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Group valued, o-additive set functions

by
J. A. CRENSHAW and R. B. KIRK (Carbondale, IIL)

Abstract. Leb m be a set function on an algebra F(#) of sets generated by
a paving # into an Abelian topological group @ which is complete and Hausdortf.
If m is #" regular, then c-additivity on %, for a an infinite cardinal, is sufficient for m
to have an extension to the algebra & (#7,) generated by the paving %, congisting
of sets which are the interseciion of g sets from # for #< a.

Let @ be a complete, Abelian Hausdorff group, and let m denote
a (-valued, finitely-additive, s-bounded set funetion defined on an al-
gebra & of sets. The problems of extension and decomposition of such set
funetions havé received some attention in the last several years. In [4]
Traynor has given a Carathéodory type extension for m when it is count-
ably-additive and has also given a decomposition of 7 info a countably-
additive and a purely finitely-additive part. In [1] Drewnowski has done
the same for set funetions satisfying more general additivity. Indepen-
dently in [2], the present authors have given an extension and decompo-
sition theory for real-valued, a-additive set functions satisfying a certain
regularity condition.

In this paper we wish to emphasize the role of regularity. Given s-
bounded set functions, we assume regularity with respect to an algebra
generating paving # . Then we are able to use a Daniell-Bourbaki process
‘to extend the set function when we assume additivity only on the paving #".
Moreover, we show that the extended set function is also regular with
respect to the larger paving #7,.

In the first section, we establish some notational conventions and
prove several key lemmas. Section 2 culminates with Theorem 2.5 which
iy the main result on extension. For completeness in Section 3 we include
a Hewitt—Yosida type decomposition theorem.

1. Notations and basic facts. Throughout the paper @ will denote
a complete, Abelian, Hausdorff topological group. The symbol % will
denote a neighborhood base at 0 in ¢ eonsisting of closed symmetric
sets. The letter X will denote a fixed set; and % will denote a family of
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subsets of X, containing @, and closed with respect to finite unions and
intersections. We will assume also that X e % (although this eondition
can be relaxed somewhat for much of what follows). The algebra of subsets
of X generated by # will be denoted by & (#'). The complement of a sub-
set A of X will be denoted by 4°.

‘A finitely-additive seb function m from & (%) into G is called strongly-
bounded (s-bounded) if for every increaging sequence .{An} c F (ﬂ{lf),
limm (4,) exists. (Note that m is s-bounded if and only if lnnm(An) faxxsts
for every decreasing sequence {4,} = % (#).) The set functhn mis W~
regular if for all U e % and all A e F (#), there is a We# with W< 4
such that m(B) e U whenever Be F(#) and B «c A—W. )

Throughout the paper, a will stand for a fixed infinite cardinal number.
A finitely-additive set function from & (#) into G is a-additive if for every
downward directed set {W;: iel} « # with card(l) <o and with
N {W;: i e I} =@, itfollows that Hmm (W,) exists and is 0._ (Recall t]:}aﬁ
{W,: i eI} is downward directed if for all ¢, eI, there is keI with
Wk [= WJ\W;.) ' . .

Since much of the discussion below involves limits over directed sets
of various types, we will develop some notation to streamline these argu-
ments. The Greek letter 4 will be used to denote the collection of all
directed families of subsets of X of cardinal at most a. We will use ¢, o, 7, o,
ete. to denote elements of 4, and we will write o} (o|) if ge 4 is d'ire.cted
upward (downward). If o = {B;: 1 €I} ¢ 4 with g} (o), then for ¢,j eI,
we will write i <jif B; « B; (B; « R)). Forp = {R;}e4 an‘d G = {qu} € A
with ¢} (¢}) and o} (o}), we will write o < o if for every j, there is an ¢
with §; cB; (B; = 8;). Let ovo={ENS} and porc = {R;VS8;}.
If ot (o)) and o} (o)), then gvo, groed with gvot (oVv a}), oot
(enc)) and with gro< g, 0K ovo (gvo<g o<gAo) For 4 X
and ¢ = {R;} € 4, let pnd = {R;nA}. Then gnd e 4 and 90{11‘; (gnAJ.,)
if o} (o})- Finally, it {g;: 7 €I} is & net in @, then when the limit of this
net exists, it will be denoted by h:;n gs-

The following useful fact is due to Sion in [3].

Luevwva 1.1, Let m be o finitely-additive set function from F (W)
into G and let ¢ = {R} e 4 with o = F(#) and o} (or o). If {m(R,)}
is Cauchy in G for every mon-decreasing (nonm-increasing) sequence {E;}
in {B;}, then {m(R;)} is Cauchy in G. )

Proof. Assume {m(R;)} is not Cauchy. Then there is a U e % such
that for every i, there are j>14 and k>4 with m(R)—m(R;) ¢ U. By
induction it is possible to choose & non-decreasing sequence {B;} with
m(B; )—m (R, )¢ U for all n. Bub then {m(E, )} is not Cauchy. m

The following resulb is another key to the extension theory. (Compare
Lemma 1.2 in [1] and Lemma 2.3 in [4].)
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Levma 1.2. Let m be a Sinitely-additive, s-bounded set function from
F (W) into G, and let o = {B;} e 4 with o = F(¥) and ot (or o}). Then
liemm(RinB) exists uniformly over B € F(W). (That is, for every U e u,
there is an © such that m(BNR;)—m(BNR,) e U for every Be F(#)
whenever 1 < j, k.)

Proof. Since

m(BOE;) —m(BNR,) = m(BN(B; — By)) —m(BN(R;, — &y))
= m ([BO(B; R, R IN(R; — By)) —m{[ BN (B; R, ARSI N(R, —Ry),

it is sufficient to prove the following: For every U e %, there is an 4 such
that m(Bn(Rj —R‘)) €U for all Be & (%) whenever ¢<j. If this is
false, then there is a- U & % such that for every i, there is j >4 and a B;
e F(#) with m(B;~(R;—E,)) ¢ U. By induetion we can find sequences
{B; }t and {B,} « F(¥) with m (Bnr\(R,-nH—Rin)) ¢ U. Define

B

G, = 4 [Bkn(Rik+1 —RB;)1.

13

Then {0,}} and m(C,.;)—m(C,) ¢ U for all n contrary to the assumpthion
that m is s-bounded. m )

Let A = X and let 4" denote the family of all w e 4 with o}, o

= {W': Wew}and 4 < |Jw. (Of course, » & 4 also means card (w) < a.)
Sinee # is closed under finite unions, it is easy to check that A* is a directed
get with respect to the relation < on 4 (defined above).

If m is a finitely-additive, s-bounded set function from & (%) into G,
then by Lemma 1.1, h'lepm(Ri) exists for each ¢ = {E;} € 4. We will agree
to denote this limit by x(g). Hence, for each A c X, {s(w): o € 4™}
is & met in Q.

Levuma 1.3. Let m be a finitely-additive, s-bounded set function from
F(#) into Q. If A < X, then limu(w) = m*(A) ewists.
pr

Proof. Assume that this limit does not exist for some 4 ¢ F(¥).
Then there is & U e % such that for all w e A%, there are ¢ e A* with
o < oand p(w)— p(o) ¢ 3U. By induetion we can find a sequence {w,} < 4*
With @, < 0,y and p(w,y) —p(o,) €30, Let o, = {W}. Choose a se-
quence {U,} « % with U,+U,c U, , = U, ="U for all n =1,2,...
(This is possible in any topological group by the continuity of addition.)
By Lemma 1.2, for each n, we may choose an 4, such that m(BA (WS~

——Wfﬁn)) € U, whenever ¢ >, and B e #(¥%). Since U is closed, we have
that

&) () —m(We,) = Hmm (Wi, — We, ) e U,

®n


GUEST


92 J. A. Crenshaw and R. B. Kirk
n
Define B, = () Wi, so that,
: k=1 -
n—1 )
(2) Wei— By = U [ () W) =T
k=1 j=k+l

Since wy < wyyy, We may. choose an Wg; e o, Wwith Wi; <= Wi and
Wity © We,. It is now easy to check that there is an Fy e F(¥)
sueh that

o
(lele?i,-) —~ Wi, = Fon (Wi —Wiy,)-

Next using (2) and the definition of i, we obtain
n—1

3) m(Wig,)—m(By) € D) T
k=1

Since {B,}{, the s-boundedness of m guarantees an 1, such that m (B, —B,)
e U for n, < m < n. Combining this fact with (1) and (3), we find:

F‘(wno+1) - l“(wno) = [p (a’rio—H) —m (W:0+1,in0+1)] +
+ [m(W:"O-*—l'inu"Ll) “"m(Bno+1)] +[m (Bn0+1) - 'm(BnD)] +
+ [’m’(BnD) _W”(ng.nwﬂ )] T [l’)’b( ’"'()’Ln ) — W (mno)]
ﬁo 77/0—1

€ Usps+ 0 Up+ U+ D Up+ U, =30,
k=1 k=1

Hence p(wy, +1)—;4(a)”0) €3U confrary to assumption. m

2. The ¢-outer measure.
additive, s-bounded, # -regular set functions from #(#") into &. The
function m*, defined on the collection of all subsets of X into & by m*(4)
=limu(w) for each 4 < X, is the a-outer measure associated with m.

e

A set 4 < X is m*-measurable if for each set B < X, m*(B) = m*(ANB)+
4+ m*({4°nB). The collection of all m*-measurable sets is denoted by F(m*).
Finally, let #, denote the family of all subsets of X of the form n{W,:
i eI} where o = {W;: ¢ € I} € 4 satisfies v = % and wl. It is clear that
X e, and that ¥, is closed under finite unions and intersections.
Furthermore, since # < ¥, it follows that F(#") <« F(#,). We then
have the following
- TauorEM 2.1. Let m e M(W) with a-outer measure m*. Then F(m*)
18 an algebra of subsets of X with F(#,) < F(m*).
Proof. It is obvious that X e & (m*) and that 4 e &F(m*) if and
only if A° e #(m*). Henee to show that F(m*) iz an algebra, it is suf-

Let M (%) denote the set of all finitely-
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ficient to show that 4 NB & # (m*) whenever A, Be F(m*). Butif B « X
and A, B e % (m*) we have:
m*(R) = m*(RNA®)+m*(Rn4)
= m*(RnA°%) +m* (RNnANB°)+-m*(R NnANnB)
(Rn (ANBYNAY +m* (R0(ANBYFNnd) +m*(ENANB)
n* (RN(ANBY) +m* (BN4ANB).

Hence ANB e F(m*) as claimed.

We will now show that # < F(m*). (Hence F(#) c F (m*).)
Fix A =« X, Ue % and W e# . By the W -regularity of m, there is T' e #
with T <= W° and m(0) e U whenever ¢ = T°nW*. Let

I'={ov(enW)A(znI)]: g€ A4* ce (ANnW" and v (4 NW)*1.
Then I' is & cofinal, directed subset of A*. (Henee, m*(4) = lirm u(y))
Similarly,

~ A ={ov(©enW): ged* and oe (ANW)*}
and
D ={ov(znT®: ge (4% and 7 e(AnW)}
are cofinal, directed subsets of (4NTW%)" and (ANW)*, respectively. If
={R3}, o = {87} and 7 = {T%}, then y = {an[(ﬂfhW”)U(Tﬁ'ﬁT‘}‘]},

A = {BinSEnW®} and ¢ = {B{NTENT"} are in I', A and ®, respectively.
We may thus choose ,j and k such that:

1) m* (A)—m (RN (RNTYU(TENTH]) e U,
(2) m*(ANW) —m(BRinS;nW*) e U,
(3) m*(ANT)—m(BRiNT;NT% e U.
Also we have that,

m (BEN[(S§n WV (TENT") 1

= m(BENS;A W) +m (RiNTENT?) —m (BN NIENTT).
Hence by (1), (2),

we obtain:
(4) m*(4) —m* (AW —m*(AnW)e4T.

Since U e % was arbitrary, it follows from (4) that m*(A) = m*(AnW°)+
+m*(AnW). Thus # < F(m*) as claimed.

(3) and the fact that R?mSj-nW%TgnT”cW“nTc,
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In order to show that ¥, < .”/’(m*), fix Wew, and
o ={W,} e 4 with v = #, 0} and W = ({W,}. By Lemma ;.726;1: 1111;‘: :
el.mose 7o such that m(BN(W,—W,)) eU for all Be #(¥) it r>ry
Since m is # -regular, there is T e % with T <= W? such that m(B)/ 107
whenever B e #(#') and B Wﬁor\Tc. g = {Wﬁ},olet I'={oAp) nET”-
oe(4d nW”nW,o)*}. Then I'is a cofinal, directed subset of (4 ngV%W ..
Hence, if ¢ = {R{}, we miay choose ¢ and # such that: "

(5) m*(AnW"nW,o)—m(anWﬁnT“) eU,
6) . W;, < Wi
Since

m(BINWLNT?) = m(BinW; NI°) 4-m (BENT° (W —W?))
it follows that: .

(n m(RinWinT®) e 2T.
From (5} and (7), weé obtain:
(®) m*(4 annW,o) e3U.

Since W,, & & (m*)(as shownvabove), and since W < W,,, wehave:
mH(ANW®) - m*(ANW)—m*(4)
= W ANWAW, ) +m* (AAWE) +m¥(A W) —m*(4)
= W ANWOW,) +m* (AOT) —m* (40, ).
Hence from (8), we obtain, ‘ )

s

(9) m (A‘ 37 )—{-—m (-A-‘ W )—m'(A) € m* W) —m* NW

A4 ={znT)v(frc): te(AnW,)" and o (Anwyy
and ”

D ={rnT)vo:re (AW, )" and « e (ANW)*}.

Then A and & are cofinal, directed

1 ected subsets of (
respectively. Hence if ¢ =’T° =
such that: {3} and o ~

. ANW, )" and (ANW)*,
8} we may choose %, j and r

(10) m(ANW,) ——m(T;nT”n(Wﬁu)S’j)) eU,
1) mHANW)—m(TenTn8Y) e T,
(12) e

W, < W,o.
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Sinee
m (Tf,nl"’n(WﬁuS?)) —m (TENT°NSG)
= m(TENT°AWE) —m(TENT NWNSH)
= m(Ten§;NI° W)
= m (Tpn8;nI° N (W,, —W,)) +m (080T NWz),

we see that:

(13) m(Tg,nTcn(Wﬁus;-)) —m(TonT° NS e2U.
Combining (10), (11) and (13) it follows that:

(14)  mMANW,)—m*ANW) e4T.
Finally from (9) and (14) we have:

(15) m*(ANW)+m*(ANW) —m*(4) e TU.

Since U e % was arbitrary, we have m*(4) = m*(AOW)+m*(ANW°).
Hence W e F(m*), and the proof is complete. W

It m e M (%), m and m, will denote the restrictions of the g-outer
measure m*to F (¥ ,) and F (¥, respectively. We then have the following

Tmna 2.2. Let Wew, and take o ={W,}ed, o =¥ with o}
and W = (N {W,}. Then

m(ANW®) =Lmm(ANnW;) for all AeF (W)

Proof. Fix U e % arbitrarily. Since f = {W;}4, by Lemma 1.2 there
is an 7, such that m(B)e U whenever Be ZF(#) with B < we—-W;
and § > r > 1,. Fix 7, >7,. Since m is #” _regular, there is T < Wy, with
T e such that m(B) e U whenever Be F(¥#) and B < W,’flnl’“. Let
I'={gvBv(cuI): g€ (ANW)* and oe (AnWi)*} and 4 = {ev
v(enW;): g€ (ANW* and o € (ANW;)*}. Then I' and A are cofinal,
divected subsets of (ANW9)* and (4 nWﬁl)*. Hence if ¢ = {Rf} and

= {83}, we may choose %, J and r such that:

1) W(ANW) —m (RAWEN(850T%) e U,
2) W(ANWE)—m(BiNS W) e U,
(8) W, < Wi

Since m(CuUD) =m(0)—i;m(D)—m(0nD) for C,De F(#), we have,
m (RENWEN(S;UT™) —m(BNS;NW7) ' e
= m(RﬁnSﬁn(Wﬁ—Wﬁl)) +m(RENWENT®) —m(RiNS;NWonT*)
= m(BENSI (W5 —W3)) +m(RENG;NWinT?).
Since 73 7, =17, by (3), we obtain from this that:

@ m{ROWIN(S;UT)) —m (BN W) € m(BINS;AWENT) + T.
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Since
m(RinS;nWinTe)
= m(B{NS;NWnT°nW3,) +m (BinS;nI° N (W
and since 7, <7, we obtain:
(8) _ m(RiNS;NWenT*) e2U.
Combining (1), (2), (4) and (5), we have:
(7) m(ANWe)—m(ANW;) e 5T.

—W)

Since U e % and r; > r, were arbitrary, the proof is complete. m

Levma 2.3. Let A,Be F (W) with A c B and let U e %. Assume
that m(C) e U whenever C € &F (%) and O < B—A. Then m(D) € U when-
ever De F(W,) and D =« B—A.

Proof. Fix Ve # and fix D e F(#,). Since m is # -regular, we may
take W, T e # with W < 4 and T < B° such that m(0) e V whenever
Oe Z(#) and either ¢ <« ANW® or € <= B°nT° Let I' = {(onT%)v

v (eUW): g e (BND)" and ¢ e (AND)*}and 4 = {(¢nT°) v 6: p & (BND)*
and ¢ & (4ND)*}. Then I'and A are cofinal, directed subsets of (BND)*
and (4 ND)* respectively. Henee, if o = {R“} and ¢ = {85}, we may
choose 4 and j such that

1) m(BnD)—m(R?ﬂT"ﬁ(S?UW”)) eV,
@) M(AND) ~m(BiNT° O e V.
‘We have )

(R°nT”n(S°UW°) —m(RinT°n S5
m(BiNT°NWe) — m(R”nT”nSpr‘)
m(B;N8;NT° W) .
= m(BiNG;nT° NANW®) +m(RiNS;NA W NT°NB®) -+
+m (B8N W NT (B — 4)).

Using the fact that m(0) € Uif ¢ =« B— A andthat m(C) e Vit C = ANW®
or ¢ = B°nNT*, we obtain from this last caleulation:

3) m(RﬁnT”n(;S’}’ch)) —m({EinT°NSE) e 2V +T.
Combining (1), (2) and (3), we obtain:
4 Wm(BND)—m(AND) e 4V +T.

Since ¥V e % ‘was arbitrary and since U ig closed, it follows thatt m(BnD)—
—m(AnD)eU.
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Levwua 2.4, Let {W,: r e I} < #, be a downward directed set of cardinal
at most a and let W = (\{W,}. If U e %, then there is an 7 such that if

¥ =1y, then

MANW,)—T(AnW)e U  for all A e F(W).

Proof. From Theorem 2.1, it is immediate that m is finitely-additive
on F(#,). Hence, it is enough to show Wm(ANW)—TANW)eT
for r > ry and A e F(#,). For each r € I choose a downward directed set
{Wut 2el,} « ¥ of cardinal at most o such that W, = ﬂ {Wﬁ iel}.
Then the family o consisting of all sets of the form nh uWE,’n.”
(where # IS & natural number and where r;el and i; e I forj = 1 L n)
belongs to (W°)*, Nowtix U e % aa'bltrarﬂy Ifo= {R"}, then by Lemma 1.2

there is a &, such that whenever k, < &, < k,, the following holds:

(1) m(Gn(R,”cz—R,"q))eU, for all C e F(¥).

Applying Lemma 2.3, we have that (1) gives for all &y < by < kst

2) m(BNR,)—m(BNE;)e U, for all Be F(#,).

Choose 7, such that R, <= W;, and take both r, >, and 4 e F(#°,)
arbitrarily. Since ¢ = {R;}t W°, by Lemma 2.2 there is a k; > ¥, such that:
3) m(ANWe)—m(Anky ) e U.

Also since {R;nWy, 4 W;, and {Rf, "W 1R , by Lemma 2.2 there are k,
and 4; with %k, > k1 sueh that:

(4) [m(A NW;)—m(AnE, nW;,)e T,
(5) m(4ORg)—mANR, NW; ;) e U.
Since &, > %, > K, we have from (2) that v

(6) m(ANE, NW; ;) —m(ANR;, N W) eU,
and

(7) m(ANER; ) ~W(ANE]) e U.

Combining (3), (4), (5), (6) and (7) we obtain:
(8) m(ANW) —m(ANW; ) ebU.

Since U e %, ry =1, and A € F(#,) were all arbitrarily chosen, the proof

is complete.
TarOoREM 2.5. Let m € M(#W'). Then W e M (#,) and T is a-additive.
Proof. It is immediate from Theorem 2.1 that 7 is finitely-additive
and from Lemma 2.4 that m is a-additive on #(#7,). We must show that m
is #  regular and s-bounded.
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Step 1. 7 48 Wregular. As is shown in [2], 1.4, each 4 e F(¥,)

U1 (Ws—
. 8=

W,, V,e¥, and (W,— TV )n(W,—V;) =@ for s s=i. In view of this

and the finite-additivity of 7, it suffices to check # -regularity on sets

of the form W° with W e #,. Hence fix We# ,and U ec%.Take Ve#

with V+V < U. Let {W,} = # be a downward directed family of cardi-

nal at most a with W = [ {W,}. By Lemma 2.4 there is an 7, such that
for all v > 7, and all B e #(¥#),

(1) m(BNW)—m(BNW;)eV.

Since m is # -regular, there is 2 T e # with ' < W° and m(B) € V when-
ever BeF (W) and B c Wc NT° Let 4 e F( ,,) be arbitrary. Since

= {gnfl’”nW‘o~ pe(d nT”an Y} is a- cofinal, directed subset of
(A NI°nWw; ) (if ¢ = {B{}) the fa,ct that V is closed gives

@) FANT AWE,) = limlimm (RINT°AWE) € V.
r vy

has a representation 4 = V;) where n is a natural number,

Combining (1) and (2) (with B = ANnT° in (1)), we have that
(8) MANWNT?) = W(ANT (W W) +W(ANT° nW;) e2V = T.

Since 4 e & (W) was arbitrary, it follows from (3) that m(B) € U whenever
Be&F(W,) and B ¢ WeAT’. Thus 7 is # ,Tegular as claimed.

Step 2. m is s-bounded. Let {4,} e a sequence in F(#7,) with {4,}.
Let U e % be arbitrary. For n =1, 2,... choose U, e % with U,+ U, =
e U,_; « U, = U. Since m is ¥ ,-regular, there is T, e ¥, with T,, = 4,
and with 7(B)e U, whenever Be #(#, and B < 4,—T,. Define

n

W, = (T Then

Jeim1

N n—1 n
(A, ~T,) = (4, —T)u U [[4.0 N Tj)—1T4])
k=1 J=k+1
= (A, —T,)+ > W((4.n él-Tj)_Tk),
k=1 J=k+

so that

’ n
(4) M4, ~W,)e DU, =T.
k=1
Since « is an infinite cardinal, ¥, is closed under countable intersections
go that W = (MW, € #,. Since {W,}{, it follows from Lemma 2.4 that

{m(W,)} is a Cauchy sequence in . Hence there is an n, such that

(5) m(W)—m(W,)eU I n<n<m.

icm°®
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From (4) and (5), we obtain for n, < n < m,

() ~ M (Ay) = [(A,) — (W) ]+ [W(W,) — (W) ]+

+ [T (W) — T (A )],
so that
6) m(d,)—m(4,)e3U0 i ny<n,m

Since U e # was arbitrary, it follows that {m(4,)} is a Cauchy sequence
in @. The proof is complete. m

) COROLLARY 2.6. Let m e M(#"). Then m, e M () and m, is a-additive.
Furthermore, m = my, if and only if m is a-additive.

Proof. Since m, is the restriction of @ to F(#), it is immediate
from Theorem 2.5 that m, is finitely-additive, s-bounded and c-additive.
Note that in Step 1 of the proof of Theorem 2.5, we found for an arbitrary
Ue#and WeW,a Tew with T <« W° and m(B)e U whenever B

F(¥,) and B « W°nT". This fact together with the representation of

V;) (where W, V;ew and (W;—V,)Nn

r\(W,-.—— V) =@ for i £ j) yields the # -regularity of 7.
It m = m,, then m is obviously a-additive. Hence assume that m is
a-additive. Then for W e %7, we have

My (W) = lim{limm (WinW*) = m(W°).
w tal

Since, in particular, m,(X) =m(X), we have m (W) = m(W) for all
W ew. Since m, and m are both # -regular, it follows that m = m,. ®
COROLLARY 2.7. Let m € M(#). If ve M(#,) is a-additive and z'f Mg
s the restriction of v to F (W), then v = 7.
Prooi. Let We ¥, and let {W,} = # be a downward dlreebed set
of cardinal at most o with W = N{W,}. Then »(W)=limwv(W,)
= limm,(W,) = m(W). The # ,regularity of » and 7 now gives v = 7. ®

3. A Hewitt—Yosida type decomposition. Let m e M (#"). Then m is
a-singular if for each U € # and for each a-additive my e M (#'), there
isan A € # (%) such that m (4 NB) € % and m,(4°NB) e Ufor all Be F(#).
(We remark that the proof of the converse of the following theorem
is modeled on that given by Traynor in [4].)

THEOREM 3.1. Let m e M(w). Then m is a-singular if and only if
m, =0,

Proof. Let m be a-singular. If U e %, there is an 4 € F(#) with
Mm(ANB) e % and m,(A°NB) e U for all Be F(#). Using Lemma 2.3
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it follows that my(4NB) e % for all B e
we have

F (). But then for B e #(¥#7),

my(B) = Mme(ANB) +m,(A°NB) e2T.

Since U e % was arbitrary, it follows that m,.(B) = 0 for all B e F(¥#).

Now assume that m, = 0 and assume that m is not e-singular. This
means that there is an a-additive my e M(#') and a U e % such that for
every A e F(#), it mo(BnA)e T for every Be F(#), then there is
a B e #(#) with m(BnA°%) ¢ U. Let {U,} be a sequence in % with U, -+
+Uﬂ<:U 2 U=Uforn=1,2,. LetAo—ﬁa.nda.ssumethat

Ag, Ay, ..., A, have been defined such that

(1) A;nA; = @ for i #j,

(2) m(4,)¢ U, fori=1,..,n,

(3) my(BNA;)e U, forall Be F(#)and alli=1,...,n
n

Define 0 = (U 4,)°. Then

me(BNC®) = Zm (BN4,) e 2 U,cU for all BeF(#)
. “
by (1) and (3). Henee there iy B, e & (#) with 15’O < 0 with m(By) $ U.
Since m.(B;) =0, there is o = {Wg} e(B,)* such that limm{E])e U
e
for all ¢ = {R} € (B,)* with ¢ > . Since m is ¥ -regular, there is T e #
with T = B¢ such that m(BnB;nT°) e U, for all Be &
is a-additive, my = (1m,), by Corollary 2.6. Let o = {W;nT"}. Then g € (By)*
and.p > w. By Lemma 2.4 and the above remarks, we may take 7o guch that

(7 m(W; NT°%) e U,
(8) m(BAW, nBy) € Uyy,  for all Be F(#).
Then we have that
(9) m(BohW,,o) ¢ Uy,
(Otherwise,
m(By) = m(Byn W) +m (B W)
= m(By\W,,) +m(T°OWs) —m(T° W3, NEY)

eU,+U+Uy,c U,

eontraa'y bo the fact that m(B,) ¢ U.) Thus, from (8) and (9), the sequence
Agy Ay, invy Ay satisfies (1), (2) and (3). Henee by induction there is an
infinite sequence {4, } o F(W) of pairwise disjoint sets with m(4,) ¢ U,
forn =1,2, +» This’ eontradmts the fact that m is.s-bounded. The proof is
complete. W . Lo . . :

W). Since my, '

icm
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THEOREM 3.2. Let m € M (). Then there are unique elements m,, m,

e M (%) such that my is a-additive, m, is a-singular and m = Moy + 110y,
Proof. Let m, = m, and m, = m—m,. Then m, is an c-additive
element of M(#") by Corollary 2.6. Since m, m, e M(#), it is immediate
that ms € M(%). From the definition of m*, it is immediate that (m,),
= (M —My)y = My— (M), = My—m, = 0. {That (m,), =m is immediate
from Lemma 2.4 and Corollary 2.6.) Since (mz)a = 0, m, I8 a-smgul&r by
Theorem 3.1. Finally, if m = m; -m; with m;, m, € M{#), m1 a-additive
and m, o-singular, then m; = m, = (m)+m3), (ml) +(my), = my; by
Lemmas 2.4, Corollary 2.6 and Theorem 3.1. Since m; = 1m,, We also have

e = My. W
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