of λ is of finite dimension, it is a complemented subspace of the Banach space g and μ has a continuous linear section. Now the cohomology of gl(H,C) with continuous cochains and trivial scalar coefficients reduces to zero in degree two; see [3], page IV.8. The usual argument (sketched in [1], § 3, exercise 12i) shows that te extension is inessential. Hence g is a semi-direct product of gl(H,C) and a, relative to some morphism from gl(H,C) to the algebra of derivations of a (see [1], § 1 no 8). This morphism is trivial, again by the theorem above, and the product is direct.

References

- [1] N. Bourbaki, Groupes et algèbres de Lie, Chapitre 1, Hermann 1960.
- [2] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), pp. 839-873.
- [3] P. de la Harpe, Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space, Springer Lecture Notes in Mathematics 285 (1972).
- [4] C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), pp. 247-252.
- [5] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag 1960.

Received April 30, 1977 (1306)

Lipschitz classes and Poisson integrals on stratified groups*

by

G. B. FOLLAND (Seattle, Wash.)

Abstract. It is shown that the Lipschitz classes Γ_a on stratified groups can be characterized in terms of Poisson integrals, and some interpolation and approximation theorems are proved.

Introduction. It is well known that the classical Lipschitz classes Λ_{α} ($\alpha > 0$) on \mathbb{R}^n can be characterized in terms of Poisson integrals; see [7]. In this paper we generalize this result to the Lipschitz classes Γ_{α} ($\alpha > 0$) on stratified groups studied in [3]. To some extent our arguments are adaptations of those in [7], but the non-commutativity and non-ellipticity in the general situation present a number of difficulties which do not occur in the classical case. From the Poisson integral characterization we obtain a simple proof that the classes Γ_{α} form a scale of interpolation spaces, a result which has been proved with different techniques by Krantz [6]. Actually, the logical order of the paper is somewhat different; we prove the interpolation theorems for the spaces defined by Poisson integrals and then use them in showing that these spaces coincide with the spaces Γ_{α} .

The plan of the paper is as follows. In Section 1 we recall the basic facts about stratified groups and the spaces Γ_a . (For proofs and further details the reader is referred to [3].) In Section 2 we construct the Poisson kernel and derive its fundamental properties. In Section 3 we define spaces Γ_a^* in terms of the Poisson integral and prove the interpolation and approximation theorems. Sections 4 and 5 are devoted to the proof that $\Gamma_a = \Gamma_a^*$.

1. Let g be a stratified Lie algebra in the sense of [3]; that is, g is a finite-dimensional nilpotent Lie algebra over R together with a vector space decomposition $g = \bigoplus_{i=1}^{m} V_{j}$ such that $[V_{1}, V_{j}] = V_{j+1}$ for j < m and $[V_{1}, V_{m}] = \{0\}$. We define a one-parameter family $\{\gamma_{r}: r > 0\}$ of

^{*} Research partially supported by NSF Grant MCS 76-06325.

automorphisms of g, called dilations, by the formula

$$\gamma_r \Big(\sum_1^m Y_j \Big) = \sum_1^m r^j Y_j \quad (Y_j \in V_j).$$

Let G be the corresponding simply connected Lie group, which will also be called "stratified". Since g is nilpotent, the exponential map is a diffeomorphism from g onto G which takes Lebesgue measure on g to a biinvariant Haar measure dx on G. The group identity of G will be referred to as the origin and denoted by G.

The dilations $\{\gamma_r\}$ on g induce automorphisms of G, still called dilations and denoted simply by $x \to rx$, by the formula

$$rx = \exp(\gamma_r(\exp^{-1}x)) \quad (x \in G, r > 0).$$

A function f on $G - \{0\}$ will be called homogeneous of degree λ ($\lambda \in \mathbb{R}$) if $f(rx) = r^{\lambda} f(x)$. The number

$$Q = \sum_{1}^{m} j(\dim V_{j})$$

is called the homogeneous dimension of G, since $d(rx) = r^Q dx$ for r > 0. Let $Y \to ||Y||$ be a Euclidean norm on g. If $x \in G$, we set $||x|| = ||\exp^{-1}x||$. We also define a homogeneous norm $x \to |x|$ on G by

(1.1)
$$\left|\exp\sum_{1}^{m}Y_{j}\right| = \left(\sum_{1}^{m}\|Y_{j}\|^{2m!\beta}\right)^{1/2m!} \quad (Y_{j} \in V_{j}).$$

The homogeneous norm is continuous on G, C^{∞} on $G - \{0\}$, homogeneous of degree 1, and satisfies (a) |x| > 0 if $x \neq 0$, (b) $|x| = |x^{-1}|$. We recall from [3] that there is a constant $C \geqslant 1$ such that

$$||xy|-|x||\leqslant C|y| \quad \text{if} \quad |y|\leqslant |x|/2,$$

(1.3)
$$C^{-1}||x|| \le |x| \le C||x||^{1/m}$$
 if $|x| \le 1$,

where m is the number of steps in the stratification of g. We also have the following "integration in polar coordinates" formula, which will be used without comment in the sequel: there is a constant C > 0 such that for every nonnegative measurable function f on $(0, \infty)$,

$$\int_G f(|x|) dx = C \int_0^\infty r^{Q-1} f(r) dr.$$

The elements of g will be considered as left-invariant vector fields on G. We fix once and for all a basis X_1, \ldots, X_n for $V_1 \subset g$. The operator

$$\mathscr{J} = -\sum_{1}^{n} X_{j}^{2}$$

is called the *sub-Laplacian* of G. We also introduce the following multiindex notation for derivatives: if $I = (i_1, ..., i_k)$, where k = 1, 2, 3, ...and $1 \le i_i \le n$, we set |I| = k and

$$X_I = X_{i_1} X_{i_2} \dots X_{i_k}.$$

We shall also allow the empty multi-index \emptyset : by convention, $|\emptyset|=0$ and $X_{\emptyset}=$ identity. Since V_1 generates \mathfrak{g} , every left-invariant differential operator on G is a linear combination of X_I 's. Moreover, if f is smooth and homogeneous of degree λ , $X_I f$ is homogeneous of degree $\lambda - |I|$.

Next, some function spaces. If $1 \leq p \leq \infty$, L^p is the usual Lebesgue space on G with respect to the Haar measure dx, with norm $\| \|_p$. C_0^{∞} is the space of compactly supported C^{∞} functions on G. \mathscr{D}' and \mathscr{E}' are the spaces of distributions and compactly supported distributions on G. In particular, $\delta \in \mathscr{E}'$ is the Dirac distribution at 0. \mathscr{E}' is the space of bounded left uniformly continuous functions on G, and if E is a positive integer, \mathscr{E}' is the space of all E whose (distribution) derivatives E are in E for E is the space of all E whose (distribution) derivatives E are in E for E is the space of all E whose (distribution) derivatives E are in E for E is the space of all E whose (distribution) derivatives E are in E for E is the space of all E whose (distribution) derivatives E are in E for E in E are in E for E in E are in E for E in E in E are in E for E in E in E for E in E

Finally, we define the Lipschitz classes Γ_a . If 0 < a < 1,

$$\Gamma_a = \{ f \in \mathscr{C} \colon |f|_a = \sup_{x,y} |f(xy) - f(x)|/|y|^a < \infty \}.$$

If a = 1, Γ_a is the "Zygmund class":

$$\Gamma_1 = \{ f \in \mathcal{C} : |f|_1 = \sup_{x,y} |f(xy) + f(xy^{-1}) - 2f(x)|/|y| < \infty \}.$$

For $0 < \alpha \le 1$, Γ_a is a Banach space with norm

$$||f||_{(a)} = |f|_a + ||f||_{\infty}.$$

If $k = 1, 2, 3, ..., \text{ and } k < a \le k+1,$

$$\Gamma_{\alpha} = \{ f \in \mathcal{C}^k : X_I f \in \Gamma_{\alpha-k} \text{ for } |I| \leqslant k \},$$

which is a Banach space with norm

$$||f||_{(\alpha)} = \sum_{0 \leqslant |I| \leqslant k} ||X_I f||_{(\alpha-k)}.$$

For $k < a \le k+1$ we also set

$$|f|_a = \sum_{0 \leqslant |I| \leqslant k} |X_I f|_{a-k}.$$

We remark that in the definition of Γ_a , $0 < \alpha \le 1$, we could have replaced the supremum over all $x, y \in G$ by the supremum over $x \in G$ and $|y| \le 1$, since for |y| > 1 the boundedness of f is already a stronger condition.

2. In this section we construct the Poisson kernel for G. We shall denote the canonical coordinate on R by t and the coordinate vector

field by ∂_i . Consider the group $G \times \mathbf{R}$, whose Lie algebra has a natural stratification $\bigoplus_{i=1}^{m} W_j$, where W_1 is the span of V_1 and ∂_i and $W_j = V_j$ for j > 1. The corresponding dilations are given by

$$r(x,t) = (rx,rt),$$

the second factor being ordinary multiplication, and the homogeneous dimension of $G \times R$ is Q + 1. Also, the operator

$$\mathcal{L} = \mathcal{J} - \partial_t^2$$

is a sub-Laplacian on $G \times \mathbf{R}$. We shall need the following two facts about \mathcal{L} , due respectively to Bony [1] and Folland [3]:

- (2.1) \mathscr{L} satisfies the strong maximum principle: if f is a real-valued solution of $\mathscr{L}f = 0$ on a connected open set U which attains its supremum or infimum on U at some point in U, then f is constant on U.
- (2.2) There is a unique C^{∞} function K on $G \times \mathbf{R} \{(0,0)\}$ which satisfies (a) $K(rx, rt) = r^{1-Q}K(x, t)$, (b) $\mathscr{L}K$ is the Dirac distribution at (0,0). (This result holds only if Q > 1. If Q = 1, then $G = \mathbf{R}$ and \mathscr{L} is minus the classical Laplacian on \mathbf{R}^2 , and we take K to be the usual logarithmic potential.) Since \mathscr{L} is real, self-adjoint, and invariant under the transformation $(x,t) \to (x,-t)$, K is real and satisfies $K(x,t) = K(x^{-1},-t)$ and K(x,t) = K(x,-t), hence also $K(x,t) = K(x^{-1},t)$.

Let $q(x,t)=\partial_t K(x,t)$. Then $q(rx,rt)=r^{-Q}q(x,t)$, and q satisfies $\mathcal{L}q=0$ away from the origin. Also, $q(x,t)=q(x^{-1},t)$, and since q is odd in t, $X_Iq(x,t)=-X_Iq(x,-t)$ for any I. In particular, $X_Iq(x,0)=0$ for $x\neq 0$, so since q(x,t) is smooth for |x|=1, we have

(2.3)
$$\sup_{|x|=1} |X_I q(x,t)| = O(|t|) \quad \text{as} \quad t \to 0.$$

Henceforth we restrict attention to the half-space t > 0. For each fixed t > 0, set $q_t(x) = q(x, t)$. If $x \neq 0$ and y = x/|x|, we have

$$X_I q_t(x) = X_I q(x, t) = |x|^{-Q-|I|} X_I q(y, |x|^{-1}t),$$

so by (2.3),

$$|X_I q_I(x)| \le |x|^{-Q-|I|} \sup_{|y|=1} |X_I q(y, |x|^{-1}t)|$$

= $O(|x|^{-Q-|I|-1})$ as $x \to \infty$.

It follows that $X_I q_t \in L^1$ for all I, t: in particular, $q_t \in L^1$. Also,

$$q_t(x) = q(x, t) = t^{-Q}q(t^{-1}x, 1) = t^{-Q}q_1(t^{-1}x)$$

Thus

$$\int q_t(x) dx = \int q_1(t^{-1}x) t^{-Q} dx = \int q_1(x) dx = A$$

is independent of t. By a standard argument, it follows that $q_t \to A\delta$ as $t \to 0$, and, more precisely, that $f * q_t \to Af$ uniformly as $t \to 0$ for any $f \in \mathscr{C}$.

We claim that $A \neq 0$. Indeed, q is clearly not identically zero (otherwise K would be constant in t, hence zero by homogeneity), so we can choose $f \in C_0^{\infty}$ such that

$$\int f(x^{-1}) \, q_{t_0}(x) \, dx \neq 0$$

for some $t_0 > 0$. Set $u(x,t) = (f*q_t)(x)$. Then $u(x,t) \to Af(x)$ as $t \to 0$, $\mathscr{L}u = 0$ for t > 0, and $u(0,t_0) \neq 0$. Moreover, since $q(x,t) \to 0$ as $x,t \to \infty$, the same is true of u. If A were zero, we could apply the maximum principle (2.1) to u on a rectangle |x| < R, 0 < t < T and let $T, R \to \infty$ to conclude that $u \equiv 0$. This not being the case, $A \neq 0$.

We now define the Poisson kernel $p(x, t) = p_t(x)$ by

$$p(x, t) = A^{-1}q(x, t) \quad (t > 0, x \in G).$$

Moreover, we define the operator P_t on \mathscr{C} (t>0) by

$$P_t f = f * p_t$$
.

We summarize the properties of the Poisson kernel in a theorem:

(2.4) THEOREM. (a) If $k \ge 0$, $|I| \ge 0$, and r > 0,

$$\partial_t^k X_r p(rx, rt) = r^{-Q-k-|I|} \partial_t^k X_r p(x, t)$$

In particular,

$$|\partial_t^k X_I p(x,t)| = O((|x|+t)^{-Q-k-|I|})$$
 as $x, t \to \infty$.

(b) For each t > 0 and multi-index I,

$$|X_{I}p(x,t)| = O(|x|^{-Q-|I|-1})$$
 as $x \to \infty$.

- (c) $p(x,t) = p(x^{-1},t)$.
- (d) For each t > 0, $\int p_t(x) dx = 1$.
- (e) If $f \in \mathscr{C}$, $P_t f \to f$ uniformly as $t \to 0$. Moreover, $u(x, t) = P_t f(x)$ satisfies $\mathscr{L}u = 0$ for t > 0.
 - (f) For each $k \ge 1$ and t > 0, $\int \partial_t^k p_t(x) dx = 0$.
- (g) For each $k\geqslant 0$ and $|I|\geqslant 0$, there is a constant C>0 such that $\int |\partial_t^k X_I p_t(x)| \, dx\leqslant C t^{-|I|-k}$.
 - (h) p(x, t) > 0 for all $x \in G$, t > 0.
 - (i) $p_t * p_s = p_{t+s}$ (and hence $P_s P_t = P_{s+t}$) for all s, t > 0.
 - (j) $\partial_t p_t = (\partial_t p_{t/2}) * p_{t/2} = p_{t/2} * (\partial_t p_{t/2})$. (By $\partial_t p_{t/2}$ we mean $\partial_s p_s|_{s=t/2}$.)

Proof. (a), (b), (c), (d), and (e) follow from the corresponding properties of q. (f) follows from (d):

$$\int \partial_t^k p_t(x) dx = \partial_t^k \int p_t(x) dx = \partial_t^k 1 = 0.$$

(g) follows from (a):

$$\begin{split} \int |\partial_t^k X_I p_t(x)| \, dx & \leqslant C_1 \bigg[\int\limits_{|x| \leqslant t} t^{-Q-|I|-k} dx + \int\limits_{|x| > t} |x|^{-Q-|I|-k} \, dx \bigg] \\ & = C_1 \big[C_2 t^{-Q-|I|-k} t^Q + C_3 t^{-|I|-k} \big] = C t^{-|I|-k}. \end{split}$$

For (h), given $\varepsilon > 0$ choose a nonnegative $f \in C_0^\infty$ so that $||f * p_1 - p_1||_\infty < \varepsilon$. If $u(x,t) = P_t f(x)$, then, by (a) and (e) we have $u(x,0) = f(x) \ge 0$, $u(x,t) \to 0$ as $x,t \to \infty$, and $\mathcal{L}u = 0$ for t > 0, so by the maximum principle, $u \ge 0$ everywhere. Hence $p_1 \ge -\varepsilon$, and ε being arbitrary, $p_1 \ge 0$. By (a), $p(x,t) \ge 0$ for all x,t. But p cannot achieve its infimum, namely zero, on the region t > 0, so p(x,t) > 0.

To see (i), let s>0 be fixed, and set $u(x,t)=p_s*p_t(x)-p_{s+t}(x)$. Then u is continuous for $t\geqslant 0$, $\mathscr L u=0$ for t>0, $u(x,0)=p_s(x)-p_s(x)=0$, and $u(x,t)\to 0$ as $x,t\to \infty$. By the maximum principle, $u\equiv 0$. Finally, by (i) we have

$$\partial_t p_t = \partial_t (p_{t/2} * p_{t/2}) = 1/2 [(\partial_t p_{t/2}) * p_{t/2} + p_{t/2} * (\partial_t p_{t/2})].$$

- (j) then follows since (by (i) again) $p_{t/2}$ and $\partial_t p_{t/2}$ commute.
 - 3. Suppose $\alpha > 0$, and let $[\alpha]$ be the greatest integer in α . We define

$$\varGamma_{\alpha}^* = \{f \in \mathscr{C} \colon |f|_{\alpha}^* = \sup_{t \in \mathscr{C}} |t^{k-\alpha}| |\partial_t^k P_t f|_{\infty} < \infty\} \quad (k = [\alpha] + 1).$$

 Γ_a^* is a Banach space with norm

$$||f||_{(a)}^* = |f|_a^* + ||f||_{\infty}.$$

We note that $f \in \Gamma_a^*$ if and only if $f \in \mathscr{C}$ and

$$\sup_{0 < t < 1} t^{k-a} \|\partial_t^k P_t f\|_{\infty} < \infty,$$

since for $t \geqslant 1$, by Theorem 2.4 (g), the mere boundedness of f implies that

Moreover, in the definition of Γ_a^* we could replace k by any integer greater than α , as the following proposition shows.

(3.2) Proposition. If j, k are any integers greater than a, the conditions

$$\|\partial_t^j P_t f\|_{\infty} \leqslant C t^{a-j}, \quad \|\partial_t^k P_t f\|_{\infty} \leqslant C' t^{a-k} \quad (0 < t < \infty)$$

are equivalent for $f \in \mathcal{C}$, and the smallest constants C, C' satisfying these inequalities are bounded by multiples of each other, independent of f.

Proof. We may assume that k < j, and by induction it suffices to assume that j = k+1. On the one hand, since by (3.1)

$$\|\partial_t^k P_t f\|_{\infty} \to 0$$
 as $t \to \infty$,

we have

$$\partial_t^k P_t f = -\int_t^\infty \partial_s^{k+1} P_s f ds,$$

so if $\|\partial_t^{k+1} P_t f\|_{\infty} \leqslant C t^{a-k-1}$,

$$\|\partial_t^k P_t f\|_{\infty} \leqslant \int\limits_t^{\infty} \|\partial_s^{k+1} P_s f\|_{\infty} \ ds \leqslant C \int\limits_t^{\infty} s^{a-k-1} ds \ = C(k-a)^{-1} t^{a-k}.$$

On the other hand, by Theorem 2.4 (j),

$$\partial_t^{k+1} P_t f = f * (\partial_t^k p_{t/2}) * \partial_t p_{t/2} = \partial_t^k P_{t/2} f * \partial_t p_{t/2},$$

so by Theorem 2.4 (g), if $\|\partial_t^k P_t f\|_{\infty} \leqslant C' t^{\alpha-k}$,

$$\begin{aligned} \|\partial_t^{k+1} P_t f\|_{\infty} &\leqslant \|\partial_t^k P_{t/2} f\|_{\infty} \|\partial_t p_{t/2}\|_1 \\ &\leqslant C'(t/2)^{a-k} \cdot C_1(t/2)^{-1} = C' C_1 2^{k+1-a} t^{a-k-1}. \end{aligned}$$

This completes the proof.

In view of the remarks following the definition of Γ_a^* , the following result is immediate:

(3.3) COROLLARY. $\Gamma_a^* \subset \Gamma_\beta^*$ and $\| \|_{(a)}^*$ dominates $\| \|_{(\beta)}^*$ whenever $a > \beta$. We now derive some more properties of Γ_a^* .

(3.4) LEMMA. If k+|I|>a>0, there is a constant C>0 such that for all $f\in \Gamma_a^*$,

$$\|\partial_t^k X_I P_t f\|_{\infty} \leqslant C \|f\|_a^* t^{a-k-|I|}.$$

Proof. By Theorem 2.4 (j),

$$\partial_t^k X_I P_t f = f * (\partial_t^k p_{t/2}) * (X_I p_{t/2}) = (\partial_t^k P_{t/2} f) * (X_I p_{t/2}).$$

If k > a, then $\|\partial_t^k P_t f\|_{\infty} \leq C_1 \|f\|_a^* t^{a-k}$, so by Theorem 2.4 (g),

$$\|\partial_t^k X_I P_t f\|_{\infty} \leqslant \|\partial_{t_i}^k P_{t/2} f\|_{\infty} \|X_I p_{t/2}\|_1 \leqslant C \|f\|_a^* t^{a-k-|I|}.$$

This estimate is valid in any event if k is replaced by [a]+1. If $a-|I| < k \le a$, the desired result follows by integrating [a]+1-k times as in the proof of Proposition 3.2.

(3.5) LEMMA. If $f \in \mathcal{C}$, $X_I P_i f \to X_I f$ as $t \to 0$, in the sense of distributions. (This assertion isn't completely obvious, since $X_I P_i f \neq P_i X_I f$.)

Proof. Choose $\varphi \in C_0^{\infty}$ with $0 \leqslant \varphi \leqslant 1$ and $\varphi(x) = 1$ for $|x| \leqslant 1$, and write

$$X_I P_t f = f * [\varphi X_I p_t] + f * [(1-\varphi) X_I p_t].$$

On the one hand, $\varphi X_I p_t$ has compact support and converges to $\varphi X_I \delta = X_I \delta$ as $t \to 0$, so since convolution is continuous from $\mathscr{D}' \times \mathscr{E}'$ to \mathscr{D}' ,

$$f * [\varphi X_I p_t] \rightarrow f * X_I \delta = X_I f$$

as distributions when $t \to 0$. On the other hand, by Theorem 2.4 (a, b), $(1-\varphi)X_Ip_t \in L^1$, and

G. B. Folland

$$\begin{split} \|(1-\varphi)X_Ip_t\|_1 & \leqslant \int\limits_{|x|\geqslant 1} |X_Ip_t(x)|\,dx = \int\limits_{|x|\geqslant 1/t} |X_Ip_t^-(tx)|\,t^Qdx \\ & = t^{-|I|}\int\limits_{|x|\geqslant 1/t} |X_Ip_1(x)|\,dx \leqslant Ct^{-|I|}\int\limits_{|x|\geqslant 1/t} |x|^{-Q-|I|-1}dx \\ & = C't^{-|I|}\cdot t^{|I|+1} = C't \to 0 \quad \text{as} \quad t\to 0\,. \end{split}$$

Hence $f * [(1-\varphi)X_I p_t] \to 0$ uniformly as $t \to 0$.

(3.6) Proposition. If a>k, then $\Gamma_a^*\in\mathscr{C}^k$ and there is a constant C>0 such that

$$||X_I f||_{\infty} \leqslant C ||f||_{(a)}^* \qquad (f \in \Gamma_a^*, |I| \leqslant k).$$

Proof. We must show that if $f \in \Gamma_a^*$ and |I| < a, then $X_I f \in \mathscr{C}$ and $\|X_I f\|_{(a)} \le C \|f\|_{(a)}^*$. By decreasing a, we may assume that a < |I| + 1. Then if 0 < t < s, by Lemma 3.4 we have

$$\begin{split} (3.7) \quad \|X_I P_s f - X_I P_t f\|_{\infty} & \leqslant \int\limits_t^s \|\partial_r X_I P_r f\|_{\infty} dr \\ & \leqslant C_1 \|f\|_a^* \int\limits_t^s r^{\alpha - |I| - 1} dr \, = C_2 \|f\|_a^* (s^{\alpha - |I|} - t^{\alpha - |I|}) \,. \end{split}$$

Since $\alpha - |I| > 0$, $\{X_I P_t f\}$ is Cauchy in the uniform norm as $t \to 0$, so by Lemma 3.5, $X_I P_t f \to X_I f$ uniformly as $t \to 0$. Thus $X_I f \in \mathscr{C}$, and by taking s = 1 and letting $t \to 0$ in (3.7), we obtain

$$\begin{split} \|X_I f\|_{\infty} &\leqslant \|X_I P_1 f\|_{\infty} + \|X_I P_1 f - X_I f\|_{\infty} \\ &\leqslant \|X_I p_1\|_1 \|f\|_{\infty} + C_2 \|f\|_{\alpha}^* \leqslant C \|f\|_{(\alpha)}^*. \end{split}$$

The same argument, with X_I replaced by ∂_t , proves the following: (3.8) Proposition. If a > 1 and $f \in \Gamma_a^*$, then $\partial_t P_t f$ converges uniformly to a limit in $\mathscr C$ as $t \to 0$, and there is a constant C > 0, independent of t and f, such that $\|\partial_t P_t f\|_{\infty} \leq C\|f\|_{(a)}^{\alpha}$:

The following theorem is related to some well-known approximation and interpolation results for the classical Lipschitz classes: see, for example, [2]. A special case of this theorem (for Γ_a rather than Γ_a^*) was stated in [3], but the proof given there seems to be valid only when G is stratified of step 2.

(3.9) THEOREM. Suppose $0 < \alpha_0 < \alpha < \alpha_1 < \infty$, and $f \in \mathcal{C}$. Then $f \in \Gamma_a^*$ if and only if there is a constant B > 0 such that for every r > 0 there exist $f_r \in \Gamma_{a_0}^*$, $f^r \in \Gamma_{a_1}^*$ with $|f_r|_{a_0}^* \leq Br^{\alpha-a_0}$, $|f^r|_{a_1}^* \leq Br^{\alpha-a_1}$, and $f = f_r + f^r$. In this case, the smallest such B is comparable to $|f|_a^*$. The same conclusions hold if $|\cdot|_b^*$ is replaced by $|\cdot|_{(B)}^*$ ($\beta = \alpha_0, \alpha, \alpha_1$).

Proof. The "if" part is easy: suppose we can find B, f_r, f^r as above. Then if $k > a_1$ we have, for every r > 0 and t > 0,

$$\begin{split} \|\partial_{t}^{k} P_{t} f\|_{\infty} & \leq \|\partial_{t}^{k} P_{t} f_{r}\|_{\infty} + \|\partial_{t}^{k} P_{t} f^{r}\|_{\infty} \\ & \leq C_{1} B (r^{a-a_{0}} t^{a_{0}-k} + r^{a-a_{1}} t^{a_{1}-k}). \end{split}$$

Take r=t; it follows that $f \in \Gamma_a^*$ and $|f|_a^* \leq 2C_1B$. Also, if $||f_r||_{\infty} \leq Br^{\alpha-a_0}$ and $||f^r||_{\infty} \leq Br^{\alpha-a_1}$, taking r=1 we have

$$||f||_{\infty} \leq ||f_r||_{\infty} + ||f^r||_{\infty} \leq 2B$$

so that $||f||_{(a)}^* \leq 2 \max(C_1, 1) B$.

To prove the converse, note first that it suffices to consider $r \leq 1$, since for r > 1 we can simply take $f_r = f$, $f^r = 0$. Suppose first that $a - a_0 \leq 1$. Given $f \in \Gamma_a^*$ and $r \leq 1$, set $f^r = P_r f$, $f_r = f - P_r f$, and $k = [a_1] + 1$. Then by Theorem 2.4 (i) and Proposition 3.2,

$$\begin{split} \|\partial_t^k P_t f^r\|_{\infty} &= \|\partial_t^k P_{t+r} f\|_{\infty} \leqslant C |f|_a^* (t+r)^{a-a_1} (t+r)^{a_1-k} \\ &\leqslant C |f|_a^* r^{a-a_1} t^{a_1-k}. \end{split}$$

Thus $|f^r|_{a_1}^* \leqslant C|f|_a^* r^{a-a_1}$. Also, since $r \leqslant 1$,

$$||f^r||_{\infty} \leq ||p_r||_1 ||f||_{\infty} \leq r^{\alpha - \alpha_1} ||f||_{\infty},$$

so $||f'||_{(a_1)}^* \leq C ||f||_{(a)}^* r^{a-a_1}$. On the other hand,

$$\partial_t^k P_t f_r = \partial_t^k P_t f - \partial_t^k P_{t+r} f = -\int_t^{t+r} \partial_s^{k+1} P_s f ds,$$

80

$$\begin{split} \|\partial_t^k P_l f_r\|_\infty &\leqslant \int\limits_t^{t+r} \|\partial_s^{k+1} P_s f\|_\infty ds \leqslant C_1 |f|_\alpha^* \int\limits_t^{t+r} s^{a-k-1} ds \\ &\leqslant C_2 |f|_a^* [t^{a-k} - (t+r)^{a-k}] \leqslant C_2 |f|_a^* t^{a-k}, \end{split}$$

and also

$$\|\partial_t^k P_t f_r\|_{\infty} \leqslant r \sup_{t \leqslant s \leqslant t+r} \|\partial_s^{k+1} P_s f\|_{\infty} \leqslant C_1 |f|_a^* r t^{a-k-1}.$$

Now apply the inequality $\min(a, b) \le a^{\theta} b^{1-\theta}$ $(a, b > 0, 0 \le \theta \le 1)$ to the right hand sides of these estimates, with $\theta = a - a_0$, obtaining

$$\|\partial_t^k P_t f_r\|_{\infty} \leqslant C \|f\|_{\alpha}^* r^{\alpha - a_0} t^{a_0 - k}.$$

Thus $|f_r|_{\alpha_0}^* \leqslant C |f|_{\alpha}^* r^{\alpha-\alpha_0}$. Also, we have

$$\|f_r\|_{\infty} = \left\| \int_0^r \partial_t P_t f dt \right\|_{\infty} \leqslant \int_0^r \|\partial_t P_t f\|_{\infty} dt.$$

If $\alpha \leq 1$, then $\alpha - \alpha_0 < 1$ and $f \in \Gamma_{\alpha - \alpha_0}$, so

$$\|f_r\|_{\infty} \leqslant |f|_{\alpha-a_0}^* \int\limits_0^r t^{a-a_0-1} dt \leqslant C \, |f|_{a-a_0}^* r^{a-a_0} \leqslant C \, \|f\|_{(a)}^* r^{a-a_0} \, .$$

If a > 1, then by Proposition 3.8,

$$||f_r||_{\infty} \leqslant C ||f||_{(a)}^* r \leqslant C ||f||_{(a)}^* r^{a-a_0}$$

since $\alpha - \alpha_0 \leqslant 1$, $r \leqslant 1$. In any event, we have $||f_r||_{(\alpha_0)}^* \leqslant C ||f||_{(\alpha)}^* r^{\alpha - \alpha_0}$.

We now settle the general case by induction: Suppose the theorem is true when $a-a_0 \leq j-1$, and suppose $j-1 < a-a_0 \leq j$. If $f \in \Gamma_a^*$ and r>0, we can find $g_r \in \Gamma_{a-1}^*$, $g^r \in \Gamma_{a-1}^*$ with $|g_r|_{a-1} \leq C_1 |f|_a^* r$, $|g^r|_a^* \leq C_1 |f|_a^* r^{a-a_1}$, and $f=g_r+g^r$. But since $(a-1)-a_0 \leq j-1$, we can apply the inductive hypothesis to g_r to find $h_r \in \Gamma_a$, $h^r \in \Gamma_a$, such that $g_r = h_r + h^r$,

$$\begin{split} |h_r|_{a_0}^* &\leqslant C_2 |g_r|_{a-1}^* r^{a-1-a_0} \leqslant C_1 C_2 |f|_a^* r^{a-a_0}, \\ |h^r|_{a_1}^* &\leqslant C_2 |g_r|_{a-1}^* r^{a-1-a_1} \leqslant C_1 C_2 |f|_a^* r^{a-a_1}. \end{split}$$

Thus we have merely to take $f_r = h_r$, $f^r = h^r + g^r$. This argument works just as well with $| \ |_{\beta}^*$ replaced by $\| \ \|_{(\beta)}^*$ ($\beta = \alpha_0, \alpha - 1, \alpha, \alpha_1$), so the proof is complete.

Remark. An examination of the proof shows that if $f \in \Gamma_a^*$ and $j-1 < a-a_0 \le j$, the f_r we have constructed (for $r \le 1$) is $(I-P_r)^j f$, and the f^r we have constructed is not just in Γ_a^* , but in C^{∞} .

As a simple corollary of Theorem 3.9, we obtain the following interpolation theorem.

(3.10) THEOREM. Let G and H be stratified groups, $0 < a_0 < a_1$, and $0 < \beta_0 \leqslant \beta_1$. Suppose T is a bounded linear transformation from $\Gamma^*_{a_0}(G)$ to $\Gamma^*_{a_0}(H)$ whose restriction to $\Gamma^*_{a_0}(G)$ is bounded from $\Gamma^*_{a_0}(G)$ to $\Gamma^*_{\beta_0}(H)$.

Then if $a = \theta \alpha_1 + (1 - \theta) \alpha_0$, $\beta = \theta \beta_1 + (1 - \theta) \beta_0$ $(0 < \theta < 1)$, the restriction of T to $\Gamma_a^*(G)$ is bounded from $\Gamma_a^*(G)$ to $\Gamma_\beta^*(H)$.

Proof. If $f \in \Gamma_a^*(G)$, for each r > 0 write $f = f_r + f^r$, where

$$||f_r||_{(a_0)}^* \leqslant C ||f||_{(\alpha)}^* r^{a-a_0} = C ||f||_{(\alpha)}^* r^{\theta(a_1-a_0)},$$

$$||f^r||_{(a_1)}^* \leqslant C ||f||_{(\alpha)}^* r^{a-a_1} = C ||f||_{(\alpha)}^* r^{(\theta-1)(a_1-a_0)}.$$

Given s > 0, take $r = s^{-(\beta_1 - \beta_0)/(a_1 - a_0)}$ and set $(Tf)_s = T(f_r)$, $(Tf)^s = T(f^r)$. Then $Tf = (Tf)_s + (Tf)^s$, and

$$\begin{split} &\|(Tf)_s\|_{(\beta_0)}^{\bullet} \leqslant A \, \|f_r\|_{(a_0)}^{\bullet} \leqslant A C \|f\|_{(a)}^{\bullet} s^{\theta(\beta_1 - \beta_0)} = A C \|f\|_{(a)}^{\bullet} s^{\beta - \beta_0}, \\ &\|(Tf)^s\|_{(\beta_1)}^{\bullet} \leqslant A \, \|f^r\|_{(a_1)}^{\bullet} \leqslant A C \|f\|_{(a)}^{\bullet} s^{(\theta - 1)(\beta_1 - \beta_0)} = A C \|f\|_{(a)}^{\bullet} s^{\beta - \beta_1}. \end{split}$$

Therefore $Tf \in \Gamma_{\beta}^{*}(H)$ and $||Tf||_{(\beta)}^{*} \leqslant C' ||f||_{(\alpha)}^{*}$.

4. Our aim now is to prove the following theorem:

(4.1) THEOREM. If a > 0, $\Gamma_a = \Gamma_a^*$ and the norms $\| \cdot \|_{(a)}$ and $\| \cdot \|_{(a)}^*$ are equivalent.

The proof is lengthy and will be accomplished in several steps. We begin with some lemmas.

(4.2) LEMMA. There is a constant C > 0 such that for all $f \in \mathcal{C}^1$,

$$\sup_{x,y} |f(xy)-f(x)|/|y| \leqslant C \sum_{1}^{n} ||X_{j}f||_{\infty}.$$

Proof. See [3], Proposition 5.4.

(4.3) Lemma. If $0 < \alpha < 2$, there is a constant C > 0 such that for all $f \in \Gamma_a$,

$$\sup_{x,y} |f(xy) + f(xy^{-1}) - 2f(x)|/|y|^a \leqslant C|f|_a.$$

Proof. See [3], Proposition 5.5, for the case where f has compact support. The argument given there to remove this restriction is defective, and we take this opportunity to provide a valid proof. We need only consider a > 1, as the estimate is obvious for $a \le 1$. For brevity we shall write $d_x^2 f(x) = f(xy) + f(xy^{-1}) - 2f(x)$.

Suppose $f \in \Gamma_a$, 1 < a < 2. If f is constant, the estimate is trivial; otherwise, $|f|_a \neq 0$, and we set $R = (\|f\|_{\infty}/|f|_a)^{1/a}$. It will suffice to show that

$$\sup \{ |\Delta_y^2 f(x)| / |y|^a \colon x \in G, |y| \leqslant R \} \leqslant C |f|_a,$$

since for |y| > R we have

$$|\Delta_y^2 f(x)|/|y|^a \le |\Delta_y^2 f(x)||f|_a/||f||_\infty \le 4|f|_a.$$

Choose $\varphi \in C_0^{\infty}$ such that $\|\varphi\|_{\infty} = 1$ and $\varphi(x) = 1$ for $|x| \leq 1$, and for $\varepsilon > 0$, set $\varphi_{\varepsilon}(x) = \varphi(\varepsilon x)$. Then $\varphi_{\varepsilon} f \in \Gamma_a$, and from Leibniz's rule and Lemma 4.2 we see that

$$|\varphi_{\varepsilon}f|_{a}\leqslant \left(\|\varphi_{\varepsilon}\|_{\infty}+\sum_{1}^{n}\|X_{j}\varphi_{\varepsilon}\|_{\infty}\right)|f|_{a}+\left(\|f\|_{\infty}+\sum_{1}^{n}\|X_{j}f\|_{\infty}\right)|\varphi_{\varepsilon}|_{a}.$$

But $||X_j \varphi_{\varepsilon}||_{\infty} = \varepsilon ||X_j \varphi||_{\infty}$, and

$$|\varphi_{\varepsilon}|_{\alpha} = |\varphi_{\varepsilon}|_{\alpha-1} + \sum_{1}^{n} |X_{j}\varphi_{\varepsilon}|_{\alpha-1}^{\bullet} = \varepsilon^{\alpha-1}|\varphi|_{\alpha-1} + \varepsilon^{\alpha} \sum_{1}^{n} |X_{j}\varphi|_{\alpha-1}.$$

Since $\|\varphi\|_{\infty} = 1$, it follows that for some A > 0, depending only on φ ,

$$|\varphi_{\varepsilon}f|_{\alpha}\leqslant (1+A\varepsilon)|f|_{\alpha}+A\varepsilon^{\alpha-1}\Big(\|f\|_{\infty}+\sum_{1}^{n}\|X_{j}f\|_{\infty}\Big).$$

Now, from the estimate (1.2) and the fact that $\varphi_{\epsilon}(x) = 1$ for $|x| \leq 1/\epsilon$, it follows that if ϵ is sufficiently small, $\mathcal{A}_{v}^{2}f(x) = \mathcal{A}_{v}^{2}(\varphi_{\epsilon}f)(x)$ for $|x| \leq 1/2\epsilon$ and $|y| \leq R$. But since $\varphi_{\epsilon}f$ has compact support,

$$\begin{split} \sup \left\{ |\varDelta_y^2 f(x)| / |y|^a \colon \, |x| \leqslant 1 / 2\varepsilon, \ \, |y| \leqslant R \right\} \\ &\leqslant \sup \left\{ |\varDelta_y^2 (\varphi_\varepsilon f)(x)| / |y|^a \colon \, x, \, y \in G \right\} \\ &\leqslant C \left| \varphi_\varepsilon f \right|_a \\ &\leqslant C \left[(1 + A\varepsilon) \left| f \right|_a + A\varepsilon^{a-1} \left(\|f\|_\infty + \sum_{i=1}^n \, \|X_j f\|_\infty \right) \right]. \end{split}$$

Letting $\varepsilon \to 0$, we obtain the desired result.

(4.4) PROPOSITION. If a is not an even integer, $\Gamma_a \subset \Gamma_a^*$, and $\| \cdot \|_{(a)}$ dominates $\| \cdot \|_{(a)}^*$.

Proof. First suppose that $0 < \alpha < 2$ and $f \in \Gamma_a$. By Theorem 2.4 (c,f),

$$\partial_t^2 P_t f(x) \, = \, \tfrac{1}{2} \int \left[f(xy) + f(xy^{-1}) - 2 f(x) \right] \partial_t^2 \, p_t(y) \, dy \, .$$

Hence, by Lemma 4.3 and Theorem 2.4 (a),

$$\begin{split} \|\partial_t^2 P_t f\|_\infty &\leqslant C_1 |f|_a \int |y|^a (|y|+t)^{-2-Q} dy \\ &\leqslant C_1 |f|_a \Big[\int\limits_{|y|\leqslant t} |y|^a t^{-2-Q} dy + \int\limits_{|y|>t} |y|^{\alpha-2-Q} dy \Big] \\ &\leqslant C_2 |f|_a t^{a-2}. \end{split}$$

Thus $f \in \Gamma_a$ and $|f|_a^* \leqslant C_2 |f|_a$, hence $||f||_{(a)}^* \leqslant C ||f||_{(a)}$.

For the general case, suppose $2k < \alpha < 2k+2$ and proceed by induction on k. If $f \in \Gamma_a$, then $\mathcal{J} f \in \Gamma_{a-2} \subset \Gamma_{a-2}^*$, so

$$\|\partial_t^{2k} P_t \mathcal{J} f\|_{\infty} \leqslant C \|\mathcal{J} f\|_{q-2} t^{\alpha-2-2k} \leqslant C \|f\|_{\alpha} t^{\alpha-(2k+2)}.$$

But because of the differential equation $\mathscr{J}-\partial_t^2=\mathscr{L}=0$ governing the Poisson semigroup,

$$\partial_t^{2k} P_t \mathscr{I} f = \partial_t^{2k+2} P_t f.$$

Thus $f \in \Gamma_a^*$ and $|f|_a^* \leqslant C|f|_a$, hence $||f||_{(a)}^* \leqslant C||f||_{(a)}$.

(4.5) Proposition. If a is not an integer, $\Gamma_a^* \subset \Gamma_a$, and $\| \cdot \|_{(a)}^*$ dominates $\| \cdot \|_{(a)}$.

Proof. Let $a=k+\beta$, where k is an integer and $0<\beta<1$, and suppose $f\in \varGamma_a^*$. By Proposition 3.6, $f\in \mathscr{C}^k$ and

$$\sum_{|I|\leqslant k}\|X_If\|_{\infty}\leqslant C\|f\|_{(a)}^*.$$

It remains to show that for $|I| \leq k$, $X_I f \in \Gamma_\beta$ and $|X_I f|_\beta \leq C |f|_a^*$. Fix I; replacing a by a-|I|, we may assume that |I|=k. The proof of Prop-

osition 3.6 shows that

$$\|X_If - X_IP_tf\|_{\infty} \leqslant \int\limits_0^t \|\partial_s X_IP_sf\|_{\infty} ds \leqslant C_1|f|_a^*t^{\beta}.$$

Also, by Lemmas 4.2 and 3.4,

$$|X_IP_tf(xy)-X_IP_tf(x)|\leqslant C_2|y|\sum_1^n\|X_jX_IP_tf\|_\infty\leqslant C_2|y|\,|f|_\alpha^*t^{\beta-1},$$

Hence, for all $x, y \in G$ and t > 0,

$$\begin{split} &|X_I f(xy) - X_I f(x)| \\ & \leq |X_I f(xy) - X_I P_t f(xy)| + |X_I P_t f(xy) - X_I P_t f(x)| + |X_I P_t f(x)| - X_I f(x)| \\ & \leq |f|_a^* (2C_1 t^{\beta} + C_3 |y| \, t^{\beta-1}). \end{split}$$

Taking t = |y|, we are done.

(4.6) PROPOSITION. If k is a positive integer, $\Gamma_k^* \subset \Gamma_k$, and $\| \|_{(k)}^*$ dominates $\| \|_{(k)}$.

Proof. Suppose $f \in \Gamma_k^*$. By Proposition 3.6, $f \in \mathcal{C}^{k-1}$ and

$$\sum_{|I|\leqslant k-1}\; \|X_I f\|_{\infty} \leqslant C \|f\|_{(k)}^*.$$

As in the proof of Proposition 4.5, we must show that $X_I f \in \Gamma_1$ and $|X_I f|_1 \leqslant C ||f||_{(k)}^*$ for $|I| \leqslant k-1$, and it suffices to consider |I| = k-1. By Theorem 3.9 and Proposition 4.5, for each r > 0 we can write $f = f_r + f^r$, where $f_r \in \Gamma_{k-(1/2)}, f^r \in \Gamma_{k+(1/2)}, ||f_r||_{(k-(1/2))} \leqslant C ||f||_{(k)}^* r^{1/2}, ||f^r||_{(k+(1/2))} \leqslant C ||f||_{(k)}^* r^{-1/2}$. Thus by Lemma 4.3,

$$\begin{split} |X_I f_r(xy) + X_I f_r(xy^{-1}) - 2 X_I f_r(x)| \leqslant A \, |X_I f_r|_{1/2} \, |y|^{1/2} \leqslant A C \, ||f||_{(k)}^* r^{1/2} \, |y|^{1/2} \,, \\ |X_I f^r(xy) + X_I f^r(xy^{-1}) - 2 X_I f^r(x)| \leqslant A \, |X_I f^r|_{3/2} \, |y|^{3/2} \leqslant A C \, ||f||_{(k)}^* r^{-1/2} \, |y|^{3/2} \,. \end{split}$$

Thus for all $x, y \in G$ and r > 0,

$$|X_I f(xy) + X_I f(xy^{-1}) - 2X_I f(x)| \leqslant AC ||f||_{(k)}^* (r^{1/2} |y|^{1/2} + r^{-1/2} |y|^{3/2}).$$

Taking r = |y|, we are done.

We have now established that $\Gamma_a^* \subset \Gamma_a$ for all a > 0, and that $\Gamma_a \subset \Gamma_a^*$ whenever a is not an even integer. The most delicate part of the argument now comes in showing that $\Gamma_2 \subset \Gamma_2^*$. For this we shall need to invoke the theory of the Poisson semigroup.

The infinitesimal generator of the Poisson semigroup $\{P_t\}$ is $-\mathcal{J}^{1/2}$, the negative of the square root of the sub-Laplacian, defined on the domain

$$D = \{ f \in \mathscr{C} : \lim_{t \to 0} t^{-1}(P_t f - f) \text{ exists in the uniform norm} \}.$$

It follows easily from Proposition 3.8 that $\Gamma_a^* \subset D$ if a > 1. Since $\Gamma_1 = \Gamma_1^*$

^{4 -} Studia Mathematica 66.1

 $\subset \Gamma_{1/2}^* = \Gamma_{1/2}$, we see that $\Gamma_2 \subset \Gamma_{3/2} = \Gamma_{3/2}^* \subset D$. We wish to study more closely the functions $\mathscr{J}^{1/2}f$, $f \in \Gamma_2$.

If Y is a left-invariant differential operator on G, \tilde{Y} will denote the right-invariant differential operator which agrees with Y at 0. Thus for any $f \in \mathscr{D}'$, $Yf = f * Y \delta$ and $\tilde{Y}f = Y \delta * f$. Also, we recall from [3] that a kernel of type λ ($\lambda > 0$) is a C^{∞} function on $G - \{0\}$ which is homogeneous of degree $\lambda - Q$. Such functions, being locally integrable on G, define distributions. We shall not repeat here the definition of a "kernel of type zero", which is more complicated, but simply remark that if K is a kernel of type 1, \tilde{X}_fK and X_fK are kernels of type zero for $1 \le j \le n$.

If $f \in C_0^{\infty}$, it follows from Section 3 of [3] that

$$\mathscr{J}^{1/2}f = \mathscr{J}^{-1/2}\mathscr{J}f = (f * \mathscr{J}\delta) * R_1 = f * (\mathscr{J}\delta * R_1) = f * \tilde{\mathscr{J}}R_1,$$

where R_1 , a kernel of type 1, is the convolution kernel of $\mathscr{J}^{-1/2}$, and $\mathscr{J}R_1$ is thus well defined as a distribution. (The use of the associative law is justified since everything except R_1 has compact support.) Let us fix $\varphi \in C_0^{\infty}$ such that $\varphi(x) = 1$ for $|x| \leq 1$ and $\varphi(x) = 0$ for $|x| \geq 2$. Then, if we set $G_0 = \mathscr{J}(\varphi R_1)$ and $G_{\infty} = \mathscr{J}((1-\varphi)R_1)$, we have

(4.8) LEMMA. If $f \in \mathcal{C}$, then $f * G_{\infty}$ is well-defined and is in Γ_a for all $\alpha > 0$. Moreover, $||f * G_{\infty}||_{(a)} \leq C_a ||f||_{\infty}$.

Proof. G_{∞} is C^{∞} , and it agrees outside the support of φ with the function $\mathscr{J}R_1$, which is homogeneous of degree -Q-1. Hence, for any multi-index I,

$$|X_I G_\infty(x)| = O(|x|^{-Q-1-|I|})$$
 as $x \to \infty$.

In particular, $X_I G_{\infty} \in L^1$ for all I, so

$$X_I(f*G_\infty) = f*X_IG_\infty \in \mathscr{C}$$

for all I, and

$$||X_I(f*G_\infty)||_\infty \leqslant ||X_IG_\infty||_1 ||f||_\infty.$$

The assertion then follows from Lemma 4.2.

Next, if $f \in \mathcal{D}'$, $f * G_0$ is well-defined as a distribution since $G_0 \in \mathcal{E}'$, and we have

$$(4.9) f*G_0 = -\sum_1^n f*\left(X_j \, \delta*X_j \, \delta*\left(\varphi R_1\right)\right) = -\sum_1^n \left(f*X_j \delta\right)*\left(X_j \, \delta*\left(\varphi R_1\right)\right)$$
$$= -\sum_1^n X_j f*\tilde{X}_j(\varphi R_1).$$

(4.10) LEMMA. The mapping $g \to g * \tilde{X}_j(\varphi R_1)$ is a bounded operator on Γ_1 $(j=1,\ldots,n)$.

This lemma will be proved in the next section. Assuming it for the moment, we establish the following proposition, which completes the proof of Theorem 4.1.

(4.11) PROPOSITION. If k is a positive integer, $\Gamma_{2k} \subset \Gamma_{2k}^*$ and $\| \|_{(2k)}$ dominates $\| \|_{(2k)}^*$.

Proof. Consider first the case k = 1. If $f \in \Gamma_2$, then $X_j f \in \Gamma_1$, so (4.9) and Lemmas 4.8 and 4.10 imply that the mapping

$$f \rightarrow f * G_0 + f * G_{\infty}$$

is bounded from Γ_2 to Γ_1 . We know, moreover, that $\Gamma_2 \subset D$. The arguments used by Hunt [4] to characterize infinitesimal generators of probability semigroups on G can then easily be extended to show that the formula (4.7) remains valid for $f \in \Gamma_2$. (See, in particular, Sections 4, 6, and 7 of [4]. The measure on the complement of the origin which Hunt calls G is, in our case, $\tilde{\mathscr{J}}R_1(x)dx$.) In short, if $f \in \Gamma_2$ then $\mathscr{J}^{1/2}f \in \Gamma_1 = \Gamma_1^*$, so

$$\|\partial_t^3 P_t f\|_\infty = \|\partial_t^2 P_t (-\mathscr{J}^{1/2} f)\|_\infty \leqslant \|\mathscr{J}^{1/2} f\|_1^* t^{-1} \leqslant C_1 \|\mathscr{J}^{1/2} f\|_{(1)} t^{-1} \leqslant C_2 \|f\|_{(2)} t^{-1}.$$

Thus $f \in \Gamma_2^*$ and $||f||_{(2)}^* \leqslant C ||f||_{(2)}$.

The assertion is therefore proved for k=1, and the general case follows by induction on k as in the proof of Proposition 4.4.

- 5. It remains to prove Lemma 4.10. The compactly supported distributions $K_i = \tilde{X}_i(\varphi R_1)$ have the following properties:
 - (a) K_i is C^{∞} away from 0 and is supported in $\{x: |x| \leq 2\}$.
 - (b) K_i agrees with a kernel of type zero (namely $\tilde{X}_i R_1$) on $\{x : |x| \leq 1\}$.
- (c) As a linear functional on C^{∞} , K_j annihilates constant functions, for

$$\langle K_j, C \rangle = -\langle \varphi R_1, \tilde{X}_j C \rangle = -\langle \varphi R_1, 0 \rangle = 0.$$

A compactly supported distribution having the properties (a), (b), and (c) will be called a *truncated singular kernel*. We shall prove the following generalization of Lemma 4.10 (the generalization is necessary for the proof):

(5.1) PROPOSITION. If K is a truncated singular kernel, the mapping $f \rightarrow f * K$ is a bounded operator on Γ_a , $0 < \alpha < 2$.

The proof will be accomplished by a series of lemmas.

(5.2) LEMMA. If K is a truncated singular kernel, the mapping $f \rightarrow f * K$ is a bounded operator on Γ_a , $0 < \alpha < 1$.

Proof. Korányi–Vági [5] have shown that convolution with a kernel of type zero preserves $\Gamma_a \cap L^p$ (0 $< \alpha < 1$, 1), and their argument shows equally well that convolution with <math>K preserves Γ_a and that

 $|f*K|_{\alpha} \leq C|f|_{\alpha}$ (0 < α < 1). Also,

$$|f*K(x)| = \left| P.V. \int f(xy^{-1}) K(y) dy \right| = \left| \int [f(xy^{-1}) - f(x)] K(y) dy \right|$$

$$\leq C_1 |f|_a \int_{|y| \leq 5} |y|^a |y|^{-Q} dy = C_2 |f|_a,$$

so that $||f*K||_{\infty} \leqslant C_2 |f|_a$.

. Next, if $y \in G$, define the operator Δ_y on functions on G by $\Delta_y f(x) = f(xy) - f(x)$.

(5.3) LEMMA. Let F be a kernel of type 1. There exist constants $\varepsilon > 0$, C > 0 such that whenever $\max(|y|, |z|, |w|) \leq \varepsilon |x|$,

$$|\Delta_y \Delta_z F(x)| \leqslant C |y| |z| |x|^{-Q-1},$$

 $|\Delta_y \Delta_z \Delta_w F(x)| \leqslant C |y| |z| |w| |x|^{-Q-2}.$

Proof. If x, y, z, w are replaced by rx, ry, rz, rw (r > 0), both sides of these inequalities are multiplied by r^{1-Q} , so it suffices to prove them for |x| = 1 and $\max(|y|, |z|, |w|) \le \varepsilon$. Here ε is to be taken small enough so that when x, y, z, w are thus restricted, the products xwzy, xwz, xwy, xzy, xy, xz, xw are bounded away from 0 (which is possible by (1.2)). In this case, since F is C^{∞} away from 0, it follows from Taylor's theorem and (1.3) that

$$\begin{split} |\varDelta_y \varDelta_z F(x)| \leqslant C_1 \|y\| \, \|z\| \leqslant C_2 \, |y| \, |z| \, &= \, C_2 |y| \, |z| \, |x|^{-Q-1}, \\ |\varDelta_y \varDelta_z \varDelta_w F(x)| \leqslant C_3 \|y\| \, \|z\| \, \|w\| \leqslant C_4 \, |y| \, |z| \, |w| \, &= \, C_4 \, |y| \, |z| \, |w| \, |x|^{-Q-2}. \end{split}$$

(5.4) LEMMA. Let F be a kernel of type 1 and K a truncated singular kernel. Then F*K is C^{∞} away from 0, and for $i, j = 1, \ldots, n$,

$$|X_j(F*K)(x)| = O(|x|^{-1-Q})$$
 as $x \to \infty$,
 $|X_iX_j(F*K)(x)| = O(|x|^{-2-Q})$ as $x \to \infty$.

Proof. F*K is well-defined as a distribution since $F\in \mathscr{D}',\ K\in \mathscr{E}',$ and since F and K are C^∞ away from 0 it follows easily that F*K is. Let ε be as in Lemma 5.3, and assume that $|x|\geqslant 2/\varepsilon$. As K annihilates constants, for any $z\in G$,

$$\Delta_z(F*K)(x) = \Delta_z \int [F(xy^{-1}) - F(x)] K(y) dy = \int \Delta_z \Delta_{y^{-1}} F(x) K(y) dy.$$

Since K(y) = 0 for $|y| \ge 2$, Lemma 5.3 implies that for $|z| \le 2$.

$$|\Delta_z(F*K)(x)| \leqslant C \int_{|y| \leqslant 2} |z| |y| |x|^{-1-Q} |y|^{-Q} dy \leqslant C' |z| |x|^{-1-Q}.$$

Take $z = \exp(tX_j)$; then |z| is proportional to t, so dividing both sides of this inequality by t and letting $t \to 0$,

$$|X_j(F*K)(x)| \leqslant C''|x|^{-1-Q} \quad (|x| \geqslant 2/\varepsilon).$$

The second estimate follows similarly: if $|z| \leq 2$, $|w| \leq 2$,

$$\begin{aligned} |\Delta_w \Delta_z (F * K)(x)| &= \left| \int \Delta_w \Delta_z \Delta_{y^{-1}} F(x) K(y) \, dy \right| \\ &\leq C \int_{|y| \leq 2} |w| \, |z| \, |y| \, |x|^{-Q-2} \, |y|^{-Q} \, dy \, = C' \, |w| \, |z| \, |x|^{-Q-2} \, . \end{aligned}$$

Take $w = \exp(sX_i)$, $z = \exp(tX_j)$, divide both sides by st and let $s \to 0$, $t \to 0$, obtaining

$$|X_i X_i (F * K)(x)| \leqslant C^{\prime\prime} |x|^{-Q-2} \qquad (|x| \geqslant 2/\varepsilon).$$

(5.5) LEMMA. There exist kernels $F_1, F_2, ..., F_n$ of type 1 such that for all $f \in \mathscr{E}'$, $f = \sum_{i=1}^{n} X_i f * F_i$.

Proof. See [3], Lemma 4.12.

(5.6) LEMMA. If K is a truncated singular kernel, the mapping $f \rightarrow f*K$ is a bounded operator on Γ_a , $1 < \alpha < 2$.

Proof. Let $1 < \alpha < 2$, and suppose $f \in \varGamma_{\alpha}$ has compact support. We claim that then $f * K \in \varGamma_{\alpha}$ and there is a constant C > 0, independent of f, such that $\|f * K\|_{(\alpha)} \leqslant C \|f\|_{(\alpha)}$. To begin with, by Lemma 5.2 we know that $f * K \in \varGamma_{\alpha-1}$ and $\|f * K\|_{(\alpha-1)} \leqslant C \|f\|_{(\alpha-1)}$, so we must show that $X_f(F * K) \in \varGamma_{\alpha-1}$ for $j = 1, \ldots, n$ and

(5.7)
$$\sum_{1}^{n} \|X_{j}(F*K)\|_{(a-1)} \leq C \sum_{1}^{n} \|X_{j}f\|_{(a-1)}.$$

Write $f = \sum_{i=1}^{n} X_i f * F_i$ as in Lemma 5.5. Then

(5.8)
$$X_{j}(f*K) = X_{j}\left(\sum_{1}^{n} X_{i}f*F_{i}*K\right) = \sum_{1}^{n} X_{i}f*X_{j}(F_{i}*K).$$

Now K agrees with a kernel K_0 of type zero on the set $\{x: |x| < 1\}$, so

$$F_i * K = F_i * K_0 + F_i * (K - K_0)$$

By Proposition 1.13 of [3], F_i*K_0 is a kernel of type 1. Also, the integrals defining $X_I(F_i*(K-K_0))$, for any I, are absolutely and uniformly convergent, since $F_i \in L^{r-\epsilon} + L^{r+\epsilon}$ (r=Q/(Q-1)), and $X_I(K-K_0) \in L^p$ $(1 . Hence <math>F_i*(K-K_0)$ is a C^∞ function. Choose $\varphi \in C_0^\infty$ with $\varphi(x) = 1$ for $|x| \le 1$ and $\varphi(x) = 0$ for $|x| \ge 2$. Then

$$\begin{split} X_{j}(F_{i}*K) &= X_{j}\left(\varphi(F_{i}*K)\right) + X_{j}\left((1-\varphi)(F_{i}*K)\right) \\ &= X_{j}\left(\varphi(F_{i}*K_{0})\right) + X_{j}\left(\varphi(F_{i}*(K-K_{0}))\right) + X_{j}\left((1-\varphi)(F_{i}*K)\right) \\ &= H_{1} + H_{2} + H_{3}. \end{split}$$

 H_1 is a truncated singular kernel, so by Lemma 5.2,

$$X_i f * H_1 \in \Gamma_{a-1}, \quad \|X_i f * H_1\|_{(a-1)} \leqslant C_1 \|X_i f\|_{(a-1)}.$$

 H_3 vanishes for $|x| \leq 1$ and equals $X_j(F_i * K)(x)$ for $|x| \geq 2$. Thus by Lemma 5.4, $H_3 \in C^{\infty}$, $H_3 \in L^1$, and $X_k H_3 \in L^1$ for $k = 1, \ldots, n$. The same is true of H_2 , in fact $H_2 \in C_0^{\infty}$. Therefore

$$||X_i f * (H_2 + H_3)||_{\infty} \leq ||H_2 + H_3||_1 ||X_i f||_{\infty},$$

and, by Lemma 4.2, $X_i f * (H_2 + H_3) \in \Gamma_{a-1}$ and

$$\begin{split} |X_i f * (H_2 + H_3)|_{a=1} & \leqslant C_2 \Big\{ \|X_i f * (H_2 + H_3)\|_{\infty} + \sum_1^n \|X_k \big(X_i f * (H_2 + H_3)\big)\|_{\infty} \Big\} \\ & \leqslant C_2 \Big\{ \|H_2 + H_3\|_1 + \sum_1^n \|X_k (H_2 + H_3)\|_1 \Big\} \|X_i f\|_{\infty}. \end{split}$$

Combining all these estimates, we see that

$$||X_i f * X_j (F_i * K)||_{(\alpha-1)} \le C ||X_i f||_{(\alpha-1)}.$$

In view of (5.8), we have proved the desired estimate (5.7).

To complete the proof of the lemma, we need to remove the restriction that f have compact support. If $f \in \Gamma_a$ is arbitrary, we still have $f * K \in \Gamma_{a-1}$ and $\|f * K\|_{(a-1)} \leqslant C \|f\|_{(a-1)}$ by Lemma 5.2. To handle derivatives we proceed as in the proof of Lemma 4.3; choose $\varphi \in C_0^{\infty}$ with $\|\varphi\|_{\infty} = 1$ and $\varphi(x) = 1$ for $|x| \leqslant 1$, and set $\varphi_{\varepsilon}(x) = \varphi(\varepsilon x)$, $f_{\varepsilon} = \varphi_{\varepsilon} f$. Then $\|\varphi_{\varepsilon}\|_{(a)} \to \|\varphi\|_{\infty} = 1$ as $\varepsilon \to 0$, so

$$\overline{\lim_{s>0}} \|f_s\|_{(a)} \leqslant \overline{\lim_{s\to 0}} \|\varphi_s\|_{(a)} \|f\|_{(a)} = \|f\|_{(a)}.$$

Moreover, by the preceding results,

$$||f_{\varepsilon}*K||_{(\alpha)} \leqslant C||f_{\varepsilon}||_{(\alpha)}.$$

But since K is supported in $\{x\colon |x|\leqslant 2\}$, from (1.2) it follows that for ε sufficiently small, if $|x|\leqslant 1/2\varepsilon$ and $|y|\leqslant 2^{1/(\alpha-1)}$,

$$f*K(x) = f_{\epsilon}*K(x), \qquad X_{j}(f*K)(x) = X_{j}(f_{\epsilon}*K)(x),$$
$$\Delta_{y}X_{j}(f*K)(x) = \Delta_{y}X_{j}(f_{\epsilon}*K)(x).$$

Hence

$$\|X_j(f*K)\|_{\infty} \leqslant \overline{\lim} \|X_j(f_{\varepsilon}*K)\|_{\infty} \leqslant \overline{\lim} C \|f_{\varepsilon}\|_{(a)} \leqslant C \|f\|_{(a)},$$

and

$$\begin{split} \sup \left\{ |\varDelta_y X_f(f*K)(x)|/|y|^{a-1} \colon & x \in G, \ |y| \leqslant 2^{1/(a-1)} \right\} \\ & \leqslant \overline{\lim} \, |X_f(f_*K)|_{a-1} \leqslant \overline{\lim} \, C \, \|f_*\|_{(a)} \leqslant C \, \|f\|_{(a)}. \end{split}$$

Also

$$\begin{split} \sup \left\{ |\varDelta_y X_j(f*K)(x)|/|y|^{\alpha-1} \colon \ x \in G, \ |y| > 2^{1/(\alpha-1)} \right\} \\ &\leqslant \|X_j(f*K)\|_\infty \leqslant C \, \|f\|_{(\alpha)}. \end{split}$$

Thus $|X_i(f*K)|_{g=1} \leq C||f||_{(g)}$, and we are done.

Proposition 5.1 is now an immediate consequence of Lemmas 5.2 and 5.6, Propositions 4.4, 4.5, and 4.6, and Theorem 3.10.

References

- J. M. Bony, Principe du maximum, inégalité de Harnack, et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier 19 (1) (1969), pp. 277-304.
- [2] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Grund. Math. Wiss. 145, Springer-Verlag, 1967.
- [3] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), pp. 161-207.
- [4] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), pp. 264-293.
- [5] A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), pp. 575-648.
- [6] S. G. Krantz, Characterizations of certain Lipschitz classes and subelliptic estimates for differential operators on nilpotent groups, (preprint).
- [7] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON

Received April 30, 1977 (1305)