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A note on singular integrals
by
A.P. CALDERON and A. ZYGMUND* (Chicago, IIL)

Abstract. The purpose of the paper is to further investigate relationships between
various conditions on singular kernels X which imply continuity of the corresponding
operator.

1. In the study of the existence and properties of singular integrals
[ E@—y)dy

RN

various hypotheses about the kernel K can be made, in addition to the
basic properties that X () is homogeneous of degree —mn (n the dimension
of the space) and that the mean value of K over the surface ‘
(2) lo} =1
of the unit sphere is 0.

One of the earlierst assumptions used was (see e.g., [2]) that the
kernel K satisfies the Dini condition on X, that is to say that the modulus
of continuity w(f) of K on X' be such that

(11) f29ﬁ<m.

This implicitly presuposses the continuity of K on X. If this holds
then the transformation

f@) =Tf@) =lim [ f)K@—y)dy =PB.V. [f)E@—y)dy

&0 |z—y|>e R® )

is of type (p, p) for 1 < p < oo, and of weak type (1, 1) (see [2]).

Tt may also be noted that condition (1.1) was merely used to show
that
(1.2) [ BE@—y)—K@de<C (y+0)

el =2yl )

from which the properties of T just stated were derived (see also [1], [5]).
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78 A. P. Calderén and A. Zygmund

In view of the importance of singular integrals any weakening or
significant modification of assumptions about the kernel K may be of
interest. For example, the theorem just stated about the operation f =Tf
holds if the modulus of continuity (¢ is replaced by the integral modulus
of continuity w,(f) (see below), that is, if

1
w4 (1)
(1.3) ——dt << o0
=

because, as was shown in [4], (1.3) implies (1.2). In that paper, it was
also shown that (1.3) implies

(1.4) JIE@)|log* |E ()] do,

which had been previously known to guarantee that T is of type (p, p),
1<p < oo (see [3]).

2. In this paper we want to establish some additional relations.

between the conditions (1.2), (1.3) and (1.4). As we said, (1.3) implies
both (1.2) and (1.4). Here we shall show that, conversely, (1.2) implies (1.3)
and (1.4). We recall the definition of w,() (see [4]). Let ¢ be a proper
rotation of R" about the origin and let
lel = sup |z — ou|.
lz]=1

Theni
o, (t) = sup [|K(ez) — K ()| do,
lel<t =

‘where do, denotes the surface area element of X = {jz| =1}. We shall
also consider two more moduli of continuity of the kernel K (#), namely

21)  wy(t) = ay(ty4,0,5) = [ |K@—t5)—E@lde, |gl=1,
e<lz|<<d
(2.2) @y(f) = wy(t, @, b) = sup K (@ —y) — K (2)| dz,

1<t ag|mi<d
where 0 < a<b and |y| = 1.
Let a> 1. Setting

23) Ly =

[ IE@—y)—E (@),

Izialy]

Jo(E) = supI,(y)
v

(notice that I.(y) is a homogeneous function of degree zero of y), our
main result can be formulated as follows:

icm

-
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&

THEOREM. Let K (@) be positively homogencous of degree —n and locally
integrable in |w] # 0. Then, if 1 <a<p,

0 L <Lw) <21 rm);
o wz(t) b Y,
(ii) - f at < I, (y )<b—a,f ; dt, where a and b
are as in (2 1) and z/ =y/lyl;
1 T wo(t) ,
—f thu(K)gcf ; dt, 6> 0, where 8 depends

0
only on the d@meqzswn 7, and ¢ depends on n, o and b;

(iv) 01(8) < cos(t), 0 <t<2, where ¢ depends on a,b and n; and
finally, if

A=J(EB)+ [ |E(@)|de < oo,

a<iz|<b

then

(v)
a<lxl<h
and n.

HE @) K ()]

(1+ )dm< ¢ where ¢ depends on a, b, a

3. We begin proving (i). Let §—1< 2 (a—-l) Then.

(3.1) [ IE@—y)—E()ds
lz]=aly|
< [ E@—y)-E@—yp2)lie+ [ |K(—y/2)—K@)do.
lz|=aly| |zl>ely]

. Setting Z = #—y /2 in the first integral on the right above and observ-

ing that [Z+4y/2|> aly] implies li[;(%—l)l% >ﬁ‘§2/—, we see that
this integral is majorized by
[ E@E-y2)—K@)dz.
131> 4 |

Now, because f < 2q, this also majorizes the second integral on the right
of (3.1). Consequently,

| K (2 —y)—
|lz{=aly|

E@)de<2 [ |K@—y/2)-K@)ld

1@ lzul

and

I (y) < 2,(y/2) = 21,(y)
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which implies (i) for #—1 << 2(a—1). In particular, we have
Ly <2(y), Bf—1=2(a—-1)
and from this we obtain
L) <L), 2e—1)<pf-1<2*(a—1), k=1,2,..

whence (i) follows in the general case.
To prove (ii) we set # =12,y = 7, |z] = || =1 in the integral
defining I,(y) in (2.83) and obté_lm

. b a
Lo) = [ IKe—y)-K@)li = [ @ [ 1E@E—s) K@) T,
A ag

lz|=ajyl]
where X denotes the unit sphere [#] = 1 and doj the surface area element.
We replace now ¢ by the variable £ = r%, where 7 is a constant for the

moment, and, using the homogeneity of K(s), we find that

zfa

a _
Ly = [ o [ K-t~ K@i,
0 Py

If we integrate this equation with respect to = over the interval (a, b),
0 < a < b, and write ¢ for i, we obtain

1 Paf

(3.2) L (y) —a P

\%

" ladr f K (+3 — 1) — K (%)} dox

j—f« f R (0—17) — K (0)]do.

a<|x|<b

According to (2.1), this is the first inequality in (ii). Clearly, the second
inequality in (ii) can be obtained by a similar argument which we leave
to the reader.

The proof of (iii) is more elaborate and depends on the following
lemma.
LmvwmaA 1. Let A, be the annulus {3 1< |2| < 24} ond B a subset of A,

such that |E| > |A,le, where |B| and. |4,| denote the measures of B and A,
respectively and ¢ > §. Then the set

EB+E = {5| # =ay+2,, 0, € B, 3, € B}

contains a sphere |x] < 82, & being a positive number which depends only on c.
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It evidently suffices to prove the lemma in the case when 1 = 1.
Let |yl <6 and consider the sets B and y—F = {y—=| © € B}, They
are both contained in the annulus 4 = {#] 1—-6< |} <2+ 6} Bub
4 @+or—Q1—0e"
]Al = on_q
< 2¢]4,], we will have

|4} < 2¢]4,| < 21B| = |B|+ly—EBl,

|4,], so that, if § is chosen so small that |4

that is, 14| < |B|+ |y —F| Because the sets B and y—F are contained
in A, this implies that their intersection is non-empty or, equivalently,
that y e £+ E. Gonsequently, every point of {ly|< 8} is comfained in
FE 4+ B, as we wished to show.

Returning to (iii), integrating (3.2) with respect to 7 over the unit
sphere X = {j#| =1} we obtain

afa

a dt
b—a t
0

(33) XL (E) = |E (#—17) — K ()| dw doy,

a<|zj<b

a
2 [ [ Ee-—y-Eeiwa,
Wl<ala a<fal<b

where [X| denotes the surface area of 2.
Let now 0 <'a; < @ < b < by, @y, = af2,b; = b+a/2, and set

0y) = [ IE(@—y)—K(@)ds,

a<|z|<d ‘
)= [ IK@—y)—K@)ds.
ay<l|a|<by
Then, if |y, < a/2, [y, < a/2, we have
B4) bty < [ E@—y—y)—K@—y)lde+
a<fx}<b

+ [ E(@—y)—E(@)|do < 0:(y:)+ 0:(4)-

a<|a|<b
If A, denotes the annulus 4 < |o| < 24, and

1 :
@ = f"x(y)dy, B, = {yl y € 4, 6,(y) < 4das},
14l 7

then 6, (y) > 4a, on A,—T,, which clearly implies that [4,— ;] < }|4,]
and, consequently, |B,| > 2|4,]. Now, if ¥ = ¥Y;1+¥s; ¥1,Y2 EEi:',;{'th}l
according to (3.4) we have e

0(y) < 0(yy) + 0.(¥2) < 8ay.

§ — Studia Mathematica LXV.1


GUEST


82 A. P. Calderén and A. Zygmund

But Lemma 1 asserts that E,-- B, contains the sphere |y| < 64 and we
find that the preceding inequality holds for y < 1. Recalling the defi-
nition of wy(t), this shows that w,(t) < 8a; for << 64, Thus we have

84

dt
[ wsl) - < Saylog2 ~ 81082 7 = f nway<e [ LIy
5 |4, A
Setting A = 27"a e = 27 %a[2a, b =1,2, ..., and adding the correspond-
ing inequalities we obtain

i
[ o< [ awwra,

0 |lvi<ayla

which combined with (3.3) yields

r dt
[ oty <orm),
0

where ¢ depends on @ and b. Thus the first half of (iii) is established. The
second half follows from the second inequality in (i) by observing that
w,(t) < w4().
‘We pass now to the proof of (iv). Our argument depends on Lemma 6
in [4], which is also valid in the following slightly different situation.
LEMMA 2. There emist positive constanis ¢,n depending only on the
dimension n such that 'if

= {] a<< [#/<b}, a>20,
= {#] a— 0, < |81 < b+ &},
={8] a—268 < |2| <b+2d},

and h(z) = (hl(w), veey by () ©5 @ C" vector-valued function satisfying
(8) h(2)] < 8 doy %(m) < for all o in 4,

then

(3.8) flf (o+h() —f(o) |dz <o s fif o+y)—f(x) do

for every fundtion f integrable in A".

~_To prove the lemma we argue as follows. Choosing 7 sufficiently
amall, the matrices with entries - 8;;-+0h,/0x;, which is the functional
matrix of the change of variables z = #--h(z), will have a determinant
of absolute value larger than 1/2. Consequently, for any function g(w)
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we shall have
(3.6) [lel+hr@)|as<2 [lg@)ldz,
A’ A

*
as is readily seen by changing variables in the integral on the left. Let
now @3>0 be a function in ¢ with support in |2{<1 and such that
Jpde =1, and let

Pala) = 577 (%) fol@) = % os

Tet us also denote the supremum on the right-hand side of (3.5) by w(4).
Then, since g;() has support in |y| < § and f psdw =1, we have

f |f(2) —Fal@) do = ﬂf [f(@)—fla—y)lps () dy | do
<[ Aj f(@) — fl@—y)ldody < w(0),
that is,
(3.7) [ 1f@)—fa@)de < w(8),
which combined with (;6) gives
(3.8) f|f(m+h(m)) —falw+h(o)|dz < 20(9).
On the other han;, because

a i}
2 oy)dy =0  and f 2 <o
f o, os(y) dy an \ ; @ S ’

we have

f afa

Bw

< eb'w(d).

y

J f [f(e—y) -—f(m)la—yj%(y)dy dw

From this and (3.6) which is also valid with th(®), 0 <?<1, replacing
h(2), we obtain

afa P

[ 150+ 1@) ~fo(a)|an = G, @0
A

‘% (o4 th(z)) | &

/
< S f|2
A

i 13
9
<25 > f _gé(m)‘dw<2ncw(6),

jo4
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that is,

[ | £+ (@) —fs(0) | @0 < 2new (o),
A

and this combined with (3.7) and (3.8) gives the desired resulf.

Returning to the proof of (iv), let 4 be the annulus {2l o+ 6 < o
<b— 8}, where 8, < a, 28, < b—a. Then, if ¢ denotes 2 rotation of R"
about the origin, we have

1 B
J e -Kion0e, - —— | e - Kol

10g ——2
og a+ 6,

This is readily seen if one takes into account the fact that K (#) is homo-
geneous of degree —n. Setting h(z) = o(#) —®, or z+h(®) = ¢(), and
using the preceding lemma we find that

(3.9) sup fIK (02) — K ()] do, <

lel<<é 3

sup
b—d wi<s

a6

(K(z+ y) —K(w)|dw,

a<zl<d

provided that ¢ is sufficiently small, say 6 < ¢, where ¢ depends only on
the dimension #. But according to the definitions of w, and w,, this in-
equality is the same as

o (f) < ews(t), t<e.

In order to extend this inequality to the interval s <t<2, we ob-
serve that the group of proper rotations is compact and connected and,
consequently, there exists a finite collection of rotations gy, @a).--)
such that for every ¢ there exists an element g;, of this eollection with the
property that .

lew— lew] S )

for all  with |»| = 1. Furthermore, there exist o;

i i ; : Qy1 Qigy -+ 0 = 1T, where I
is the identity rotation, such that )

]g]-iw—gjiﬂaz]ga, =1, 4=1,2;...,1—1
In other words, we have
litel <e&  loil, o< lal <.

icm
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Now

_}|K ow) — K (@)} do, < f]K o3) — K (0;,%)|do, +

+2 [ 1K (¢;,0)

d=1 X
I—-1
- [ iR - E@lio+ 3 [ 00)

+ fIK(ezﬂb‘)—K(w)Id%

— K (0s,,, )l do,+ [ K (gn)— X (@)|do

— K (w)|do,+

and sinee all rotations in this last explessmn have modulus less than
or equal to ¢, we find that

[ 1E (g2) — E (9)|do, < (14 1) w4 (e) < (B-+1) 01(e) do,
which implies that for {1 > s
o (1) < (k+1) o (e) <e(b+1)ws(t)- .

Now % evidently depends only on the dimension #. Thus (iv) is valid for
all .

Now there only remains to prove (v). Clearly it will suffice to prove
this inequality for the positive part K* of K (without loss of generality
we may assume that K is real). Evidently we have

Bt (@—y)— K (@) < [K(@—y)—K

and, on account of (3.3),

@),

(3.10) K (w—y)—

a<|zl<b

[ wre — K+ (@) o < |21, ().
lyl<ala

Consider now the maximal function of K*:

@
b—oa

K(@) = sup o fK+(m Yy

<ala

1 <t

Then

74 1 + + +

Eo)<swp o [ K+ (@—y)—E* (@)|dy+ 2K+ (@),

i<aja i<t
where Q is the measure of {|»| <1}, and
Fp—y) — K )
B < LK™ (@ y)n K™ ()] dy+ QK+ ().
lvl<ala ly!

Integrating with respect to # and using (3.10) we find that

Ewyas< |2|-—-—J +Q K+ (2)dw.

a<|z}<b a<zl<d
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But a theorem of E. M. Stein (see [6]) asserts that if the maximal function K
of K+ is integrable, then so i§ K*log(l+K*), and since the same argu-
ment applies to the negative K~ of K, we conclude that

J I (@)log[1+ K (2)[1dw < oo
a<|w|<b
for every function K (#) which is homogeneous of degree —mn, is locally
integrable in [z > 0 and for which J,(K)< oo for some a, a > 1. But
this implies the inequality in (v). To prove this implication consider the
convex function ®(f) = tlog(1+1),t = 0, and the space L, of functions ¥
in a < |o| < b with the property that @ ((F'})is integrable, and define a norm
in Ly by (see [7], Chapter IV, Section 10)

1]
I#1lo

( ) dr =1.
a<fz]<b
On the other hand, consider also the space B of functions XK (») which

are homogeneous of degree —n and for which J,(K)< oo, a> 1, with
the norm

1Kl = J.(K)+ K («)| dos.
. a<[x]<b
As is readily verified, B is a Banach space and its embedding in I*{a
< |#| < b} is continuous.
Now, what we have shown above is that B = L. Consequently,
we have

Bcly, c I'a< || < b}.

But the embedding of B in I'{a < |#| < b} is continuous and, as is readily
" seen, so is that of L,. Thus, according to the closed graph theorem, the
embedding of Bin L, is also continuous, that is, there exists a constant ¢
such that
(3.11) WK ls < o (T.(K)+ K| da).

a<|x|<h
Clearly, we may assume that ¢ > 1. Now, as is readily verified, the function
@(t) /12 is a decreasing function of ¢ and therefore, since ¢ > 1, we have
D(t Dt
(tle) _ D)

= T

(tlo)? 3

that is,

00> —B(), o>1.

icm
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Thus, setting
A= dJ (E)+

" a<lal<b

K ()] der,

(3.11) becomes || Ko < ¢l, and we obtain
K
ohiien ] Ao s [ oA
ey b O O axiri<t

- L
ocin<e Kl

that is
K

f (D(T) dw < ¢?,
a<|ol<b

which is the inequality (v). This concludes the proof of our theorém.
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