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The algebra of compact operators does not have
any finite-codimensional ideal

by
PIERRE DE LA HARPE (Genéve)

Abstract. The Lie algebra of compact operators on an infinite dimensional
Hilbert space has no non-trivial finite-dimensional quotient. It follows that, as a
Banach—Lie algebra, all its extensions are trivial.

Let H be an infinite-dimensional real or complex Hilbert space and
let C(H) be the algebra of all compact operators on H. It is well known
that any non-trivial two-sided ideal of C(H) contains the ideal of all
finite rank operators (Theorem 1.7 in [2]); the standard examples are the
von Neumann—Schatten ideals [5]. The purpose of this note is to show
that any such ideal has infinite codimension. We shall indeed prove the
following stonger statement, which is phrased in the Lie algebra setting;
as a corollary we obtain that any extension (in a suifable sense) of the
Lie algebra considered is trivial.

TurorEM. Let gl(H, C) be the Lie algebra defined by the commutaior
product on C(H) and let a be a non-trivial ideal in gl(H , C). Then a contains
the space SL(H, (y) of all finile rank operators with zero trace and & has
infinite codimension. e

That a& contains sl(H, C,}'is an easy corollary of Schur’s lemma and
of the simplicity of the Lie algebra sI(H, Cy); see for example [3], page
1.2. For the second statement, consider & finite-dimensional Lie algebra g,
say, of dimension d> 0, and a morphism =: gi(H,0)—>g. We have
to show that the kernel of = iz gI(H, C) itself. We do this below in the
complex case; the real case will follow from a standard complexification
argument,

We denote by N the set of natural integers including zero and by ¢,
the space of sequences (z,),ow Of complex numbers converging towards
Zero. :

Lmvwa 1. Let H, be a closed subspace of H of infinite dimension and
infinite codimension. Let (e,),ox be an orthonormal basis in H, and let (2,)nen

3 — Studia Mathematica 661



34 P. de la Harpe

be in ¢,. Then the compact operator X defined on H by

xe. if n=2k
_Xen — k41 .f b
0 if n=2k+1
and by

Xp =0 if w]| H,
is in the kernel of =.
Proof. For each n e N, let %, be a cube root of x,; the sequence
(Yn)uew 18 In 0. Let D ={0,1,...,d4+2} and let (fg,)pep,new De an

orthonormal basis of H with f, , = 6, and fz;,, = €4, for eachn e N.
For each a € D, let Y, be the compact operator defined by

ynfa,n it ﬂ = @,
0 it B #a.

We may suppose the y,’s are not all zero,' so that the linear span V of
{¥y, Yo, .eoy ¥g,} is of dimension d+1 > dim(g); it follows tha,t_;there
exigts ¥ in (V {0})NnXKer(=). Let us.chose the notations such that

Y = Yi+ ) pa Vs

where the gummation runsg on. the integers between 2 and d--1.
Let 8 be the compact operator defined on H by

Yafﬁ,n =

8. == YnTasam lf cae=1,
0 if a1
it follows from the definitions of § and of the ¥ ’s that Z = (§, Y] is
descrlbed by ‘
Zfa,n - (yn)zfd+2,n i.f a = 17
.0 if a=#1.

Let- T be the compact operator defined on H by
a Tfu - ynfl,n ]f a = 0!
’ 0 if o #0;
it follows from the definitions that X = [Z, T'] is described by
‘ (4. fri0m i a=0
Xfan _ (y )fd+2, ) a 3
0 if o z£0.

Hence X has the desxred properties. m

. Let H, be as in Lemma 1. Ifs orthogonal complement will be ident-
If.red with countably many copies of H,, so that H = @®H; where the
semmation Tuns over j € N. If (z,,),.v 15 in ¢;, we shall denote, a8 Pearcy
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and Topping [4] do, by UDiag{(x,)} the operator on H whose matrix,
with respect to H = ©H,, is

with non-zero (operator) entries on the diagonal just above the main
diagonal, where #, is written for the corresponding sealar multiple of the
identity operator on H,. We shall write (z]),.y for the sequence with
#f =, for » even and =z}, =0 for n odd; we shall write (#2)pen for
the sequehce with 2}, = z, —f,. Then

UDiag {(#,)} = UDiag{(a;)}+ UDiag{(z;)}

is in the kernel of z, because the two summands on the right-band side
are in this kernel by Lemma 1.

LEMyA 2. Any compact operator on H can be written as a fzmie sum
3'[4;, B;l, where the Aj's are compact and where each B; is of the form
UDiag {(x,)}-

Proof. See Section 3 of [4]. (On line 12, page 250 of that paper
read a,, = 0 instead of a,, = o,,_,.) M

The theorem follows. It suggests two questions.

(1) Has gl(H, C) any non-trivial sub Lie algebra of finite codimension? -
(We guess no.)

(2) Let GL(H, C) be the group of those invertible operators on H
which are congruent to the identity modulo C(H); is any homoinorphism
GL(H, 0) - GL(n, R) trivial? (We guess yes; if the homomorphism
is assumed to be continuous, for the topology inherited from the norm

on GL(H, C), then the guestion becomes an easy exercise.)

Consider now gl(H, C) as a Banach-Lie algebra, with the usual norm
on operators. Extending classical concepts, we define an abelian exiension
of gl(H, C) by a finite- dJmenswnal commutative algebra a to be a short
exact sequence

0 >atg s g1, 0> 0},
where ¢ is a Banach-Lie algebra and where 2, x are continuous morphisms;
a is the kernel of the extension; the trivial extension is that for which ¢
is the direet product a x gl(H, () and A, 4 the canonical inclusion and
projection, respectively.

COROLLARY. Any abelian extension of gl(H , C) with finite-dimensional
kernel is trivial.

Proof. Let a, ¢, 4 and  be as above. By the theorem, the gl(H, C)-
module structure defined by the extension on @ is trivial. As the image
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of 2 is of finite dimension, it is a complemented subspace of the Banach
space g and u has a continuous linear section. Now the cohomology of
gl(H, C) with continuous cochains and trivial scalar coefficients reduces
to zero in degree two; see [3], page IV.8. The usual argument (sketched
in [1], § 3, exercise 12i) shows that te extension is inessential. Hence g
is a semi-direct product of gl(H, C) and a, relative to some morphism
from gl(H, C) to the algebra of derivations of @ (see [1], § 1 no 8). This
morphism is trivial, again by the theorem above, and the product is direct. m
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Lipschitz classes and Poisson imtegrals
on stratified groups*

by
G. B. FOLLAND (Seattle, Wash.)

Abstraet. It is shown. that the Lipschitz classes I, on stratified groups can be
characterized in terms of Poisson integrals, and some interpolation and approximation
theorems are proved.

Introduction. It is well known that the classical Lipschitz classes
A, {a>0) on R"can be characterized in terms of Poisson integrals; see [7].
In this paper we generalize this result to the Lipschitz classes I' (a > 0)
on stratified groups studied in [3]. To some extent our arguments are
adaptations of those in [7], but the non-commutativity and non-ellipticity
in the general situation present & number of difficulties which do not
oceur in the classical case. From the Poisson integral characterization we
obtain a simple proof that the clagses I, form a scale of interpolation spaces,
a result which has been proved with different techniques by Krantz [6].
Actnally, the logical order of the paper is somewhat different; we prove
the interpolation theorems for the spaces defined by Poisson integrals
and then use them in showing that these spaces coincide with the spaces I',.

The plan of the paper is as follows. In Section 1 we recall the basic
facts about stratified groups and the spaces I',. (For proofs and further
details the reader is referred to [3].) In Section 2 we construct the Poisson
kernel and derive its fundamental properties. In Section 3 we define
spaces I'* in terms of the Poisson integral and prove the interpolation
and approximation theorems. Sections 4 and 5 are devoted to the proof
that I, = I'.

1. Let g be a stratified Lie algebra in the sense of [3]; that is, g is

_ & finite-dimensional nilpotent Lie algebra over R together with a veetor

m

space decomposition g = @ V; such that [V, V;]= Vi for j<m
1

and [V, V,] = {0}, We define a one-pirameter family {y,: r > 0} of
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