEST


36 J. M. Ash, P. F. Agh, C. L. Fefferman, and R. L. Jones

{oe]
sin? (% u)

sinhw

I

.Y ¥ y 1
28in 2 w08 = 14— |——— @
+—f[sm2ucoszu 2]8 " U

—00

(191, p. B03).

From (2.2), (2.3), and the definition of 4,, we find |4;'K 4|2
= (b—a), which proves equality. (2.1), since b—a = [ is the square
of the Z* norm of .

Now let feI’. Write f =g--b where b has small I? norm and
g € CF(R), the infinitely differentiable compactly supported functions.
It will be shown in the proof of Theorem 3.6 below that |§—g,ll,~ 0 as
y = 0. From (2.1),

16 —b,lla < 1Blla- 1B, lle < (L+4,) 1Bl
and 4, =1+0(y) = 0(1) as y -0, which proves the positive part of
Theorem 2.4. )
‘We transfer our example ﬁ'om the circle to the line. Define f by letting

its Fourier Transform f f f(@) 6™ dz be a series of blips centered at

—~a,, where a, = 2. More preclsely let f ) have height 1/n where &
is in the interval [—a,—3%, —a,+1], » _1,2,..., and let (&) =
otherwise. Not only is f in I* (immediate from Plancherel’s theorem);
it is also in I® for 1 < p < co as the following argument shows. We first
find f(x) explicitly:

' — Q12
1 7 ) 1 31 - )
fa) = 5= [foe=as = — N~ [ g
2w 2m Ld m
) n=1  —ay-1/2
1 S g gl gk
L
2w L _9;%
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Then
axk+l), .
e — 1 \» Y“"‘ 4 )!Sln@?/?)}p I S"% glan® .pd
: 2x) L J ! w2 | 1L n !
k=—o02nk : n=1
| sin(2

' is bounded by 2/k] on [2=k, 2={k+1)]if £ £ 0, —1 and by 1

2n{k+1)
on [—2x, 0] and [0, 2z], and |
2k

o efan:r in
| d»isa constant b, inde-
{

A
n=1

pendent of %; so that

1\2 > 9
;v|1;<(—2;) (2+°2 W,)b < co.

‘We now show that for almost every real z,
limsup {Re (K, =f) ()] = oo,
ey

- It is well known that

where

L, £>0 tanh (my 2)
(&) { 0, =0, and o) =l/—(7/gi
l —1, <0 4
(See [8], [1].) Note that ¢, is bounded for y small. Hence,
s —Gp+12
o f % 1 i —iat g
) io) = Oy (o) =52 D) _af_m;s} sem(£)eaE.
Let |£]7 = a +(|&]* —a¥) and note sgn (&) = —1 to obtain
e, [ e o sin(a;/2)) z
@.4) (B, #f)(@) = —= {n;' - “"J("—w/z +B,
where
RS
C,
“é-lw wld§
2 ~u£1]2

By the mean value theorem,

; 1
Bl < ey

—-1 e[an—-1/2 an+112]

e, 1yl 1
4z £ 'n,(a -4

=0(y) as yp—>0.

<
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- As in the counterexample of Theorem 1 the curly bracketed term of (2. 4)
has the limsup of its real part infinite as y — 0. Since # tends to 0, f, (»
diverges as y-—0 whenever # ¢ 2nn:n =1, —1,2, =2, 2

To produce the required counterexample for Theorem 2. 4 we replace
sin(z/2)
»/[2
of [—3%, 4]) by a function ¢ which is strictly positive, rapidly decreasing
(i.e., &"p(&) — 0 as [£] — oo for every integer 7), and whose inverse Fourier
tra,nsform is supported in [— %, 4] To constmct @ let (€) £ 0 be any
even U C™ function supported in [ — £, 2]. Then % is supported in [—% 4
(p*9)” = ¢* is non-negative and a,ndlytlc Let {#,} =X be the zeroes’
of »* and let D = {8, — @}, mo1,s,... - Since D is countable, there is a real
nun.ﬂ;-)er = ¢ D. Then ¢ = 9*(s) +y2(2—7) is rapidly decreasing, strictly
\posmve (if weX, then #—7 ¢ X since v —(2—7) = v ¢ D), and has
inverse Fourier transform ¢ (£) = (14 ¢~ (yr#9) (&) supported in [ —3, 1].

Finally, define
had Bfanm
 h(w) =¢(m)2 80 that 2 ¢(E+a

n=1 =1

(which is the Fourier transform of the characteristic function

The argument that showed fe L?, 1< p < co shows h e L?, 0 < p<oo
since @ (n)]” < oo for each p> 0. Fu1t1101more, the expansion of K, (x)
consist of an error term which tends to 0 with ¢ and a main term Whleh
is just like the first term on the right hand side of (2.4) with M

replaced by ¢ (). Since ¢ is nowhere 0, there are no points where K, * 7k (2)
might converge. ’

In order to present the postponed proof of Theorem
a technical lemma.

2.1 we need

Lemys 2.5. For fived veal y 0 the function v,(&,9)

satisfies [v,(&, y)] <
nor on £, £>1.

Proof. Integrate by parts twice:

&
— fe~ity tir dat
1

¢(y) < oo where ¢(y) depends neither on y,0 <y <1

tw — Tty iy—1 ,—ily |& '
0,(&,9) = f w[t ’ tiy=1) ftw-ﬂ .
—y '1 Y — |1 —ay
Since &7 = [6¥] = Ji] =1,

2 (&M<

iL[(_}_« lw 1! 2 2+1/E
AT !yl) f ] Sty

icm°®
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Proof of Theorem 2.1. Write

1 el
f = {23280 fiol 0 =g [ Fersentariae .

-0

If f e I, let y — 0, using Lebesgue’s dominated convergence theorem
to justify the interchange of limit and integral. Now assume the other
hypothesis and decompose the domain of integration into [ —1,1]u(1, c0)uU
u(—oo, —1). On [—~1,1], fis of bounded variation, hence bounded,
hence integrable. The integral over the second domain may be written as

0 N had A

[ f@an,&,9) =f(&0,6 9[- f (&N = — [ v,(&5nd(H

1 1
and limit and integral may be interchanged since v, is uniformly bounded
by Lemma 2.5. The third part is similarly treated.

3. Higher dimensional results. In n dimensions, we can study exten-
sions of the type considered by Calderén and Zygmund for the Hilbert
transform.

Following Muckenhoupt [1"} we define

Q(x)

‘K?(‘l}) = mind.—iy
where 2 is homogeneous of degree 0. As nusual, the type of theorem proved
will depend upon the assumptions placed on 2. Tnder the mere assumption
that Q e I}(X), Muckenhoupt [12] is able to prove that K, definesa bound-
ed operator from LP to I”, 1 < p < co. However, his bound. depends on y,
and grows to -+ oo ag y converges to 0. By placing additional restrictions
on £, we will show that the operator K, converges in I? to K, — the
associated Calderén~Zygmund operator of real homogeneity.

Let

K (z), s<pl<mn,
&, [, —_ b4 ’
Ky (@) {O , otherwise.

Then we have the following result:

TEeoREM 3.1. Suppose [Q(1)df =0 and o, the integral modulus of

z

continuity of Q (defined in [3]), satisfies the Dini condition

1
J wléé) 26 < oo.

0

Then sup |K3"| is weak type (1,1) and strong type (p,p) (L<p < o),
8,7
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with constanis independent of y (ly] < 1). As 5~ oo, and ¢ — 0 successively,
K" tends to a limit pointwise almost everywhere and in L? norm. Oall this
limit K,,. Burther we have

1) {E,+f > z}1<§uful,

1
(2) M, +fll, < epllflpy 1 <p < o0, where c, <0(P el +p).
Proof. The conclusions of the theorem follow from well known results
(see for example {13]) provided the following conditions are satisfied.
| | E,(@)de] <e,cindependent of &, 7, y,

s<|z|<n

(b) im [ K (#)dz exists,

50 e<f]<n

() [ |E,(#)dw < ec,c independent of a,y,

a<|zl<2a

@ s

l1>21y)
Due to the mean value zero on £, (a) and (b) are automatic. Con-
dition (c) follows as in the case of real homogeneity. Condition (d) is
the subject of the following lemma.

LEymua 3.2. Suppose f.Q Bt =0, |y| <

K, (#—y)— K, (2)]de < ¢, ¢ independent of y.

of continuity of £, scmsfzes the Dini condition. Then there emists a constant C
such that, for any b > 0,

(31) [ 1B, @—y)

lz1>2b

— K, (z)|dz < O

whenever ly| < b. € is independent of b and y.

Proof.
[ Ee—p—EK,0)d = [ |K,(0—by)—EK,(@)do
lzl=2b lwl=>2b

where |y,| < 1. Let & = bu, so dz = b"du, and the integral equals

[ 1%, —y0) — &, ()|t au
lul=2
Q(u—1,) 2(u)
1, (u—yo) — K, ()| du = LA | du
Iuli-z ’ lul>2 lu— f‘/oin+1y [w|* &
Q(u~—y,) — () i 1 1

< du o) _

lul;z' W“'yol““‘” +1ulLl (u)| Iu—yoln+w Iuln-i—iy du
=111

<1, and w,, the integral modulus
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To estimate I let |u| =1, so that |u—y,| > ju]— |y, > r—1, while
14—yl < lul+ 9ol < r+1. Define d by ju—y,] = r+d, so |d| < 1. Then,
expressing IL in polar coordinates,

=f } () f - J.;/Dl"“" _ L v

glis

Wl

— g

and

l(r+ @)y — < W+ D(r =1 < (w4 1)(r 1),

Thus,

r—n—ir'

o< f [Q(u')| du’ f m+1)(r—1)""" 1 g =, 0.
= a

The second integral is finite because the integrand is continuouns for r > 2
and is O(r~*) asr — co. But

[2(v) — 2(v+yo)|

s o "

lzl>1
and so by a result in [3], p. 65, I 0 = ((Q), completing the proof of
Lemma 3.2, and hence Theorem 3.1.
By modifying the conditions on 2, various extentions of Theorem 3.1
are possible.
The non-negative funetion w is said to be in A, if there are positive
constants C, § such that given any cube @ and any measurable subset
k)
c @, ﬁ)@ <0 (—I—El) , where o(4) = fw(w)dm and |4 | denotes Lebes-
(@) 1@ A4
gue measure of A.
THEOREM 3.3. If we A, and 2 has mean volue O, and satisfies the
smoothness condition
clyl

=]’

1Rz—1y)—2(@) <

then

[IE, +f(@)Po(e)ds< e, [If*@)Po@ds, 0<p< oo,
R" R»n
where f* represents the Hardy-Littlewood maximal function.

Proof. The kernel K, satisfies conditions (a), (b), and () of Theorem ITT
in[6].
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THEOREM 3.4. Suppose Qis odd and £
and |y| < 1, we have

(1) MBS fll, < Ollflps

(ii) as 5 —> co and & — 0 successively, K" +f tends to a limit K., f point-
wise and in L® and K, f|, < Clfll,, where C depends only on p, n, and Q.

Proof. Apply the standard method of rotations argument, using
the 1 dimensional result from Theorem 3.1. Note that the smoothness
assumption there is automatic in the case n = 1.

THEOREM 3.5. Suppose Q € LX), 2 has mean value 0, and
Q)+ 2(—2) e Llogt L(X).
Then for 1 < p < co and |y| < 1, we have
@) NE"*fllp <
(i) as n—> oo and ¢— 0, Kp"sf tends fo o limit K. f pointwise and in
L, and K, fl, < ¢llf ll,, ¢ independent of ».
Proof. Decompose 2 as a sum of even and odd functions,
Q@) = L@+ 2(—0)]+i[2(x) - 2(—w)].
The odd part is treated by Theorem 3.4.
For Q even, use the Riesz transforms, and follow the standard argu-

ments, as for the case of real homogenity. See for example [4]. For more
details see [1].

THEOREM 3.6. If fe L?,1 < p < oo, and Q satisfies the conditions of
Theorem 3.1, 3.4 or 3.5 the'n K, f converges to Eof in LP? norm, as y — 0.

Proof. For each positive integer #, we may select f, e 0f so that

IMZ). Then for 1 <p<oo

¢llfllp, ¢ depending only on p, n and Q,

If=Ffulp <
Then
I, — Eo) fll, < K, ( f Flllp =+ W, ~ Eo) Fullp + o (fr, — )l
<20, —q; +I(E, — Eo) fully-
Thus, it suffices to prove that for f e O},
NE, —K)fl,~0 as yp—0.
Now choose R such that suppf < {z: |#| < R}. Suppose [#] <2ER. Then
if m—y|>3R, |y >R, 80 f(y) = 0. Thus,
(E, — Ky f(o)| = | (B, — K (a—9)f(y) dy|
lx—y|<3R
=| | E—E) -y ~f)1a),

lz~yl<3R

icm
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because [ Q(t)d¢ = 0. Sinee fe O}, |f(y < Oly—x] and we have

P

E,—~E)fe)<C [

) —f(@)]

(E, —Ko) (e —y)| lr— yldy

lz—yl<3R
=0 [ ™ — = Q) uldu
lul<3B
3R
-—Cf].Q ) du' f 1 —1dr.

The integrand of the second integral in the last expression tends to zero
pointwise as y — 0 (exeept for » = 0) and is uniformly bounded. Thus,
by the bounded econvergence theorem, |(K,—K))f(z)—0 as y—0,
uniformly for |z| <2R. Now to treat o > 2R, write (K,—K,)f = fi+7»
‘where w

(K, —E)f(m) if |o|<2R,
@) = { ' otherwise.

‘We have proved f,(#) converges uniformly to 0, and since it has compact
support, ||fifl,—~ 0 as y —0. But

@) = | [ (&, —E)flo—nay < [ I, —Eo)@)ldy,
lz—yi<R
Iz > 2R, where ¢ = sup | f(#)]. Since (K, — Ko} ()] = |2(y") ly|™"| ly]~7 —1],
‘and [y| = |»| —R, we have
(32) (@) < O(lel—R)y™ [ 12091~ yI~"|dy.
je-yI<R
Since Q(y’) is integrable over compact sets, [1—ly|™| <2, and 1—Jy|~*

—0 as y - 0, the right-hand side of (3.2) converges to zero pointwise as
y — 0. Moreover,

@) <20(ol—R)y™ [ 12(y)dy = g(w),

lz—yI<R

and if we show |lgl, (norm over |z| > 2R) is finite, by the Lebesgue domi-
nated convergence theorem, we can conclude |fy(#)], 0 as y - 0. Now

Cla|™" f

lz—yl<R

lg(@) < Qy)dy < 2RClel™ [ 12(y)1dy" < Clal™,

since f |2(y")|dy may Dbe calculated by integrating first over lines
[e—vi<R

through the origin, the interval of integration on each line being at most 2B
in length, and £ being constant; and then over the portion of X met by

such lines. But C'|z|~" is in L”({m: || > 2R}).
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Remark. The kernels K, seem to be somewhat nicer than their
classical counterparts. Recall, for example, that K, is a bounded operator
if @ is mevrely in L'(X); furthermore, 2 does not even have to have mean
value zero. As y— 0 the bounds on the operator K, sometimes blow up.
It is easy to see that the bounds of K, always blow up if we do not assume Q
has mean value zero. The following argument shows that the operator
bounds also may blow up if 2 géLlog*L even if we demand that Q have
mean value zero.

More precisely, if ¢(u), >0 is 2 non-negative, non-decreasing
function of % which is o(ulog¥ %) as 4 — co, then there is an @ in (L)
of mean value zero such that the norms (as operators on LP) of the as-

sociated K’ are not uniformly bounded on (0, y,) for any positive y,. To -

see this choose 2 as in [16], so that the associated operator — K, —is
unbounded. Assume the K,’s are uniformly bounded for 0 < y < y, and
let f e I®. Then K, f is a Cauchy net as y — 0. This follows exactly as in
the proof of Theorem 3.6. Thus as y — 0, K, converges as an operator
on I” to some ‘operator K, which by contmwty is bounded on L?. However
if f e C}, the second half of the argument of Theorem 3.6 shows K. o Eof
in I? norm Thus K,f = Kf for f e 0. Since O} is dense in I?, K, = K
as operators on LP. Hence, K, is bounded on L?, a contradiction.

1 sgno
4. Other approximations. In Section 2 we saw that — lji“' =k, (@)
. 1 sgnz - . .
does not approximate ——I—F— sufficiently - well. In this section we
ki1 @

examine two other approximating methods.

L. Non-tangential appromimation. Our first approach is to replace
144y by B+iy and study convergence as f-+iy —1 in different ways.
Since # = 1 was not quite successful we will stay away from the line f=1.
More exactly, let § = 1+ 6 where 6 > 0 and define

1 .
) _ 5w, o<i<y,
oyey (@) = - Jal@Hinmmoten =40 |
; E]“—” , lml>1.

TEROREM 41. If fe L(R

(1) Fotsy (@)
8> 0 and

, then af almost every point of R we have
et

=hm———f [f(@+8) —f(z—t)]ksyq, (1) At exists for each
e T

(i) forsp (@) > F(@) as 344y —> O non-tangentially, 1.6, 6 0 and l’(;—l

remains bounded.
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Proof, It suffices to prove the theorem at & point z where the Hilbert
transform f(#) exists ([14], p. 217). Fix such an » and let

11
oL [flato ey
8

8() ds, s;=1m—8(s), and s,=1lim8(1)
&0 oo
s0 that f(@) = s;+s,.
Let ¢(8-+iy,t) = — él-(tka,l_w (#)) and integrate the expression in (i)
by parts to get
B0) (o 10y (1) 7 + f S()e(8+iy, 5)dy.

As ¢ — 0 the integrated term tends to 0, so that
forsy(@) =1m [ S(y)e(s-+iy,y)dy
>0

it that limit should exist. Write c¢(8-4y,y) = e(d+4y, ¥)xpy (¥)+
+e(8+9y, Yo (¥) = ¢1+¢,, where X(ap OQenotes the characteristic
Tunction of the interval (a, b). It suffices to show that as 6 iy — 0 non-
tan wentially

-]

hme y)e (6 +iy, y)dy —s;, and f Sy

e—=0 g 1

Yea(8+iy, y)dy — 8,.

Both these facts are simple summability results which require verifying
only that the kernels ¢; and ¢, satisfy the usual regularity conditions:
L :

[la(d+iy, ity <0, [ lea(d+iy, pldy<0
0 1

wheré C is indep endent of 64y,
1e

f leg (8

as ¢4y — 0 non-tangentially for every positive & < 1, and

1
[lon(8+1y, y)idy o0, +iy, y)ldy — 0

oo

[ a(d+iy, pay =1

1

1

[en(6+iy, 9)dy = —1,

0

when 6 > 0. (Compare [10], p. 50.)
Remarks. 1. The only deep point in the above proof is the almost

everywhere existence of the Hilbert transform. Theorem 4.1 is a regularity

result; the corresponding Tauberian theorem would be a proof of the almost

everywhere existence of the Hilbert transform of an L' function.
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2. The kernel k;,;, can be replaced by simpler kernels. First we
can let y = 0, thus replacing non-tangential eonvergence by radial con-
vergence. The result, a special case of Theorem 4.1, is that a.e. the Hilbert
transform is given by

lim (p.v. {f#a"!|z|*enl-lal}y
st

where Ii.v. (f*g) denotes the convolution of f and’'g in the principal value
sense. Second, we can use |#|° to damp out the singularity at 0 and not
worry about the singularity at infinity. Thus if

1 .
; Imlé-’-wy 0< o<1,

lspiy (®) = 1
- l2[*7, 1<al,
we have as before that the Hilbert transform is given a.e. as the non-
tangential limit of p.v. (f+ls,;). Again the special “radial” case ofy =0
may be of the most interest.

3. Instead of modifying the kernel we might damp the multiplier
instead, - replacing —isgngf) by ?cd+iy(§) = —isgn (). [gCHMa-1am,

1 A A - .
letting fj, 4 (¥) = lm . f Koray (E)f ()™ dE, and approximating the
bl

Maca 4T _
Hilbert transform f(z) by the non-tangential limit of f;,,; (#). The regu-
larity theorem is still just as easy except that this time we need the a.e.
existence of the Hilbert transform and a real line version of the Carleson—
Hunt theorem on the convergence of Fourier series ([5], [11], [18], vol. 2,
p. 242). :

4. In the periodic case everything is simpler and we may either con-
1 .
volve the functiow with — |»/°*® or multiply the Fourier coefficients
p

termwise by |n|["®+% to obfain similar regularity results.

II. Aweraging. For simplicity we will restrict ourselves o the Fourier
series setting. (The statements and proofs for R are similar.)

In Section 2 of this paper it was shown that if the multiplier
—i8gn(n) - [ is applied to the series 3 a, 6", the result may not converge
as y— 0, even at points where the conjugate series does converge. In an
attempt to salvage something from this distressing behavior, and following
a suggestion of Professor Zygmund, we tried “gmoother” versions of the
multiplier. .

. For simplicity (and, due to Plessner’s theorem ([18], vol. 2, p. 216),
without loss of generality) we will only look at one-sided series, replacing
—isgnn|n|” with n”, ete.
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The first version was obtained by replacing 2% by an average
7
17 .
— ’ n?dp =
e

0

n—1

3 7
iylogn

and taking the limit as y — 0. It is clear that this multiplier is better than
the original. Indeed any super-lacunary series (i.e., of the form Naemr=
logn,

08T o oo 1), and consequently
logn,
Theorem 2.2, converges when this multiplier is applied to it. However,

we were nnable to prove 'convergence in general. In particular, the multi-
iy
ntr —

with

the counterexample of

plier — does not induce a regular summation method.
iylogn

However, if we smooth the multiplier again, by taking a second

average, the resnlting multiplier yields & summation method. More pre-

cisely we consider the multiplier

7 ip vlogn
1 a¥—1 1 TRt —1
m,(y) = — J B = du.

v iylogn u
73 y1i0g F

iplogn

: oo
THEOREM 4.2. Assume that the series S a,6™ converges, then the
bl n=1
series f,(2) = 3 a,m,(y)e"™ converges for each fized y, and the Himf, (w)
emists. n=1 70

Proof. After a summation by parts,

[ 0

5@) = 3 su(@)my () = )] = 3 s,(@) [4, ()],

n=1

where .
8,(z) = Zakei’“.
k=1 "

We must show that 4, (y) satisfies the requirements for a regular method.
The three conditions are

(4.1) Mldi<o< o for all y;
=1 .
(4.2) limd,(y) =0 for every n;
y—0
(4.3) Hm )y A, (y) =1.

>0 1
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The second and third conditions are easily checked. The first seems to
require some delicate estimates.
‘We need to study

1 vlogn e{u—l vlog(n+-1) 6iu—l
1.4 yi| = —— du— -
(4) n(7) y logn J 1t ylog(n-+1) : i

du

rlogn

er—1 [ 1 1 ]
. — du—
p W logn log(n-1)

rlog(n+1)

1
4

1 &1
ylog(n—-1) 1%

rlogn

du.

For small values of n (ylogn < 1) we will use the estimate

i

= 14 0(u).

Combining terms and using the above estimate we get

) vlogn IOg (l + T;L;)
4 =— 140
== [ (L+0@)

o

lognlog(n+1)

rlog(n+1)

L (L+0(w)du

~ ylog(n+1)

1 1
log(l + ;) . log (1 + ;)
log(n+41) log(n-1)

ylogn

0(ylogn) —

- ylog(n+1) —ylogn
ylog(n+-1)

1
log (1 -+ ?) log(l + —1—)

= Togn¥1) O(ylogn)— Togin D) O(ylog(n+1))

[1+0(y10g(fn,+1))]

-

tog{1+ ) 0(ylogn)
- Og( logf(bn)ﬂrl;; - =0(?)'
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For large values of n (ylogn > 1), we use the fact that
f fz e —1
u
L]

which follows from the fact that

du

< clogz+e,

%

-1
I = 14 0(u) near the origin and

is bounded by 2/u away from the origin. We use this estimate on the
first integral in (4.4) and the estimate

—1] 2
i w
" on the second. We get
14, ()
17 1 1 ylog(n+1)—ylogn 2
<z | = . N L]
S []Ogﬂ, log(n+1) ] [elog(ylogn) +¢l+ vlog(n-+1) ylogn
1 !
clog( + )og(ylogn) clog (ylogn)

ylognlog(n -+1) = ynlog®n

Combining the two estimates and setting N = [¢7], we get

oc N
D<) 14 m+j§m ()|

n=1 n=1 n=N
¥
<02 Y, ¢ % log (ylogn)
= T '—"——2
S &L néf» ynlog?n
N o«
log(ylogz
afz-dw—f—cf g(iy zgw
Joo 4 ywlog
7 logu
<eylogN+e¢ f 52 du
ylog N
~ logu
<cy10ge’“’—|—cf i "~ du

1
= ¢ < 0.

4 — Studia Mathematica LXV.1


GUEST


50

11
2]
3]
[4]

151
6]
7]
8]
191

[10]

[11]

[12]

(18]

[14]

[15]

[16]
[17]

[18]

J. M. Ash, P‘. F. Asgh, C. L. Fefferman, and R. L. Jones

References

P. Ash, On singular integrals with complew homogeneily, Ph. D. Thesis, Uni-
versity of Ilinois, Chicago, Illinois, 1972.

P. Agh, J. M. Ash, and R. D. Ogden, A characlerieation of isomelries, Journal
of Mathematical Analysis and Applications 60 (1977), pp. 417-428.

A, P. Calderén, Mary Weiss, A. Zygmund, On the ewistence of singular
indegrals, Proc. Sym. in Pure Math. 10 (1967), pp. 56-73.

A.P. Calderén and A. Zygmund, On the existence of certain singular integrals,
Acta Math. 88 (1952), pp. 85-139.

L. Carleson, On convergence and growth of partial sums of Fourier series, ibid.
116 (1966), pp. 135-157.

R. R. Coifman and C. Fefferman, Weighted norm inequalities for mazimal
functions and singular infegrels, Studia Math. 51 (1974), pp. 241-250.

P. Fatou, Séries irigonométriques et séries de Taylor, Acta Math. 30 (1906),
p. 335-400.

I. M. Gel’fand and G. E. Shilov (tr. Eugene Saletan), Generaliced Functions,
Vol. 1, Academic Press, New York 1964.

I. 8. Gradshteyn and I. M. Ryshik, 4th ed. prepared by Yu. V. Geronimos
and M. Yu. Tseytlin, tr. edited by Alan Jeffrey, Table of Integrals, Series,
and Products, Academic Press, New York 1965.

G. H. Hardy, Divergent Series, Oxford Univ. Press, London 1949.

R. A. Hunt, On the convergence of Fourier series, D. T. Haimo, ed., Orthogonal
Expansions and their Continuous Amnalogues,
Carbondale, 1968, pp. 235-255.

B. Muckenhoupt, On ceriain singular integrals, Pacific J. Math,. 10 (1961),
Ppp- 239-201.

N. M. Riviere, Singular infegrals and multzpl‘zer operators, Arkiv for Mati-
matik 9 (1971), pp. 243-278.

E. M. 8tein and &. Weiss, Introduction to Fourier Analysis on Euclidian Spaces,
Princeton Univ. Press, Princeton, New Jersey, 1971.

Mary Weiss and A. Zygmund, On multipliers perserving convergence of tri-
gonometric series almost everywhere, Studia Math. 30 (1968), pp. 111-120.

— — Amnexample in the theory of singular infegrals, ibid. 29 (1965), pp. 101-111.
A. Zygmund, Quelques théorémes sur les séries trigonométriques et celles de puis-
sances, ibid. 3 (1931), pp. 77-91.

— Trigonometric Series, Vol. 1, 2, 2nd ed., Cambridge Univ. Press, New York 1959.

Received December 21, 1976 (1237)

South Illinois Univ. Press, .

icm°®

STUDIA MATHEMATICA, T. LXV. (1979)

On the sum of two Brownian paths

by
R. KAUFMAN (Bloomington, Ind.)

) Abstract. We study a mapping property of the random function of two variables
given by X (s) + X (2). This process has a complicated dependence structure, and a com-
binatorial estimation of produet measures is used, in place of martingales. The property

is suggested by the Peano curve and the known modulus of continuity of Brownian
motion. .

Let X denote Brownian muhon on the half-line ¢ >0, let Z(s, t)
= X (s)+X(?) on the quadrant s > 0, 1 = 0, and let F be a compact seb
in this quadrant.

THEEOREM. If the Hausdorff dimension of F exceeds 1/2, then Jor almost
all paths X . Z(F) has an interior point.

Before entering upon the proof, we point out how the present theorem
differs from previous results, including [3]. From the viewpoint of prob-
ability theory, we observe that the process Z has a complicated dependence
structure, for example an identity Z(a, b)+Z(c, d) = Z(a, &) +-Z(b, ¢).
We did not succeed in finding a proof based on martingale inequalities,
but rely on a direct estimation of moments; the obstacle to a proof following
[3] is precisely the presence of relations like the one cited. In the calen-
lation of moments we require a new estimate for the product measures
of certain sets in #x ... X F, which may be of interest for Gaussian pro-
cesses in general. Finally, the process Z seems to be intractable by the
method of caleulating individual Fourier coefficients, e.g. [1]. If, for
example F = F; x F; wherein dim#, = dimF, = 0, then the sets
X(F,) and X (F,) are subject to no workable restriction; indeed we can
find 7, and F; so that the additive groups generated by X (#,) and X (#F3)
have Hausdorff dimension 0 for almost all paths X.

1. In this paragraph we make a few preliminary reductions and
write down the integrals whose estimation is the main burden of the
proof. The quadrant s > 0, t > 0 is covered by its subsets s =14, 0< s < ¢,
0 < ¢ < s. Then F meets one of these sets in a subset of the same dimension
as I itself, say F,, Fy;, F;. In case dimF, = dim¥ > 1/2, we observe
that Z(s, 1) =2X(s) on F,, and this possibility is easily included in the
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