

Group valued, a-additive set functions

bу

J. A. CRENSHAW and R. B. KIRK (Carbondale, Ill.)

Abstract. Let m be a set function on an algebra $\mathscr{F}(\mathscr{W})$ of sets generated by a paying \mathscr{W} into an Abelian topological group G which is complete and Hausdorff. If m is \mathscr{W} regular, then a-additivity on \mathscr{W} , for a an infinite cardinal, is sufficient for m to have an extension to the algebra $\mathscr{F}(\mathscr{W}_a)$ generated by the paying \mathscr{W}_a consisting of sets which are the intersection of β sets from \mathscr{W} for $\beta \leqslant a$.

Let G be a complete, Abelian Hausdorff group, and let m denote a G-valued, finitely-additive, s-bounded set function defined on an algebra $\mathscr F$ of sets. The problems of extension and decomposition of such set functions have received some attention in the last several years. In [4] Traynor has given a Carathéodory type extension for m when it is countably-additive and has also given a decomposition of m into a countably-additive and a purely finitely-additive part. In [1] Drewnowski has done the same for set functions satisfying more general additivity. Independently in [2], the present authors have given an extension and decomposition theory for real-valued, α -additive set functions satisfying a certain regularity condition.

In this paper we wish to emphasize the role of regularity. Given s-bounded set functions, we assume regularity with respect to an algebra generating paving \mathcal{W} . Then we are able to use a Daniell–Bourbaki process to extend the set function when we assume additivity only on the paving \mathcal{W} . Moreover, we show that the extended set function is also regular with respect to the larger paving \mathcal{W}_a .

In the first section, we establish some notational conventions and prove several key lemmas. Section 2 culminates with Theorem 2.5 which is the main result on extension. For completeness in Section 3 we include a Hewitt-Yosida type decomposition theorem.

1. Notations and basic facts. Throughout the paper G will denote a complete, Abelian, Hausdorff topological group. The symbol $\mathscr U$ will denote a neighborhood base at 0 in G consisting of closed symmetric sets. The letter X will denote a fixed set; and $\mathscr W$ will denote a family of

subsets of X, containing \emptyset , and closed with respect to finite unions and intersections. We will assume also that $X \in \mathcal{W}$ (although this condition can be relaxed somewhat for much of what follows). The algebra of subsets of X generated by \mathcal{W} will be denoted by $\mathcal{F}(\mathcal{W})$. The complement of a subset A of X will be denoted by A^c .

A finitely-additive set function m from $\mathscr{F}(\mathscr{W})$ into G is called strongly-bounded (s-bounded) if for every increasing sequence $\{A_n\} \subset \mathscr{F}(\mathscr{W})$, $\lim m(A_n)$ exists. (Note that m is s-bounded if and only if $\lim m(A_n)$ exists for every decreasing sequence $\{A_n\} \subset \mathscr{F}(\mathscr{W})$.) The set function m is \mathscr{W} -regular if for all $U \in \mathscr{U}$ and all $A \in \mathscr{F}(\mathscr{W})$, there is a $W \in \mathscr{W}$ with $W \subset A$ such that $m(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W})$ and $B \subset A - W$.

Throughout the paper, a will stand for a fixed infinite cardinal number. A finitely-additive set function from $\mathscr{F}(\mathscr{W})$ into G is a-additive if for every downward directed set $\{W_i\colon i\in I\}\subset \mathscr{W}$ with $\operatorname{card}(I)\leqslant a$ and with $\bigcap\{W_i\colon i\in I\}=\emptyset$, it follows that $\lim m(W_i)$ exists and is 0. (Recall that $\{W_i\colon i\in I\}$ is downward directed if for all $i,j\in I$, there is $k\in I$ with $W_k\subset W_i\cap W_i$.)

Since much of the discussion below involves limits over directed sets of various types, we will develop some notation to streamline these arguments. The Greek letter Δ will be used to denote the collection of all directed families of subsets of X of cardinal at most α . We will use ϱ , σ , τ , ω , etc. to denote elements of Δ , and we will write $\varrho \uparrow (\varrho \downarrow)$ if $\varrho \in \Delta$ is directed upward (downward). If $\varrho = \{R_i \colon i \in I\} \in \Delta$ with $\varrho \uparrow (\varrho \downarrow)$, then for $i, j \in I$, we will write $i \leqslant j$ if $R_i \subset R_j$ ($R_j \subset R_i$). For $\varrho = \{R_i\} \in \Delta$ and $\sigma = \{S_i\} \in \Delta$ with $\varrho \uparrow (\varrho \downarrow)$ and $\sigma \uparrow (\sigma \downarrow)$, we will write $\varrho \leqslant \sigma$ if for every j, there is an i with $S_j \subset R_i$ ($R_i \subset S_j$). Let $\varrho \lor \sigma = \{R_i \cap S_j\}$ and $\varrho \land \sigma = \{R_i \cup S_j\}$. If $\varrho \uparrow (\varrho \downarrow)$ and $\sigma \uparrow (\sigma \downarrow)$, then $\varrho \lor \sigma$, $\varrho \land \sigma \in \Delta$ with $\varrho \lor \sigma \uparrow (\varrho \lor \sigma \downarrow)$, $\varrho \land \sigma \uparrow (\varrho \land \sigma \downarrow)$ and with $\varrho \land \sigma \leqslant \varrho$, $\sigma \leqslant \varrho \lor \sigma$ ($\varrho \lor \sigma \leqslant \varrho$, $\sigma \leqslant \varrho \land \sigma$). For $A \subset X$ and $\varrho = \{R_i\} \in \Delta$, let $\varrho \cap A = \{R_i \cap A\}$. Then $\varrho \cap A \in \Delta$ and $\varrho \cap A \uparrow (\varrho \cap A \downarrow)$ if $\varrho \uparrow (\varrho \downarrow)$. Finally, if $\{g_i \colon i \in I\}$ is a net in G, then when the limit of this net exists, it will be denoted by $\lim g_i$.

The following useful fact is due to Sion in [3].

LEMMA 1.1. Let m be a finitely-additive set function from $\mathscr{F}(\mathscr{W})$ into G and let $\varrho = \{R_i\} \in \Delta$ with $\varrho \subset \mathscr{F}(\mathscr{W})$ and $\varrho \uparrow$ (or $\varrho \downarrow$). If $\{m(R_{i_n})\}$ is Cauchy in G for every non-decreasing (non-increasing) sequence $\{R_{i_n}\}$ in $\{R_i\}$, then $\{m(R_i)\}$ is Cauchy in G.

Proof. Assume $\{m(R_i)\}$ is not Cauchy. Then there is a $U\in \mathscr{U}$ such that for every i, there are $j\geqslant i$ and $k\geqslant i$ with $m(R_j)-m(R_k)\notin U$. By induction it is possible to choose a non-decreasing sequence $\{R_{i_n}\}$ with $m(R_{i_{n+1}})-m(R_{i_n})\notin U$ for all n. But then $\{m(R_{i_n})\}$ is not Cauchy. \blacksquare

The following result is another key to the extension theory. (Compare Lemma 1.2 in [1] and Lemma 2.3 in [4].)

Proof. Since

$$\begin{split} & m(B \cap R_j) - m(B \cap R_k) = m(B \cap (R_j - R_k)) - m(B \cap (R_k - R_j)) \\ & = m\left([B \cap (R_j \cap R_k \cap R_i^c)^c] \cap (R_j - R_i)\right) - m\left([B \cap (R_j \cap R_k \cap R_i^c)^c] \cap (R_k - R_i)\right), \end{split}$$

it is sufficient to prove the following: For every $U \in \mathcal{U}$, there is an i such that $m(B \cap (R_j - R_i)) \in U$ for all $B \in \mathcal{F}(\mathscr{W})$ whenever $i \leqslant j$. If this is false, then there is a $U \in \mathscr{U}$ such that for every i, there is $j \geqslant i$ and a $B_i \in \mathscr{F}(\mathscr{W})$ with $m(B_i \cap (R_j - R_i)) \notin U$. By induction we can find sequences $\{R_{i_n}\}^{\uparrow}$ and $\{B_n\} \subset \mathscr{F}(\mathscr{W})$ with $m(B_n \cap (R_{i_{n+1}} - R_{i_n})) \notin U$. Define

$$C_n = \bigcup_{k=1}^n \left[B_k \cap (R_{i_{k+1}} - R_{i_k}) \right].$$

Then $\{C_n\} \uparrow$ and $m(C_{n+1}) - m(C_n) \notin U$ for all n contrary to the assumption that m is s-bounded.

Let $A \subset X$ and let A^* denote the family of all $\omega \in \Delta$ with $\omega \uparrow$, $\omega \subset \{W^c \colon W \in \mathscr{W}\}$ and $A \subset \bigcup \omega$. (Of course, $\omega \in \Delta$ also means card $(\omega) \leqslant \alpha$.) Since \mathscr{W} is closed under finite unions, it is easy to check that A^* is a directed set with respect to the relation \leqslant on Δ (defined above).

If m is a finitely-additive, s-bounded set function from $\mathscr{F}(\mathscr{W})$ into G, then by Lemma 1.1, $\lim_{\varrho} m(R_i)$ exists for each $\varrho = \{R_i\} \in \Delta$. We will agree to denote this limit by $\mu(\varrho)$. Hence, for each $A \subset X$, $\{\mu(\omega) : \omega \in A^*\}$ is a net in G.

LEMMA 1.3. Let m be a finitely-additive, s-bounded set function from $\mathscr{F}(\mathscr{W})$ into G. If $A \subset X$, then $\lim \mu(\omega) = m^*(A)$ exists.

Proof. Assume that this limit does not exist for some $A \in \mathscr{F}(\mathscr{W})$. Then there is a $U \in \mathscr{U}$ such that for all $\omega \in A^*$, there are $\sigma \in A^*$ with $\omega \leqslant \sigma$ and $\mu(\omega) - \mu(\sigma) \notin 3U$. By induction we can find a sequence $\{\omega_n\} \subset A^*$ with $\omega_n \leqslant \omega_{n+1}$ and $\mu(\omega_{n+1}) - \mu(\omega_n) \notin 3U$. Let $\omega_n = \{W_{ni}^\sigma\}$. Choose a sequence $\{U_n\} \subset \mathscr{U}$ with $U_n + U_n \subset U_{n-1} \subset U_0 = U$ for all $n = 1, 2, \ldots$ (This is possible in any topological group by the continuity of addition.) By Lemma 1.2, for each n, we may choose an i_n such that $m(B \cap (W_{ni}^\sigma - W_{ni_n}^\sigma)) \in U_n$ whenever $i \geqslant i_n$ and $B \in \mathscr{F}(\mathscr{W})$. Since U is closed, we have that

(1)
$$\mu(\omega_n) - m(W_{ni_n}^c) = \lim_{n \to \infty} m(W_{ni}^c - W_{ni_n}^c) \in U_n.$$

Define $B_n = \bigcap_{k=1}^n W_{ki_k}^c$ so that,

(2)
$$W_{ni_n}^c - B_n = \bigcup_{k=1}^{n-1} \left[\left(\bigcap_{j=k+1}^n W_{ji_j}^c \right) - W_{ki_k}^c \right].$$

Since $\omega_k \leqslant \omega_{k+1}$, we may choose an $W^c_{ki} \in \omega_k$ with $W^c_{ki_k} \subset W^c_{ki}$ and $W^c_{k+1,i_{k+1}} \subset W^c_{ki}$. It is now easy to check that there is an $F_k \in \mathscr{F}(\mathscr{W})$ such that

$$(\bigcap_{j=k+1}^n W^c_{ji_j}) - W^c_{ki_k} = F_k \cap (W^c_{ki} - W^c_{ki_k}).$$

Next using (2) and the definition of i_k , we obtain

(3)
$$m(W_{ni_n}^c) - m(B_n) \in \sum_{k=1}^{n-1} U_k$$
.

Since $\{B_n\}\downarrow$, the s-boundedness of m guarantees an n_0 such that $m(B_n-B_m)\in U$ for $n_0\leqslant m\leqslant m$. Combining this fact with (1) and (3), we find:

$$\begin{split} \mu(\omega_{n_0+1}) - \mu(\omega_{n_0}) &= \left[\mu(\omega_{n_0+1}) - m(W^c_{n_0+1,i_{n_0+1}})\right] + \\ &+ \left[m(W^c_{n_0+1,i_{n_0+1}}) - m(B_{n_0+1})\right] + \left[m(B_{n_0+1}) - m(B_{n_0})\right] + \\ &+ \left[m(B_{n_0}) - m(W^c_{n_0i_{n_0}})\right] + \left[m(W^c_{n_0i_{n_0}}) - \mu(\omega_{n_0})\right] \\ &\in U^c_{n_0+1} + \sum_{k=1}^{n_0} U_k + U + \sum_{k=1}^{n_0-1} U_k + U_{n_0} \subset 3\,U. \end{split}$$

Hence $\mu(\omega_{n_0+1}) - \mu(\omega_{n_0}) \in 3U$ contrary to assumption.

2. The α -outer measure. Let $M(\mathscr{W})$ denote the set of all finitely-additive, s-bounded, \mathscr{W} -regular set functions from $\mathscr{F}(\mathscr{W})$ into G. The function m^* , defined on the collection of all subsets of X into G by $m^*(A) = \lim_{n \to \infty} \mu(\omega)$ for each $A \subset X$, is the α -outer measure associated with m.

A set $A \subset X$ is m^* -measurable if for each set $B \subset X$, $m^*(B) = m^*(A \cap B) + m^*(A^c \cap B)$. The collection of all m^* -measurable sets is denoted by $\mathscr{F}(m^*)$. Finally, let \mathscr{W}_a denote the family of all subsets of X of the form $\cap \{W_i : i \in I\}$ where $\omega = \{W_i : i \in I\} \in A$ satisfies $\omega \subset \mathscr{W}$ and $\omega \downarrow$. It is clear that $X \in \mathscr{W}_a$ and that \mathscr{W}_a is closed under finite unions and intersections. Furthermore, since $\mathscr{W} \subset \mathscr{W}_a$, it follows that $\mathscr{F}(\mathscr{W}) \subset \mathscr{F}(\mathscr{W}_a)$. We then have the following

THEOREM 2.1. Let $m \in M(\mathscr{W})$ with α -outer measure m^* . Then $\mathscr{F}(m^*)$ is an algebra of subsets of X with $\mathscr{F}(\mathscr{W}_a) \subset \mathscr{F}(m^*)$.

Proof. It is obvious that $X \in \mathscr{F}(m^*)$ and that $A \in \mathscr{F}(m^*)$ if and only if $A^c \in \mathscr{F}(m^*)$. Hence to show that $\mathscr{F}(m^*)$ is an algebra, it is suf-

$$\begin{split} m^*(R) &= m^*(R \cap A^c) + m^*(R \cap A) \\ &= m^*(R \cap A^c) + m^*(R \cap A \cap B^c) + m^*(R \cap A \cap B) \\ &= m^*(R \cap (A \cap B)^c \cap A^c) + m^*(R \cap (A \cap B)^c \cap A) + m^*(R \cap A \cap B) \\ &= m^*(R \cap (A \cap B)^c) + m^*(R \cap A \cap B). \end{split}$$

Hence $A \cap B \in \mathcal{F}(m^*)$ as claimed.

We will now show that $\mathscr{W} \subset \mathscr{F}(m^*)$. (Hence $\mathscr{F}(\mathscr{W}) \subset \mathscr{F}(m^*)$.) Fix $A \subset X$, $U \in \mathscr{U}$ and $W \in \mathscr{W}$. By the \mathscr{W} -regularity of m, there is $T \in \mathscr{W}$ with $T \subset \mathscr{W}^c$ and $m(C) \in U$ whenever $C \subset T^c \cap \mathscr{W}^c$. Let

$$\varGamma = \{ \varrho \vee [(\sigma \cap W^c) \wedge (\tau \cap T^c)] \colon \varrho \in A^*, \, \sigma \in (A \cap W^c)^* \text{ and } \tau \in (A \cap W)^* \}.$$

Then Γ is a cofinal, directed subset of A^* . (Hence, $m^*(A) = \lim_{\Gamma} \mu(\gamma)$.) Similarly,

$$A = \{ \rho \lor (\sigma \cap W^c) \colon \rho \in A^* \text{ and } \sigma \in (A \cap W^c)^* \}$$

and

$$\Phi = \{ \rho \lor (\tau \cap T^c) \colon \rho \in (A^*) \text{ and } \tau \in (A \cap W)^* \}$$

are cofinal, directed subsets of $(A \cap W^c)^*$ and $(A \cap W)^*$, respectively. If $\varrho = \{R_i^c\}, \ \sigma = \{S_j^c\} \ \text{and} \ \tau = \{T_k^c\}, \ \text{then} \ \gamma = \{R_i^c \cap [(S_j^c \cap W^c) \cup (T_k^c \cap T^c)]\},$ $\lambda = \{R_i^c \cap S_j^c \cap W^c\} \ \text{and} \ \varphi = \{R_i^c \cap T_k^c \cap T^c\} \ \text{are in} \ \Gamma, \ \Lambda \ \text{and} \ \Phi, \ \text{respectively}.$ We may thus choose i, j and k such that:

$$(1) m^*(A) - m(R_i^c \cap [(S_j^c \cap W^c) \cup (T_k^c \cap T^c)]) \in U,$$

$$(2) m^*(A \cap W^c) - m(R_i^c \cap S_j^c \cap W^c) \in U,$$

(3)
$$m^*(A \cap W) - m(R_i^c \cap T_k^c \cap T^c) \in U.$$

Also we have that,

$$m(R_i^c \cap \lceil (S_i^c \cap W^c) \cup (T_k^c \cap T^c) \rceil)$$

$$= m(R_i^c \cap S_j^c \cap W^c) + m(R_i^c \cap T_k^c \cap T^c) - m(R_i^c \cap S_j^c \cap W^c \cap T_k^c \cap T^c).$$

Hence by (1), (2), (3) and the fact that $R_i^c \cap S_j^c \cap W^c \cap T_k^c \cap T^c \subset W^c \cap T^c$, we obtain:

(4)
$$m^*(A) - m^*(A \cap W^c) - m^*(A \cap W) \in 4U$$
.

Since $U \in \mathcal{U}$ was arbitrary, it follows from (4) that $m^*(A) = m^*(A \cap W^c) + m^*(A \cap W)$. Thus $\mathscr{W} \subset \mathscr{F}(m^*)$ as claimed.

In order to show that $\mathscr{W}_a \subset \mathscr{F}(m^*)$, fix $W \in \mathscr{W}_a$ and $U \in \mathscr{U}$. Let $\omega = \{W_r\} \in \Delta$ with $\omega \subset \mathscr{W}$, $\omega \downarrow$ and $W = \bigcap \{W_r\}$. By Lemma 1.2 we may choose r_0 such that $m(B \cap (W_r - W_{r_0})) \in U$ for all $B \in \mathscr{F}(\mathscr{W})$ if $r \geqslant r_0$. Since m is \mathscr{W} -regular, there is $T \in \mathscr{W}$ with $T \subset W_{r_0}^c$ such that $m(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W})$ and $B \subset W_{r_0}^c \cap T^c$. If $\beta = \{W_r^c\}$, let $\Gamma = \{(\varrho \wedge \beta) \cap T^c : \varrho \in (A \cap W^c \cap W_{r_0})^*\}$. Then Γ is a cofinal, directed subset of $(A \cap W^c \cap W_{r_0})^*$. Hence, if $\rho = \{R_i^c\}$, we may choose i and r such that:

(5)
$$m^*(A \cap W^c \cap W_{r_0}) - m(R_i^c \cap W_r^c \cap T^c) \in U,$$

$$(6) W_{r_0}^c \subset W_r^c.$$

Since

$$m(R_i^c \cap W_r^c \cap T^c) = m(R_i^c \cap W_{r_0}^c \cap T^c) + m\left(R_i^c \cap T^c \cap (W_r^c - W_{r_0}^c)\right),$$

it follows that:

$$m(R_i^c \cap W_r^c \cap T^c) \in 2U.$$

From (5) and (7), we obtain:

(8)
$$m^*(A \cap W^c \cap W_{r_0}) \in 3U.$$

Since $W_{r_0} \in \mathscr{F}(m^*)$ (as shown above), and since $W \subset W_{r_0}$, we have:

$$\begin{split} m^*(A \cap W^c) + m^*(A \cap W) - m^*(A) \\ &= m^*(A \cap W^c \cap W_{r_0}) + m^*(A \cap W^c_{r_0}) + m^*(A \cap W) - m^*(A) \\ &= m^*(A \cap W^c \cap W_{r_0}) + m^*(A \cap W) - m^*(A \cap W_{r_0}). \end{split}$$

Hence from (8), we obtain,

(9) $m^*(A\cap W^c)+m^*(A\cap W)-m^*(A)\in m^*(A\cap W)-m^*(A\cap W_{r_0})+3U.$ Next let

$$\Lambda = \{(\tau \cap T^c) \lor (\beta \land \sigma) \colon \tau \in (A \cap W_{r_0})^* \text{ and } \sigma \in (A \cap W)^*\}$$

and

$$\Phi = \{ (\tau \cap T^c) \vee \sigma \colon \tau \in (A \cap W_{\tau_0})^* \text{ and } \sigma \in (A \cap W)^* \}.$$

Then Λ and Φ are cofinal, directed subsets of $(A \cap W_{r_0})^*$ and $(A \cap W)^*$, respectively. Hence if $\tau = \{T_k^c\}$ and $\sigma = \{S_j^c\}$, we may choose k, j and r such that:

$$m^*(A\cap \overline{W}_{r_0})-m\left(T_k^c\cap T^c\cap (\overline{W}_r^c\cup S_j^c)\right)\in U,$$

$$m^*(A \cap \overline{W}) - m(T_k^c \cap T^c \cap S_j^c) \in \overline{U},$$

$$W_r \subset W_{r_0}.$$

Since

$$\begin{split} m \left(T_k^c \cap T^c \cap (W_r^c \cup S_j^c) \right) - m \left(T_k^c \cap T^c \cap S_j^c \right) \\ &= m \left(T_k^c \cap T^c \cap W_r^c \right) - m \left(T_k^c \cap T^c \cap W_r^c \cap S_j^c \right) \\ &= m \left(T_k^c \cap S_j \cap T^c \cap W_r^c \right) \\ &= m \left(T_k^c \cap S_j \cap T^c \cap (W_{r_0} - W_r) \right) + m \left(T_k^c \cap S_j \cap T^c \cap W_{r_0}^c \right), \end{split}$$

we see that:

$$(13) m(T_k^c \cap T^c \cap (W_r^c \cup S_j^c)) - m(T_k^c \cap T^c \cap S_j^c) \in 2U.$$

Combining (10), (11) and (13) it follows that:

$$m^*(A \cap W_{r_0}) - m^*(A \cap W) \in 4U.$$

Finally from (9) and (14) we have:

(15)
$$m^*(A \cap W) + m^*(A \cap W^c) - m^*(A) \in 7U$$
.

Since $U \in \mathcal{U}$ was arbitrary, we have $m^*(A) = m^*(A \cap W) + m^*(A \cap W^c)$. Hence $W \in \mathcal{F}(m^*)$, and the proof is complete.

If $m \in M(\mathscr{W})$, \overline{m} and m_a will denote the restrictions of the a-outer measure m^* to $\mathscr{F}(\mathscr{W}_a)$ and $\mathscr{F}(\mathscr{W})$, respectively. We then have the following

LEMMA 2.2. Let $W \in \mathcal{W}_a$ and take $\omega = \{W_r\} \in \Delta$, $\omega \subset \mathcal{W}$ with $\omega \downarrow$ and $W = \bigcap \{W_r\}$. Then

$$\overline{m}(A \cap W^c) = \lim \overline{m}(A \cap W^c)$$
 for all $A \in \mathcal{F}(\mathcal{W}_a)$.

Proof. Fix $U \in \mathcal{U}$ arbitrarily. Since $\beta = \{W_r^o\}^{\uparrow}$, by Lemma 1.2 there is an r_0 such that $m(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W})$ with $B \subset W_s^o - W_r^o$ and $s \geqslant r \geqslant r_0$. Fix $r_1 \geqslant r_0$. Since m is \mathscr{W} -regular, there is $T \subset W_{r_1}^o$ with $T \in \mathscr{W}$ such that $m(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W})$ and $B \subset W_{r_1}^o \cap T^o$. Let $\Gamma = \{\varrho \vee \beta \vee (\sigma \cup T^o): \varrho \in (A \cap W^o)^* \text{ and } \sigma \in (A \cap W_{r_1}^o)^* \}$ and $\Lambda = \{\varrho \vee (\sigma \cap W_{r_1}^o)^*: \varrho \in (A \cap W^o)^* \text{ and } \sigma \in (A \cap W_{r_1}^o)^* \}$. Then Γ and Λ are cofinal, directed subsets of $(A \cap W^o)^*$ and $(A \cap W_{r_1}^o)^*$. Hence if $\varrho = \{R_i^o\}$ and $\sigma = \{S_j^o\}$, we may choose i, j and r such that:

$$\overline{m}(A \cap W^c) - m(R_i \cap W_r^c \cap (S_j^c \cup T^c)) \in U,$$

$$\overline{m}(A \cap W_{r_1}^c) - m(R_i^c \cap S_j^c \cap W_{r_1}^c) \in U,$$

$$W_{r_1}^c \subset W_r^c.$$

Since $m(C \cup D) = m(C) + m(D) - m(C \cap D)$ for $C, D \in \mathscr{F}(\mathscr{W})$, we have,

$$\begin{split} m\left(R_i^c \cap W_r^c \cap (S_j^c \cup T^c)\right) - m\left(R_i^c \cap S_j^c \cap W_{r_1}^c\right) \\ &= m\left(R_i^c \cap S_j^c \cap (W_r^c - W_{r_1}^c)\right) + m\left(R_i^c \cap W_r^c \cap T^c\right) - m\left(R_i^c \cap S_j^c \cap W_r^c \cap T^c\right) \\ &= m\left(R_i^c \cap S_j^c \cap (W_r^c - W_{r_1}^c)\right) + m\left(R_i^c \cap S_j \cap W_r^c \cap T^c\right). \end{split}$$

Since $r \geqslant r_1 \geqslant r_0$ by (3), we obtain from this that:

 $(4) \qquad m\left(R_i^c\cap W_r^c\cap (S_j^c\cup T^c)\right)-m\left(R_i^c\cap S_j^c\cap W_{r_1}^c\right)\in m\left(R_i^c\cap S_j\cap W_r^c\cap T^c\right)+U.$

Since

$$m(R_i^c \cap S_i \cap W_r^c \cap T^c)$$

$$= m(R_i^c \cap S_j \cap W_r^c \cap T^c \cap W_{r_1}^c) + m\left(R_i^c \cap S_j \cap T^c \cap (W_r^c - W_{r_1}^c)\right)$$

and since $r_0 \leqslant r$, we obtain:

$$m(R_i^c \cap S_j \cap W_r^c \cap T^c) \in 2U.$$

Combining (1), (2), (4) and (5), we have:

$$\overline{m}(A \cap \overline{W}^c) - \overline{m}(A \cap \overline{W}^c_{r_1}) \in 5 U.$$

Since $U \in \mathcal{U}$ and $r_1 \geqslant r_0$ were arbitrary, the proof is complete.

LEMMA 2.3. Let $A, B \in \mathscr{F}(\mathscr{W})$ with $A \subset B$ and let $U \in \mathscr{U}$. Assume that $m(C) \in U$ whenever $C \in \mathscr{F}(\mathscr{W})$ and $C \subset B-A$. Then $\overline{m}(D) \in U$ whenever $D \in \mathscr{F}(\mathscr{W}_a)$ and $D \subset B-A$.

Proof. Fix $V \in \mathcal{U}$ and fix $D \in \mathscr{F}(\mathscr{W}_a)$. Since m is \mathscr{W} -regular, we may take $W, T \in \mathscr{W}$ with $W \subset A$ and $T \subset B^c$ such that $m(C) \in V$ whenever $C \in \mathscr{F}(\mathscr{W})$ and either $C \subset A \cap W^c$ or $C \subset B^c \cap T^c$. Let $\Gamma = \{(\varrho \cap T^c) \lor \lor (\sigma \cup W^c) : \varrho \in (B \cap D)^* \text{ and } \sigma \in (A \cap D)^*\}$ and $\Lambda = \{(\varrho \cap T^c) \lor \sigma : \varrho \in (B \cap D)^* \text{ and } \sigma \in (A \cap D)^*\}$. Then Γ and Λ are cofinal, directed subsets of $(B \cap D)^*$ and $(A \cap D)^*$, respectively. Hence, if $\varrho = \{R_i^c\}$ and $\sigma = \{S_j^c\}$, we may choose i and j such that

$$(1) \qquad \overline{m}(B \cap D) - m(R_i^c \cap T^c \cap (S_i^c \cup W^c)) \in V,$$

$$\overline{m}(A \cap D) - m(R_i^c \cap T^c \cap S_j^c) \in V.$$

We have

$$\begin{split} m\big(R_i^c \cap T^c \cap (S_j^c \cup W^c)\big) - m(R_i^c \cap T^c \cap S_j^c) \\ &= m(R_i^c \cap T^c \cap W^c) - m(R_i^c \cap T^c \cap S_j^c \cap W^c) \\ &= m(R_i^c \cap S_j \cap T^c \cap W^c) \\ &= m(R_i^c \cap S_j \cap T^c \cap A \cap W^c) + m(R_i^c \cap S_j \cap A^c \cap W^c \cap T^c \cap B^c) + \\ &+ m\big(R_i^c \cap S_j \cap W^c \cap T^c \cap (B-A)\big). \end{split}$$

Using the fact that $m(\mathcal{O}) \in \mathcal{U}$ if $\mathcal{O} \subset B - A$ and that $m(\mathcal{O}) \in \mathcal{V}$ if $\mathcal{O} \subset A \cap W^c$ or $\mathcal{O} \subset B^c \cap T^c$, we obtain from this last calculation:

(3)
$$m\left(R_i^c \cap T^c \cap (S_j^c \cup W^c)\right) - m\left(R_i^c \cap T^c \cap S_i^c\right) \in 2V + U.$$

Combining (1), (2) and (3), we obtain:

$$\overline{m}(B \cap D) - \overline{m}(A \cap D) \in 4V + U.$$

Since $V \in \mathcal{U}$ was arbitrary and since U is closed, it follows that $\overline{m}(B \cap D) - \overline{m}(A \cap D) \in U$.

LEMMA 2.4. Let $\{W_r \colon r \in I\} \subset \mathcal{W}_a$ be a downward directed set of cardinal at most a and let $W = \bigcap \{W_r\}$. If $U \in \mathcal{U}$, then there is an r_0 such that if $r \geqslant r_0$, then

$$\overline{m}(A \cap W_r) - \overline{m}(A \cap W) \in U$$
 for all $A \in \mathcal{F}(W_r)$.

Proof. From Theorem 2.1, it is immediate that \overline{m} is finitely-additive on $\mathscr{F}(\mathscr{W}_a)$. Hence, it is enough to show $\overline{m}(A \cap W_r^o) - \overline{m}(A \cap W^o) \in U$ for $r \geqslant r_0$ and $A \in \mathscr{F}(\mathscr{W}_a)$. For each $r \in I$ choose a downward directed set $\{W_{ri}\colon i \in I_r\} \subset \mathscr{W}$ of cardinal at most a such that $W_r = \bigcap \{W_{ri}\colon i \in I_r\}$. Then the family ϱ consisting of all sets of the form $W_{r_1i_1}^o \cup \ldots \cup W_{r_ni_n}^o$ (where n is a natural number and where $r_j \in I$ and $i_j \in I_{r_j}$ for $j = 1, \ldots, n$) belongs to $(W^o)^*$. Now fix $U \in \mathscr{U}$ arbitrarily. If $\varrho = \{R_k^o\}$, then by Lemma 1.2 there is a k_0 such that whenever $k_0 \leqslant k_1 \leqslant k_2$, the following holds:

(1)
$$m(C \cap (R_{k_0}^c - R_{k_1}^c)) \in U$$
, for all $C \in \mathscr{F}(\mathscr{W})$.

Applying Lemma 2.3, we have that (1) gives for all $k_0 \leqslant k_1 \leqslant k_2$:

$$\overline{m}(B \cap R_{k_2}^{\sigma}) - \overline{m}(B \cap R_{k_1}^{\sigma}) \in U, \quad \text{for all } B \in \mathcal{F}(\mathcal{W}_{\sigma}).$$

Choose r_0 such that $R_{k_0}^c \subset W_{r_0}^c$, and take both $r_1 \geqslant r_0$ and $A \in \mathscr{F}(\mathscr{W}_a)$ arbitrarily. Since $\varrho = \{R_k^{c_1}\} \ W^c$, by Lemma 2.2 there is a $k_1 \geqslant k_0$ such that:

$$\overline{m}(A \cap W^c) - \overline{m}(A \cap R_{k_1}^c) \in U.$$

Also since $\{R_k^c \cap W_{r_1^i}^c\} \uparrow W_{r_1}^c$ and $\{R_{k_0}^c \cap W_{r_1^i}^c\} \uparrow R_{k_0}^c$, by Lemma 2.2 there are k_2 and i_1 with $k_2 \geqslant k_1$ such that:

$$(4) \qquad [\overline{m}(A \cap W_{r_i}^c) - \overline{m}(A \cap R_{k_0}^c \cap W_{r_i,i_i}^c) \in U,$$

$$\overline{m}(A \cap R_{k_0}^c) - \overline{m}(A \cap R_{k_0}^c \cap W_{r_1 i_1}^c) \in U.$$

Since $k_2 \geqslant k_1 \geqslant k_0$, we have from (2) that

$$\overline{m}(A \cap R_{k_2}^c \cap W_{r_1 i_1}^c) - \overline{m}(A \cap R_{k_0}^c \cap W_{r_1 i_1}^c) \in U,$$

and

(7)
$$\overline{m}(A \cap R_{k_1}^c) - \overline{m}(A \cap R_{k_0}^c) \in U.$$

Combining (3), (4), (5), (6) and (7) we obtain:

(8)
$$\overline{m}(A \cap W^c) - \overline{m}(A \cap W^c_{r_1}) \in 5U.$$

Since $U\in\mathcal{U},\ r_1\geqslant r_0$ and $A\in\mathcal{F}(\mathcal{W}_a)$ were all arbitrarily chosen, the proof is complete.

THEOREM 2.5. Let $m \in M(\mathcal{W})$. Then $\overline{m} \in M(\mathcal{W}_a)$ and \overline{m} is a-additive.

Proof. It is immediate from Theorem 2.1 that \overline{m} is finitely-additive and from Lemma 2.4 that \overline{m} is α -additive on $\mathscr{F}(\mathscr{W}_a)$. We must show that \overline{m} is \mathscr{W}_{α} -regular and s-bounded.

Step 1. \overline{m} is \mathscr{W}_a -regular. As is shown in [2], 1.4, each $A \in \mathscr{F}(\mathscr{W}_a)$ has a representation $A = \bigcup_{s=1}^n (W_s^c - V_s^c)$ where n is a natural number, $W_s, V_s \in \mathscr{W}_a$ and $(W_s - V_s) \cap (W_t - V_t) = \emptyset$ for $s \neq t$. In view of this and the finite-additivity of \overline{m} , it suffices to check \mathscr{W}_a -regularity on sets of the form W^c with $W \in \mathscr{W}_a$. Hence fix $W \in \mathscr{W}_a$ and $U \in \mathscr{U}$. Take $V \in \mathscr{U}$ with $V + V \subset U$. Let $\{W_r\} \subset \mathscr{W}$ be a downward directed family of cardinal at most a with $W = \bigcap \{W_r\}$. By Lemma 2.4 there is an r_0 such that for all $r \geqslant r_0$ and all $B \in \mathscr{F}(\mathscr{W}_a)$,

$$\overline{m}(B \cap \overline{W}^c) - \overline{m}(B \cap \overline{W}^c_r) \in V.$$

Since m is \mathscr{W} -regular, there is a $T \in \mathscr{W}$ with $T \subset W^c_{r_0}$ and $m(B) \in V$ whenever $B \in \mathscr{F}(\mathscr{W})$ and $B \subset W^c_{r_0} \cap T^c$. Let $A \in \mathscr{F}(\mathscr{W}_a)$ be arbitrary. Since $\Gamma = \{\varrho \cap T^c \cap W^c_{r_0}: \varrho \in (A \cap T^c \cap W^c_{r_0})^*\}$ is a cofinal, directed subset of $(A \cap T^c \cap W^c_{r_0})^*$ (if $\varrho = \{R^s_i\}$) the fact that V is closed gives

$$\overline{m}(A \cap T^c \cap W^c_{r_0}) = \lim_{r \to r} m(R^c_i \cap T^c \cap W^c_{r_0}) \in V.$$

Combining (1) and (2) (with $B = A \cap T^c$ in (1)), we have that

$$(3) \ \overline{m}(A \cap W^c \cap T^c) = \overline{m}(A \cap T^c \cap (W^c - W^c_{r_0})) + \overline{m}(A \cap T^c \cap W^c_{r_0}) \in 2V \subset U.$$

Since $A \in \mathscr{F}(\mathscr{W}_a)$ was arbitrary, it follows from (3) that $\overline{m}(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W}_a)$ and $B \subset W^c \cap T^c$. Thus \overline{m} is \mathscr{W}_a -regular as claimed.

Step 2. \overline{m} is s-bounded. Let $\{A_n\}$ be a sequence in $\mathscr{F}(\mathscr{W}_a)$ with $\{A_n\}\$. Let $U\in\mathscr{U}$ be arbitrary. For $n=1,2,\ldots$ choose $U_n\in\mathscr{U}$ with $U_n+U_n\subset\subset U_{n-1}\subset U_0=U$. Since \overline{m} is \mathscr{W}_a -regular, there is $T_n\in\mathscr{W}_a$ with $T_n\subset A_n$ and with $\overline{m}(B)\in U_n$ whenever $B\in\mathscr{F}(\mathscr{W}_a)$ and $B\subset A_n-T_n$. Define $W_n=\bigcap_{n=1}^n T_k$. Then

$$egin{aligned} \overline{m}(A_n-T_n) &= \overline{m}\left((A_n-T_n) \cup igcup_{k=1}^{n-1} \left[(A_n \cap igcap_{j=k+1}^n T_j) - T_k
ight]
ight) \ &= \overline{m}(A_n-T_n) + \sum_{k=1}^{n-1} \overline{m}\left((A_n \cap igcap_{j=k+1}^n T_j) - T_k
ight), \end{aligned}$$

so that

$$\overline{m}(A_n - W_n) \in \sum_{k=1}^n U_k \subset U.$$

Since α is an infinite cardinal, \mathscr{W}_{α} is closed under countable intersections so that $W = \bigcap W_n \in \mathscr{W}_{\alpha}$. Since $\{W_n\}_{\downarrow}$, it follows from Lemma 2.4 that $\{\overline{m}(W_n)\}$ is a Cauchy sequence in G. Hence there is an n_0 such that

(5)
$$\overline{m}(W_n) - \overline{m}(W_m) \in U \quad \text{if} \quad n_0 \leqslant n \leqslant m.$$

From (4) and (5), we obtain for $n_0 \le n \le m$.

$$\begin{split} \overline{m}(A_n) - \overline{m}(A_m) &= [\overline{m}(A_n) - \overline{m}(\overline{W}_n)] + [\overline{m}(\overline{W}_n) - \overline{m}(\overline{W}_m)] + \\ &+ [\overline{m}(\overline{W}_m) - \overline{m}(A_m)], \end{split}$$

so that

(6)
$$\overline{m}(A_n) - \overline{m}(A_m) \in 3U \quad \text{if} \quad n_0 \leq n, m.$$

Since $U \in \mathcal{U}$ was arbitrary, it follows that $\{\overline{m}(A_n)\}$ is a Cauchy sequence in G. The proof is complete.

COROLLARY 2.6. Let $m \in M(\mathcal{W})$. Then $m_a \in M(\mathcal{W})$ and m_a is a-additive. Furthermore, $m = m_a$ if and only if m is a-additive.

Proof. Since m_a is the restriction of \overline{m} to $\mathscr{F}(\mathscr{W})$, it is immediate from Theorem 2.5 that m_a is finitely-additive, s-bounded and a-additive. Note that in Step 1 of the proof of Theorem 2.5, we found for an arbitrary $U \in \mathscr{U}$ and $W \in \mathscr{W}_a$ a $T \in \mathscr{W}$ with $T \subset W^c$ and $\overline{m}(B) \in U$ whenever $B \in \mathscr{F}(\mathscr{W}_a)$ and $B \subset W^c \cap T^c$. This fact together with the representation of $A \in \mathscr{F}(\mathscr{W})$ as $A = \bigcup_{j=1}^n (W_j - V_j)$ (where $W_j, V_j \in \mathscr{W}$ and $(W_j - V_j) \cap (W_i - V_k) = \emptyset$ for $i \neq j$) yields the \mathscr{W} -regularity of \overline{m} .

If $m=m_{\alpha}$, then m is obviously α -additive. Hence assume that m is α -additive. Then for $W\in \mathcal{W}$, we have

$$m_a(W^c) = \lim_{\langle W^c \rangle^{\bullet}} \lim_{|\omega|} m(W^c_i \cap W^c) = m(W^c).$$

Since, in particular, $m_{\alpha}(X) = m(X)$, we have $m_{\alpha}(W) = m(W)$ for all $W \in \mathcal{W}$. Since m_{α} and m are both \mathcal{W} -regular, it follows that $m = m_{\alpha}$.

COROLLARY 2.7. Let $m \in M(\mathcal{W})$. If $v \in M(\mathcal{W}_a)$ is a-additive and if m_a is the restriction of v to $\mathscr{F}(\mathcal{W})$, then $v = \overline{m}$.

Proof. Let $W \in \mathscr{W}_a$ and let $\{W_r\} \subset \mathscr{W}$ be a downward directed set of cardinal at most α with $W = \bigcap \{W_r\}$. Then $v(W) = \lim v(W_r) = \lim m_\alpha(W_r) = \overline{m}(W)$. The \mathscr{W}_α -regularity of v and \overline{m} now gives $v = \overline{m}$.

3. A Hewitt-Yosida type decomposition. Let $m \in M(\mathscr{W})$. Then m is α -singular if for each $U \in \mathscr{U}$ and for each α -additive $m_0 \in M(\mathscr{W})$, there is an $A \in \mathscr{F}(\mathscr{W})$ such that $m(A \cap B) \in \mathscr{U}$ and $m_0(A^c \cap B) \in \mathscr{U}$ for all $B \in \mathscr{F}(\mathscr{W})$. (We remark that the proof of the converse of the following theorem is modeled on that given by Traynor in [4].)

THEOREM 3.1. Let $m \in M(\mathcal{W})$. Then m is a-singular if and only if $m_n = 0$.

Proof. Let m be α -singular. If $U \in \mathcal{U}$, there is an $A \in \mathcal{F}(\mathcal{W})$ with $m(A \cap B) \in \mathcal{U}$ and $m_{\alpha}(A^{\alpha} \cap B) \in U$ for all $B \in \mathcal{F}(\mathcal{W})$. Using Lemma 2.3

it follows that $m_a(A\cap B)\in \mathscr{U}$ for all $B\in \mathscr{F}(\mathscr{W}).$ But then for $B\in \mathscr{F}(\mathscr{W}),$ we have

$$m_a(B) = m_a(A \cap B) + m_a(A^c \cap B) \in 2U$$
.

Since $U \in \mathscr{U}$ was arbitrary, it follows that $m_a(B) = 0$ for all $B \in \mathscr{F}(\mathscr{W})$. Now assume that $m_a = 0$ and assume that m is not a-singular. This means that there is an a-additive $m_0 \in M(\mathscr{W})$ and a $U \in \mathscr{U}$ such that for every $A \in \mathscr{F}(\mathscr{W})$, if $m_0(B \cap A) \in U$ for every $B \in \mathscr{F}(\mathscr{W})$, then there is a $B \in \mathscr{F}(\mathscr{W})$ with $m(B \cap A^c) \notin U$. Let $\{U_n\}$ be a sequence in \mathscr{U} with $U_n + U_n \subset U_{n-1} \subset U_0 = U$ for $n = 1, 2, \ldots$ Let $A_0 = \emptyset$ and assume that A_0, A_1, \ldots, A_n have been defined such that:

$$(1) A_i \cap A_j = \emptyset \text{for } i \neq j,$$

(2)
$$m(A_i) \notin U_1 \quad \text{for } i = 1, ..., n,$$

(3)
$$m_0(B \cap A_i) \in U_i$$
 for all $B \in \mathcal{F}(\mathcal{W})$ and all $i = 1, ..., n$.

Define
$$C = (\bigcup_{i=0}^{n} A_i)^c$$
. Then

$$m_0(B\cap C^c) = \sum_{i=0}^n m(B\cap A_i) \in \sum_{i=1}^n U_i \subset U \quad \text{ for all } B \in \mathcal{F}(\mathcal{W})$$

by (1) and (3). Hence there is $B_0 \in \mathscr{F}(\mathscr{W})$ with $B_0 \subset C$ with $m(B_0) \notin U$. Since $m_a(B_0) = 0$, there is $\omega = \{W_r^c\} \in (B_0)^*$ such that $\lim_c m(R_i^c) \in U_3$ for all $\varrho = \{R_i^c\} \in (B_0)^*$ with $\varrho \geqslant \omega$. Since m is \mathscr{W} -regular, there is $T \in \mathscr{W}$ with $T \subset B_0^c$ such that $m(B \cap B_0^c \cap T^c) \in U_2$ for all $B \in \mathscr{F}(\mathscr{W})$. Since m_0 is α -additive, $m_0 = (m_0)_a$ by Corollary 2.6. Let $\varrho = \{W_r^c \cap T^c\}$. Then $\varrho \in (B_0)^*$ and $\varrho \geqslant \omega$. By Lemma 2.4 and the above remarks, we may take r_0 such that

$$m(W_{r_0}^c \cap T^c) \in U_2,$$

(8)
$$m_0(B \cap W_{r_0} \cap B_0) \in U_{n+1}$$
 for all $B \in \mathscr{F}(\mathscr{W})$.

Then we have that

$$m(B_0 \cap W_{r_0}) \notin U_1.$$

(Otherwise,

$$\begin{split} m(B_0) &= m(B_0 \cap W_{r_0}) + m(B_0 \cap W_{r_0}^c) \\ &= m(B_0 \cap W_{r_0}) + m(T^c \cap W_{r_0}^c) - m(T^c \cap W_{r_0}^c \cap B_0^c) \\ &\in U_1 + U_2 + U_2 \subset U, \end{split}$$

contrary to the fact that $m(B_0) \notin U$.) Thus, from (8) and (9), the sequence $A_0, A_1, \ldots, A_{n+1}$ satisfies (1), (2) and (3). Hence by induction there is an infinite sequence $\{A_n\} \subset \mathscr{F}(\mathscr{W})$ of pairwise disjoint sets with $m(A_n) \notin U_1$ for $n=1,2,\ldots$ This contradicts the fact that m is s-bounded. The proof is complete.

THEOREM 3.2. Let $m \in M(\mathscr{W})$. Then there are unique elements $m_1, m_2 \in M(\mathscr{W})$ such that m_1 is a-additive, m_2 is a-singular and $m = m_1 + m_2$.

Proof. Let $m_1=m_a$ and $m_2=m-m_a$. Then m_1 is an a-additive element of $M(\mathscr W)$ by Corollary 2.6. Since $m, m_a \in M(\mathscr W)$, it is immediate that $m_2 \in M(\mathscr W)$. From the definition of m^* , it is immediate that $(m_2)_a = (m-m_a)_a = m_a - (m_a)_a = m_a - m_a = 0$. (That $(m_a)_a = m$ is immediate from Lemma 2.4 and Corollary 2.6.) Since $(m_2)_a = 0, m_3$ is a-singular by Theorem 3.1. Finally, if $m = m_1' + m_2'$ with $m_1', m_2' \in M(\mathscr W), m_1'$ a-additive and m_2' a-singular, then $m_1 = m_a = (m_1' + m_2')_a = (m_1')_a + (m_2')_a = m_1'$ by Lemma 2.4, Corollary 2.6 and Theorem 3.1. Since $m_1' = m_1$, we also have $m_2' = m_2$.

References

- [1] L. Drewnowski, Decompositions of set functions, Studia Math. 48 (1973), pp. 23-48.
- [2] R. B. Kirk, and J. A. Crenshaw, Extension of real-valued α-additive set functions, Studia Math. 58 (1976), pp. 129-139.
- [3] M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. 19 (1969), pp. 89-106.
- [4] Tim Traynor, A general Hewitt-Yosida decomposition, Canad. J. Math. 26 (1972), pp. 1164-1169.

Received June 25, 1976
Revised version April, 1977 (1174)