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On weakly* conditionally compact
dynamieal systems

by
W. SZLENK (Warszawa)

1. Let (X, ¢) be a topological dynamical system, i.e. X is a compact
metric space and ¢: X — X is a continuous mapping. Denote by C(X)
the space of all continuous, real (or complex) valued functions on X,
and let U, be an operator defined as follows: U,f =foq, f€ 0(X).

A sequence (f,) of elements of a Banach space Z is said to be weakly™
conditionally compact if for every sequence of positive integers (n;) there
is a subsequence (7y;) such that for every linear continuous functional
® e E* the sequence of scalars (®(fa,)) is convergent. In the case of
B = C(X) it means that the sequence (fny, (z)) is pointwise convergent
(not necessarily to a continuous function).

If for every sequence (n;) there exists a subsequence () and an
element f € B such that (f,) is weakly convergent to f, then the sequence
(f,) is said to be weakly conditionally compact.

DEFINITION. A system (X, ¢) is said to be weakly* [weakly] con-
ditionally compact it for every feC(X) the sequence (U"f) is weakly*
[weakly] conditionslly eompaet. For brevity, we shall call these sys-
tems w*ee [wee] systems.

The aim of the paper is to study some spectral properties, the strict
ergodicity (under some additional assumptions) and the sequence entropy
of w*ee systems.

Tn view of Rosenthal’s theorem [8] for every f e C(X) there are two
possibilities: '

(1) The sequence (U"f) contains a subsequence (U™:f) such that for
some ¢ > 0 and for every sequence of numbers (real or eomplex) @y, ...y Gy
the following inequality holds:

m—1 m—1
1) sup IZ a, U”kf(w)} > 02 lag! -
x€X g k=0

(2) The sequence (U™f) is w*ce.
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If a system (X, @) is a w'ee system, then the first possibility does
not occur for any f € ¢(X). It means that ¢ “mixes” the points in X very
slowly for every sequence of moments (n).

The wee systems have been studied in [1] and in [10].

ExampLEs, (i) Every homeomorphism of an interval is a w'ee system
(and it is not a wee system, except the identity) —this follows easily from
Proposition 1.

(ii) Bvery homeomorphism of the circle 8 is a w"ce system. The
homeomorphism is & wee system if and only if it is topologically equivalent
to a rotation.

Proof. It is enough to consider the case where ¢ preserves orienta-
tion. Tf ¢ has a periodic point, then the problem can be reduced to the
case (i). Suppose ¢ has no periodic points. Then either ¢ is conjugate to
a rotation and evidently the system is a wee system, or ¢ is a so called
Denjoy homeomorphism. The set of all non-wandering points is then a Can-
tor set 4 in §'. For every sequence (7,) there exists a subsequence (n;,)
such that ((p""i (x)) is convergent for every end-point of each interval of
8'— A. Henee we easily conclude that {p"*i()) is convergent for every
& € 8%, which completes the proof (see Proposition 1).

(iii) Every Morse-Smale system (for the definition see [5] or [11])
is a w'cc system.

(iv) Let X = T® be the two-dimensional torus, let g,: 8'—8' be
a homeomorphism of the circle S' and let %: 8'— §* be a continuous
mapping. The map @ (2%, 2%) = (g (2*), Z,+f (wl)) is called the skew rotation.
Let ¢ be a lift of ¢ to the plane R?, and let @ be & unit square in R If
sup diam ¢ (Q) is finite, then (T? @) is a w"ce system. It easily follows from

n

the Gottschalk—-Heldlund lemma that for a continwous function f on §
if f(ar)+f(po(@) ... flef " (2") is uniformly bounded, then there exists
a continuous function g such that g(g,(#Y)) —g(@?) = f(#%).

Probably there are some wce skew rotations on the torus 7° for which
sup diame” (@) = + oo.
n

2. ProPOSITION 1. A system (X, @) is w'ee iff for every sequence of
positive integers (ny) there ewists a subsequence (ny) such that the sequence
(¢"i(w)) is convergent for every w € X.

A system (X, ) is woe iff every dluster point y of the set {p™} in pointwise
iopology is contimuous. -

The proof is quite elementary, and so we omit it.

TaRoREM 1. Let u be am invariont ergodic probabilistic measure for
a w'ee system (X, ¢). Then the meiric sysiem (X, B, p,¢) (B  o-field of
Borel sets) has a discrete spectrum. Moreover, the eigenfunctions of U, are
of the first Baire class. oL e -
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Proof. Let |- | denote the norm in the space €{X), and let ||-|i; denote
the norm in the space I?(X, B, 4). By assumption every sequence (T,
feC(X), is a hounded sequence of funetions, conditionally compact in
the topology of pointwise convergence. Therefore (U3f) is conditionally
compact in the space I*(X, B, p). Since C(X) is dense in I*X, B, p),
the sequence {U%f) is conditionally compact for every fe}(X,B,n).
Thus by Kushnirenko’s theorem [4] the spectrum of U, in I*(X, B, u)is
discrete. Denote by (f,) the sequence of all eigenfunetions of U,: U.fn
= 1,f,- For every m =1,2,... there exists a continuous function g
such that (g,f,) = a, ¥ 0. In the space I*(X, B,p) we can write g
in the form

Applying U¥ to the last equality, where k is a fixed positive integer, we
obtain

U‘;C'g == Zanlﬁfm
n=1
and hence
BEUR = Gufut D) GnlhAn Y fo-
n=1
nEM

By assumption the measure u is ergodie and so 1, # Ay for m #m.
Therefore

p-1 o —1p
1 \—" —k 77k 11 —(Anlm )
1 — }“m U = a -+ @y —#*———__f .
( ) » k:_o o9 mfm nzl P 1_An}'ml n
- nEM

Since |4,| = 1 and the sequence (Ukg) is Ww*ee, the sequence (1" Ugg)
is also & W*ce sequenee. We set 4, U, = T. In view of the remark in [2]

“on the p. 435 the arithmetic means

k=0
are also weakly* conditionally compact.
We shall prove that (4,¢) is weakly* convergent for every g e C(X).
Let B be the space of all bounded functions f: X—R of the first
Baire class with norm jif|| = s? 1f ().
ZE.

From now on we proceed as in the proof of Theorem 3, Ch. 7.3 of
2] Let B, =(I—-T)E, B, = {geB: (I-T)g =0}, and By = {£eB*:
(I-T*¢& =0},
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‘We prove

(a) BynE, = {0}

Suppose now that (4,g) is not weakly* convergent for a certain
g e C(X). Since (4,9) is weakly* conditionally compact, there exist two
gequences of integers (n,) and (m;) such that 4,93 b, Ay gy bay by F by,
Of course, hy, by, € B. Next we prove

(b) Ry, ke € B, which in view of (a) implies that by —h, ¢ By.

Then there exists a linear functional £ € E* such that &/B; =0 and
E(hy—hy) # 0. Thus &((I—T)g) = O for every g € B, which gives (I-THE
= 0; i.e. £e B;. Therefore

tim E(4,9) =lm(4d () = &(9),
p
which implies that
E(hy) = Hm £(4,,9) = UmE(4,,,q) = &(hy).

This contradicts the choice of the functional &.
Letting p - oo in (1), we get
by = @Sy
30 f,, i equivalent to a;;'hy,, which is of the first Baire class.
COROLLARY 1. For every contimuous function g the limit

19
lim — % =
m o 3 Tio(e) = he)

exisls and the function h satisfies the following equaﬁon: kog(x) = hiz)
for every » € X. Hence we can choose f, in such way that U,f,(®) = 4, (@)
for every # € X.

The corollary follows immediately from the proof of Theorem 1.
COROLLARY 2. -Suppose now that X, < X is a minimal set for a w'ee
system (X, ¢). Then the eigenfunctions of U are continuous on the set X,.
Proof. Suppose that an eigenfunction f,, has a point of discontinuity
z, € X,. Then the oscillation of f ab #, is positive: w(f,, %) > 0. Since X,
is minimal, the trajectory (¢"(a))s=, is dense in X,, and we immediately
conclude that (f,,z)> 0 for every =z € X,. But in view of Theorem 1
the function f, is of the first Baire clags, and so it must have at least one
point of continuity in every non-empty closed set, whence also in X,.
In [9] it is proved that if a system (X, ¢) is strictly ergodic and has

. 15
a continuous spectrum, then the averages ;2 ¢ U% f(z) are uniformly

k=0
convergent to zero for every A e 8', 2 1, and for every f e C(X).
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COROLLARY 3. Hvery w*ce, minimal dynamical system (X0, ) has
a factor (Y , ) of the following type: ¥ is a closed subset of an abelian compact
group G, Y is invariant with respect to a shift © on the group, and @ is the
restriction of v to ¥.

Proof. We set

Y =y =) ¥, =Tz}, n = 1,2,..., zeX},
oY) = (Zuln)y h(2) = (ful@)), @ =8x8x...
The system (¥, 7} is the h-image of the system (X @)
COROLLARY 4. Every minimal, w'ce dynamical system (X,, @) 98 strictly
ergodic.
Proof. Let g C(X). In view of Corollaries 1 and 2 the function

1 2
R(z) = lim 7 Y Ukg(w)is g-invariant and continuous. Thus it has to be
. P k=0

constant, which completes the proof.

Consider now the case where X = 8" and ¢ is a homeomorphism of
the circle (see Example (ii)). If ¢ has some periodic points or if ¢ is conju-
gate to a rotation, then if is easy to construct all the eigenfunctions of U,.
Consider now the case where p is a Denjoy homeomorphism. Let f be an
eigenfunction of U,, and let I = (a, b) be an are in S8' which is a compo-
nent of the set of all wandering points §*— 4. Since there are 1o periodic
points, the arcs ¢ (I) are pairwise digjoint, and thus dist (¢ (a), 7" (b)) >0
as n - + oo, Hence

1f(0)—F(a)] =|f(#" (") —Fle" (" (@)|
= |1 (o™ ®) =2 {f g (@)))| >0

as n—> oo,

Therefore every eigenfunction of U, has the same values at the end-
points of the components of the set 8'— A. Let k be a Cantor function of 4,
i.e. b maps 8' onto &', and k is continuous and constant on every compo-
nent of the set §'— A. It is easy to see that h also maps 4 onto S, The
map ¢ induces a map ¢ on h(4) =8 p(h(@)) = h(p(2)), ved. It is
easy to see that § is conjugate to a rotation of 8%, and so all the eigenfunc-
tions f, of U; are of the form ful?) = (k(2))", where z & 8%, k conjugates ¢
and the rotation. Since every eigenfunction f, of U, takes the same values
at the end-points of the components of 8! — A, there exists a function g,

" on h(A) such that f,(z) = g,0h(z), v € S*. Hence f, are of the form f,(x)

= (koh(z))". Denote by B the subspace of ¢(A4) spanned by all the eigen-
functions of f, restricted to 4. In view of Kadec’s result (see [7], Corro-
laries 9.12 and 2.3) the subspace B has no closed complement in C(4).

K. Deleeuw and I. Glicksberg [1] have shown that every wee dy-
namical system (X, ) has the following property: the space C(X) can be
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decomposed into the direct sum of two closed subspaces E and F, where ¥
is the subspace spanned by all the eigenfunctions of U,. So we have the
following

Remark 1, The Deleeuw and Glicksberg result cannot be extended
onto the elass of w*ce mappings.

3. The w*ce dynamical systems seem to be so close to isometries and
8o similar to homeomorphisms of the circle, that one could expect that
every sequence entropy (for the definition see [3]) of a w*cc mapping is
equal to zero. But this is not true.

In this section we shall present an example of a weec dynamical
system for which a sequence entropy is positive. The space X will be
chosen as a closed. subset of the space of all zero-one sequences, invariant
with respect to the left-side shift; the map ¢ will be the shift. _

Let » > 0 be a fixed, positive integer and let r, and I, be two non-
negative integers such thatr, = 2"1,. Consider the family of all sequences
¥, = (Vg, s, ...y ¥, ) Where v, = 0 for k 5 il, and v, is arbitrary for
k = il, (i.e. v, is either 0 or 1). Obviously there are 2°" sequences v,,.
Denote them by o, v@, ..., v2®). Let V, be the sequence formed by
all o written in one row: '

V, = oo .. o@"
Now we set
i @ = VoV Vo... V... €{0,1¥.

We have to define the integers Z,. Let v = (0), o’ = (1), i.e. } =1,
7, = 1. We require that I, should be greater that the length of the sequence
VoViV,y... V,_,. Since the length of V,; is equal to 2“1*1-, the number 1,
n—1 .
has to be greater than Y 2%7,.
: i=0
So we set
Py = 027

l, =021, ;

n—1*
Denote the coordinates of o, by &, &, ... Let p, be an integer such that
(g -vvs &p,) = VoVy... Vyy for m=0,1,...

In other words, p,—p,—, = length of V.
Denote 2, = ¢"(x,) and set X = closure {z,,n = 0,1, ...}
ProrosrrioN 3. The space X contains only points of the form (i) x,,
n=0,1,..., (i) ¢, =(0,0,...,1,0,...), » =0,1,..., (ili) (0,0,...).
Proof. Suppose & = (19, %1, ...} i8 & cluster point of the set {z,}.
Then there exists a sequence (#n,)s M < 9y, such that z,, —> @. Suppose
that #,, = 1 for an index m. Thus for % large enough the mth coordinates
of @, have to be 1. Let 4 # m be fixed. Since 7, - + oo, all the coordi-

Weakly* conditionally compact dynamical sysiems 31

nates of x,, have to be zero for & large enough. Hence 7; = 0 for arbitrary
i=m and e, =xeX. Since e, (0,0,...), the point (0,0,...) also
belongs to X.

COROLLARY B. The system (X, ¢) is w'ce.

Indeed, by Proposition 3 the space X is denumerable, and so every
map of X is w'ce.

PROPOSITION 4. The sequence entropy of the system (X, @) is positive.

n n . X
Proof. Let 4, = \J{p;+sl}ie;- Then Card4, = Y2 =2""—1.
o0 i=0 1==0

We set 4 = |_J4, and we choose an open cover of X in the standard way:

n=0
a=(e=0) L=0}{z=(L): &= 1}).
(It is also a partition of X.) In view of the definition of v,, ¥V, and I,
it is easy to check that the cover @, = V @ *(a) contains at least as many
kedy
sets as the cardinality of the set of all v,, i.e.
Card \ ¢ %(a) = 2*".
kedn

Thus
2 n

g 1 : -
logN(a,) = Err log 28" =

1
—_— —————log 2.
Card 4, DR R
Hence

Eﬁfn log N (a,) = %]ogz .

The example presented above gives us the following

COROLLARY 6. The sequence entropy cammot be attained on the sel of
non-wandering points.

Remark 2. The example presented shows also that the supremum
of all measure sequence entropies is not equal to the topologieal sequence
entropy. This result has been observed by Goodman [3]- This example
is different from that of Goodman.

k4{p, @) = limsup
n
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The algebra of compact operators does not have
any finite-codimensional ideal

by
PIERRE DE LA HARPE (Genéve)

Abstract. The Lie algebra of compact operators on an infinite dimensional
Hilbert space has no non-trivial finite-dimensional quotient. It follows that, as a
Banach—Lie algebra, all its extensions are trivial.

Let H be an infinite-dimensional real or complex Hilbert space and
let C(H) be the algebra of all compact operators on H. It is well known
that any non-trivial two-sided ideal of C(H) contains the ideal of all
finite rank operators (Theorem 1.7 in [2]); the standard examples are the
von Neumann—Schatten ideals [5]. The purpose of this note is to show
that any such ideal has infinite codimension. We shall indeed prove the
following stonger statement, which is phrased in the Lie algebra setting;
as a corollary we obtain that any extension (in a suifable sense) of the
Lie algebra considered is trivial.

TurorEM. Let gl(H, C) be the Lie algebra defined by the commutaior
product on C(H) and let a be a non-trivial ideal in gl(H , C). Then a contains
the space SL(H, (y) of all finile rank operators with zero trace and & has
infinite codimension. e

That a& contains sl(H, C,}'is an easy corollary of Schur’s lemma and
of the simplicity of the Lie algebra sI(H, Cy); see for example [3], page
1.2. For the second statement, consider & finite-dimensional Lie algebra g,
say, of dimension d> 0, and a morphism =: gi(H,0)—>g. We have
to show that the kernel of = iz gI(H, C) itself. We do this below in the
complex case; the real case will follow from a standard complexification
argument,

We denote by N the set of natural integers including zero and by ¢,
the space of sequences (z,),ow Of complex numbers converging towards
Zero. :

Lmvwa 1. Let H, be a closed subspace of H of infinite dimension and
infinite codimension. Let (e,),ox be an orthonormal basis in H, and let (2,)nen
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