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of 2 is of finite dimension, it is a complemented subspace of the Banach
space g and u has a continuous linear section. Now the cohomology of
gl(H, C) with continuous cochains and trivial scalar coefficients reduces
to zero in degree two; see [3], page IV.8. The usual argument (sketched
in [1], § 3, exercise 12i) shows that te extension is inessential. Hence g
is a semi-direct product of gl(H, C) and a, relative to some morphism
from gl(H, C) to the algebra of derivations of @ (see [1], § 1 no 8). This
morphism is trivial, again by the theorem above, and the product is direct. m
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Lipschitz classes and Poisson imtegrals
on stratified groups*

by
G. B. FOLLAND (Seattle, Wash.)

Abstraet. It is shown. that the Lipschitz classes I, on stratified groups can be
characterized in terms of Poisson integrals, and some interpolation and approximation
theorems are proved.

Introduction. It is well known that the classical Lipschitz classes
A, {a>0) on R"can be characterized in terms of Poisson integrals; see [7].
In this paper we generalize this result to the Lipschitz classes I' (a > 0)
on stratified groups studied in [3]. To some extent our arguments are
adaptations of those in [7], but the non-commutativity and non-ellipticity
in the general situation present & number of difficulties which do not
oceur in the classical case. From the Poisson integral characterization we
obtain a simple proof that the clagses I, form a scale of interpolation spaces,
a result which has been proved with different techniques by Krantz [6].
Actnally, the logical order of the paper is somewhat different; we prove
the interpolation theorems for the spaces defined by Poisson integrals
and then use them in showing that these spaces coincide with the spaces I',.

The plan of the paper is as follows. In Section 1 we recall the basic
facts about stratified groups and the spaces I',. (For proofs and further
details the reader is referred to [3].) In Section 2 we construct the Poisson
kernel and derive its fundamental properties. In Section 3 we define
spaces I'* in terms of the Poisson integral and prove the interpolation
and approximation theorems. Sections 4 and 5 are devoted to the proof
that I, = I'.

1. Let g be a stratified Lie algebra in the sense of [3]; that is, g is

_ & finite-dimensional nilpotent Lie algebra over R together with a veetor

m

space decomposition g = @ V; such that [V, V;]= Vi for j<m
1

and [V, V,] = {0}, We define a one-pirameter family {y,: r > 0} of

* Research partially supperted by NSF Grant MOS 76-06323.



38 G. B. Folland

automorphisms of g, called dilations, by the formula

y,(;jyj) = ﬁ‘r"yj (T; 7).

Let G be the corresponding simply connected Lie group, which will also
be called “stratified”. Sinee g is nilpotent, the exponential map is a difi-
eomorphism from g onfo G which takes Lebesgue measure on g to a bi-
invariant Haar measure dz on G. The group identity of @ will be referred
to as the origin and denoted by 0.

The dilations {y,} on g induce automorphisms of &, still called dila-
tions and denoted simiply by z — rz, by the formula

rz = exp(y,(exp~'z)) (= e G,r>0).

A function f on G— {0} will be called homogeneous of degree 1 (ie R) if
flrz) = #*f(x). The number S

m
@ =j(@mv)
1
is called the homogeneous dimension of @, since d(rz) = +9dg for » > 0.
Let ¥ — [|Y}} be a Euclidean norm on g. If # € &, we set |zf| = [lexp~'a|.
We also define a homogeneous norm x — |o} on G by

(L1) . [expzmjy,\ _ (ﬁ, ’]lelzm!l.'!)lIZm! (X, e7)).
T 1

The homogeneous‘n'orm is continuous on &, €% on G — {0}, homogeneous
of degree 1, and satisties (a) fw] > 0 if # £ 0, (b) [2] = [2™|. We recall
from [3] that there is a constant C > 1 such that

(1.2) loyl—lzll < Clyl i Iyl < lal/2,

(1.3) 07l < |2 < Ollaf™™ i Jo| <1,

where m i{; the number of steps in the stratification of g. We also have
the following “integration in polar coordinates” formula, which will be

usgd without comment in the sequel: there is a constant C > 0 such that
for every nonnegative measurable function f on (0, o),

Jftahds =0 [ 12 far.

C'Ehe elements of g will be considered as left-invariant vector fields on G.
We fix once and for all & basis X, ..., X, for ¥, = g. The operatior
x

PR
1
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is called the sub-Laplacian of G. We also introduce the following multi-
index notation for derivatives: if I = (iy,..., %), where b =1,2,3,...
and 1< 4; < n, we set [I! =k and
X=X X, ... X,

We shall also allow the empty multi-index @: by convention, [@] = 0 and
Xy = identity. Since ¥; generates g, every left-invariant differential
operator on @ is & linear combination of X's. Moreover, if fis smooth and
homogeneous of degree 2, X;f is homogeneous of degree 1—|I|.

Next, some function spaces. If 1< p < oo, L” is the usual Lebesgue
space on @ with respect to the Haar measure dz, with norm || ||,. C7’ is the
space of compactly supported 0™ functions on @. 9" and &' are the spaces
of distributions and compactly supported distributions on G. In particn-
lar, 6 e &’ is the Dirac distribution ab 0. ¥ is the space of bounded left
uniformly continuous functions on @, and if k is a positive integer, &*
is the space of all f € ¥ whose (distribution) derivatives X,f are in ¥ for
i< B ‘

Finally, we define the Lipschitz classes I,,. If 0 <a <1,

I, ={fe®: |f, =sup If(ay) —f(@)]/ly]* < oo}
z.¥
If @ =1, [, is the “Zygmund class”:
Iy = {fe%: |fl; =sup |f(ay) +flay™)—2f(@)lyl < o3
Yy .

For 0 < a < 1, I, is a Banach space with norm

il = IFla"d 1 loo-
It r=1,2,3 .., and k<a<k+1,

I, = {fe¥: X;fel,, for [|<k},

which is & Banach space with norm

Wl = > 1 ¥a leopy-

oIk
For k < a < k-1 we also set
fla= > 1Ziflac
o<iTT<k

We remark that in the definition of I, 0 < a < 1, we could have replaced
the supremum over all #, ¥ € G by the supremum over & e@ and ly| <1,
ginee for |y| > 1 the boundedness of f is already @ stronger condition.

2. In this section we construct the Poisson kernel for @ We shall
denote the canonical coordinate on R by ¢ and the coordinate vector
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field by 4. Conmder the group G x R, whose Lie algebra has a natural
stratification @-) W;, where W, is the span of ¥V, and &, and W, =7,
for j > 1. The correspondmg dilations are given by

r(z,t) = (ro, %),

the second factor being ordinary multiplication, and the homogeneous
dimension of G x R is ¢ +1. Also, the operator
Z = g0

v

is & sub-Laplacian on & x R. We shall need the following two facts about 2,
due respectively to Bony [1] and Folland [3]:

(2.1) & satisties the strong maximum principle: if f is a real-valued
solution of #f = 0 on a connected open set U which attains its supremum
or infimum on U at some point in T, then f is constant on U.

(2.2)  There is a unique ¢ function K on G x R — {(0, 0)} which satisfies
(a) K(rz,rt) =r'"“K(z,1), (b) K is the Dirac distribution at (0, 0).
(This result holds only if @ > 1. If @ =1, then ¢ = R and % is minus
the classical Laplacian on R?, and we take K to be the usual logarithmie
potential.) Since .# is real, self-adjoint, and invariant under the transform-
ation (@, ?) - (v, —1), K is real and satisfies K(w,t) = K (2!, —) and
E(w,t) = K(z, —t), hence also K(z,t) = K (a7, 1).

Let ¢(x,t) = 0, K (x,1). Then ¢(rw,rt) _r“Qq(m,t), and ¢ satisfies
£¢ =0 away from the origin. Also, g(z,t) = g(¢™% 1), and since ¢ is
-0dd int, X;q(w,t) = — X, q(», —1t) for any I. In particular, X,q(z, 0) = 0
for # +# 0, so sinee ¢(x, t) is smooth for |z| = 1, we have

(2.3) sup |Xrq(zw,t) = O(lf]) as t—=0.

lf=1
i Henceforth we restriet attention to the half-space ¢ > 0. For each
fixed ¢ > 0, set ¢, () = ¢(»,1). L2 # 0 and y = x/jz|, we have

Xrq(#) = Xpq(@,1) = o~ M X, q(y, o=,
50 by (2.3),

1X2gi(@)] < lol ™% sup | Xyq(y, Jol 1)
=1
=0z~ "= ag g0,
It follows that X,¢, e L' for all I, ¢: in partienlar, ¢, e It Also,

4(x) = qlz, ) = t_Qq'(t_lw: 1) = t_Q%(t_lx)-
Thus

Ja(@az = [6670) %0 = [g,(@)de = 4
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iy independent of z. By a standard argument, it follows that ¢, — 446
as t— 0, and, more precisely, that fxq, — Af uniformly as { — 0 for any
€¥.

d We claim that 4 s« 0. Indeed, ¢ is elearly not identically zero (other-

wise K would be constant in ?, hence zero by homogeneity), so we can

choose f e 05° such that

[1@™ gy, (@)do 0

for some %, > 0. Set u(x, 1) = (f+g,)(x). Then u(x,t)> Af(x) as >0,
Pu = 0fort> 0,and % (0, %) # 0. Moreover, since g(, 1} — 0 ag @, — oo,
the same is true of u. If A were zero, we could apply the maximum principle
(2.1) to % on a rectangle [z| < B, 0 <?< T and let T, R — oo to conclude
that 4 = 0. This not being the case, 4 # 0.

We now define the Poisson kernel p(x,1t) = p;(x) by

p(e,t) = A" q(z,t) (t>0,2eG).
Moreover, we define the operator P, on % (¢ > 0) by
Pif = f*p,.
We summarize the properties of the Poisson kernel in a theorem:
(2.4) TeEOREM. (2) If k=0, |I| >0, and r> 0,
X p(ro, vt) = =0~ TEX p (2, ).
In particular,
10 Xp (@, )] = O(lo] +)7°7 W) as @, t—> oco.
(b) For each t > 0 and multi-index I,
X9 (@, )] = 0z~ ¥=Y)  as 2 .

(c) p(z,1) =p(a™',1).

(d) For each t> 0, [p,(z)de = 1.

(&) If fe %, P,f—f uniformly as t—0. Moreover, u(z,1?) = P,f(»)
satisfies L4 = 0 for t > 0.

() For each k=1 and t> 0, [Ofp,(z)dn = 0.

(g) For each k>0 and |I| > 0, there is a constant C > 0 such that
[18: X p,()] dw < OV,

(h) p(z, 1) > 0 for all z @G, t > 0.

() p,*p, = Py, (and hence PP, = P,,,) for all s,1> 0.

(1) &Py = (3P %Py = Pun* (EuPye)- (BY 0yPyp we MmN Gy Pylemy:)

Proof. (a), (b), (), (d), and (e) follow from the corresponding proper-
ties of ¢. (f) follows from (d):

[ pi(@)an = & [p(o)do = 8F1 = 0.
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(g) follows from (a):

[l X poyide<c) [t Faot [ jo]"9 V1 dg]
’ lzit >t
= O[Ot F-54Q@ 1 0 g~ WI-F] = gg=MI-F,

For (h), given ¢ > 0 choose a nonnegative f € C7° so that ||f«p; — 14l
<& If u(z,t) = P,f(x), then, by (a) and (e) we have u(z, 0) = f(») > 0,
u(z, 1) 0 as @, oo, and Lu = 0 for ¢ > 0, so by the maximum prin-
ciple, 4 > 0 everywhere. Hence p, > —¢, and ¢ being arbitrary, p, = 0.
By (a), p(z, t) > 0 for all , . But p cannot achieve its infimum, namely
zero, on the region t > 0, so p(z,t) > 0.

To see (i), let s> 0 be fixed, and set u(x,t) = py*py (&) — sy (@)
Then % is continuous for ¢ > 0, Yu = 0 for t > 0, u(z, 0) = p.(@)—p,(®)
=0, and %(z,i)—>0 as z,i{-> co. By the maximum principle, # = 0.

Finally, by (i) we have

5:1_’i = O (Dup*Pypn) = 1/2[(CoPy) * Pyja + i * (O Dy 1 -
(j) then follows since (by (i) dgain) p;, and 3;p,, commute.
3. Suppose a > 0, and let [a] be the greatest integer in o. We define
={fe€: |fl. = sup NP Sl < 0} (B = [al+1).
>
I’} is a Banach space with norm

It = IF1a+1F -
We note that fe I’y if and only if fe % and
)
sup ¢~ & Pyf o, < o0,

o<t
since for > 1, by Theorem 2.4 (g), the mere boundedness of f implies
that
(3.1) I P flle = 1 %8 il < Ollf oot ™* < Cllf ot
Moreover, in the definition of I"} we could replace % by any integer greater
than e, as the following proposition shows.
(3.2) ProposItION. If j, k are any integers greater than a, the conditions

10IPflle < 017, 8PSl <CtF  (0<t< oo)

are equivalent for fe €, and the smallest constants C, C' satigfying these
inequalities are bounded by multiples of each other, independent of f.

Proof. We may assume that % < j, and by induction it suffices to
assame that j = £+ 1. On the one hand, since by (3.1)

18P flo—+0 as t— oo,
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we have

kP f = — [ VP fds,
t
s0 it 18" Pyfllee < OB,
18P, flle < [ 105 P fllo ds < € [ s°F7 s = O(k—a)™ ek,
i 11

On the other hand, by Theorem 2.4 (j),
6th+1-Ptf = fx (a;ﬁptla) * at.'ptlz = atk-Pt/zf* azptjz s
s0 by Theorem 2.4 (g), if || &fPfll, < O'¢°7%,

1857 Pif lloo << 110 Pyof oo | 8sDepls
< Cr (t/2)u-—k.01 (t/Z)—l — Or012k+l—utu—k—-1 .
This completes the proof.
In view of the remarks following the definition of I':, the following
result is immediate: '
(3.3) COROLLARY. I's = I'y and || |, dominates | |5 whenever a > B.

We now derive some more properties of I'.
(3.4) Lmwnta. If k411> > 0, there is a constant € > 0 such that for
al feI?,
16 X Pyflle < C1F [0 ML
Proof. By Theorem 2.4 (j),
O X, P, f =f*(3t7‘17t/2)*(x127¢/2) = (O Pypf) % (Xrpys)- -
If %> a, then |8fP,f|l, < C:|f151°°%, so by Theorem 2.4 (g),

10F X Pif loo < 18EP S ool Xy y ln < Cf o227 M1

This estimate is valid in any event if & is replaced by [a]+1. If a—|I]
< k < a, the desired result follows by mtegra,tmg [a] +1-—% times as in the
proof of Proposition 3.2.
(3.5) LmmMA. If fe ¥, X;P,f — X;f as i~ 0, in the sense of disiributions.
(This assertion isn’t completely obvious, since X P,f # P, X;f.)

Proof. Choose gpe(® with 0<p<1 and @(z) =1 for |z <1,
and write

X Pf = feloX;p]+f*[(1—¢)X1p,]-

On the one hand, p.X;p, has compact support and converges to pX;6 = X0
a8 ¢-> 0, 50 since convolution is continuous from 9% & to 7',

FrleXp] >+ X6 = Xif



44 G. B. Folland

as distributions when ¢{— 0. On the other hand, by Theorem 2.4 {(a, b)
(1—¢)X;p, e I*, and .

- Xl < [ Xp@)de = [ [X;p, (t0)] 1%
lzi=1 l2l=>1/¢
=t [ Xpya)ide <o [ jalm0 g
lzl=1/¢ lzi>1/¢
=0T <0150 a5 t-0.

Hence f*[(1—¢)X;p,]— 0 uniformly as - 0.

(3.6) PrOPOSITION. If a > k, then Iy < €* and there is o constant ¢ > 0
such that

IXiflee < Cifliiy  (fe 7, 1TI<E).

Proof. We must show that if f el and |I| < e, then X;fe® and
IXzfllo < Cllf - By decreasing a, we may assume that a< |[I|+1.
Then if 0 <t < s, by Lemma 3.4 we have

(3.7 1 X Pof = XiPiflos < [ 110, X1 P,f ool
14

S OLfTE [ = 02ar = O, [f[2(s™ 1),
14

Since a—[I|> 0, {X,P,f} is Cauchy in the uniform norm as t- 0, s0
by Lemma 3.5, X P,f > X,f uniformly as {— 0. Thus X;fe®, and by
taking s = 1 and letting ¢ - 0 in (3.7), we obtain

1X 1 flloo < X 2Py f oo+ X Pif — X 1fil
Sz p1la I oo+ Calf 15 < Olif [y -

The same argument, with X replaced by d;, proves the following:

(3.8)  PROPOSITION. If a> 1 and f eIy, then 6,P,f converges uniformly
1o a limit in € as t— 0, and there is a constant C > 0, independent of t and f,
such that [16,Pyfle, < Cliflly:

The following theorem is related to some well-known ‘alpproximation
and interpolation results for the classical Lipschitz classes: see, for examyple,
[2]. A special case of this theorem (for I', rather than T¥) was stated in [31,

but the proof given there seems to be valid only when @ is stratified of
step 2.

(3.9) TEmOREM. Suppose 0 < ay< a< a,< co, and fe®. Then felI™
if and only if there is a constant B > 0 such that for every r > 0 there exist
I e]"ZO, Vil e]’:‘1 with [f,[:o < Broa, IJ"IZISBT”_"’, and f =f.+f". In
this case, the smallest such B is comparable to |f|*. The same conclusions
hold if | 13 is replaced by || fify) (8 = a, a, ay).

b4
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Proof. The “if” part is easy: suppose we can find B, f,, f" as above.
Then if % > «; we have, for every » > 0 and ¢> 0,

125 Pif llo < G P flloo + 1P f Moo
< 0, B(r*=otmo—k o=ty
Take r = ¢; it follows that fe It and |fi < 20,B. Also, if [[f,|, < Bre™%
and [f Tl << Br™™L, taking r = 1 we have
[ lee << 1felloo + If e < 2B,

so that {flfy < 2max(C;,1)B. . .

To prove the converse, note first that it suffices to consider r <1,
since for » > 1 we can simply take f, =f, f" = 0. Suppose first that
a—o, < 1. Givenfe [ and » < 1,886 f* = P,f, f, = f—Pf,and k = [a,]+1.
Then by Theorem 2.4 (i) and Proposition 3.2,

NP oo = 18 Pry o llon << OIF 1200+ 0) 12 r)r ™
< Olf et |
Thus [f7]3, < C|fI5r=. Also, since 7 < 1,
1 oo << 1Pl 1 loo < 77 1 s
80 1f ey < Ollfliyr*="1. On the other hand,

f+r

P f, = P f—OFP.f = — [ kT P.fas,
1]

80 _ _
i “r t+r
18P flloo < f 105+ P fll B8 < Oy | F 1% f §5 =1 g
t i
< O IF A% — (1) %1 < | flat",
and also

1BEP fll <7 SUD NOFFIP,flly < Culfort .
et 4r

Now apply the inequality ‘min(a,b) < a’b*® (a,b>0, 0 < 0<1) to
the right hand sides of these estimates, with 8 = a — a,, obtaining

NOFPf Nl < O (57 08%7 %,

Thus |f,f; < C|f{er*~. Also, we have

1flleo =

f OPfal| < [ 18P luall.
0 0
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If o<1, then a—ay <1 and fel, o, 50

r
filloo << 1F g, [ #2707 @8 < Ofla o™ "0 < Olif lgr™™ "
0 : 0

If ¢ > 1, then by Proposition 3.8,
If,leo < CUFligyr < Cllf iy

since ¢ — oy <1, r < 1. In any event, we have ||f,|](u)\ Ol]fn(a)r"““n.

We now settle the general case by induction: Suppose the theorem
is true when a—a, <<j—1, and suppose j—1 < a—g <j. If fels and
r> 0 we can ﬁnd— gr epa«l, g EI’ Wlth Igrla—l < 01 [finri Ig [a < 01 {fl* u—al
and f = g,+¢". But since (c:c—l)—oaJ < j—1, we can apply the mductwe
hypothesis to g, to find &, € F,, , B & I'y such that g, = h,+H,

]hrl < Colg, iy < Oy 0, |f15r" %
|hr]u1 < Gelgria—l""a_l_al 0102 |f|* e,

Thus we have melely to take f, = f’” = B"+¢". This argument works
just as well with | lp replaced by | ”(ﬁ) (B = ayy a—1, a, a,), 8o the proof
is complete.

Remark. An exa,mma;tlon of the proof shows that if fel’ and
j—1< a—ay,<j, the f, we have constructed (for r<1) is (I—F,) Yf,
and the f” we have constructed is not just in F:1 but in C*.

As a simple corollary of Theorem 3.9, we obtain the following inter-
polation theorem.

(8.10) TumorEM. Let G and H be stratified groups, 0 < ay < ap, and
0 < f, << B,. Suppose T is a bounded linear transformation from (@)
to I”,3 (H) whose restriction to I'y (G) i8 bounded from I'z (&) to Iy (H). °

Then if a = 0o, +(1— B)ao, B =08+(1—0)5 (0 <f< 1), the res-

triction of T to I't(@) is bounded from I's(G) to I (H).

Proof. If fe I's (@), for each r > 0 write f = f,+f", where
flfeyy < CHF =" = CIIf [[foyr®cereo,
.Uf’u}‘;l, < Ollf fyr™ = Ollf Ita Po-Der=eq)

Given s > 0, take r = s B gier—ay and set (Tf)s = T(f,), (Tf)® = T(f").
Then Tf = (Tf), +(Ify, and

W)l < ANl < Aoufu(u)s"‘”l ) = AC||flffys*Po,
ll(Tf)sllml) AN ey <Acl}f||(a)s<"—1"ﬁ: W = ACHfH(ﬂ,s”‘ﬁl
Therefore Tf e F* (H)and |Tf ”(ﬂ) <CIf "(n)

Lipschitz classes and Poisson integrals 47

4, Our aim now is to prove the following theorem:
(41) TeEOREM. If a>0, I, =Is and the norms || ||y and | Iff, ave
equivalent.

The proof is lengthy and will be accomplished in several steps. We
begin with some lemmas.

(4.2) Lmvma. There is a constant O > 0 such that for all fe®,
sup (f(ay) —F@N /Y < C X 1X; -
Y 1

Proof. See [3], Proposition 5.4.

(4.3) Levma. If 0 < a <2, there is a constant C > 0 such that for all
fel,,
» sup f(ey) +Flay™) —2f (@) [1y1* < Cf lo-

Proof. See [3], Proposition 5.5, for the case wheve f has compact
support. The argument given there to remove this restriction is defective,
and we take this opportunity to provide a valid proof. We need only
consider « > 1, as the estimate is obvious for a <{ 1. For brevity we shall
write 4%f(2) = my) +f () — 21 (®).

Suppose fel,, 1< a< 2. If f is constant, the estimate is tnwal;
otherwise, [fl, # 0, and we sebt B = (|fllo/If )" It will suffice to show
that

sup {|4;f(@)l/ly1": @ € G, ly] < B} < Clflay

sinee for |y| > R we have : ,
A f @) 1yl < | A2 @ Flallf o < £1FLe-

Choose ¢ € 07 such that |pll, =1 and ¢(z) = 1 for |z| <1, and for
e> 0, set o, () —qz(aw) Then qo,fe]"’ , and f_rom Leibniz’s rule and
Lemma 4.2 we see that

0l 1< (Wollot X 1X 0] 1t (1ot ) 1Zi ) 19l
1 1
Bt | X, gl = &1%;0lo, 2
IPela = IPelar 2 IXypdoey = & Hplacite® ) 1 Xyplas
. 1

Sinee ||, = 1, it follows that for some 4> 0, depending only on ¢,

11 (L4 A6} flo A= (110 2 Xl -
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Now, from the estimate (1.2) and the fact that ¢, (z) = 1 for o] < 1/e,
it follows that if ¢ is sufficiently small, 42f(x) = 42(¢.f) () for |z| < 1/2¢
and (y| < B. But since ¢,f has compact support,
sup {|43f ()| /lyi*: || <1/2¢, ly| <R}
< sup {| 4y (g.f) @)1y @,y € G}
<Olo.fl.

<O[+dn) fl+ Ao i+ 3 135 o)

Letting & — 0, we obtain the desired result.

(4.4)  PROPOSITION. If a is not an even integer, I', < I'¥, and || oy domi-
nates | (-

Proof. First suppose that 0 < a < 2 and f e I',. By Theorem 2.4 (e,f)
GPf(x) = % [ [F(ay)+1(ay™) —2f ()18 p,(y) Ay
Hence, by Lemma 4.3 and Theorem 2.4 (a),
18P fllos < O1If 1 [ lyI=(yl +8)*2dy
<Ofl] [ wreCay+ [ iyie-2ay]

i<t lwi>t

< Olf Lt

Thus f € I‘a and !fl: < 02 [f’u? hence "f”ra) < Ouf”(a] .
For the general case, suppose 2% < a < 2k1-2 and proceed by indue-
tion on k. If fe I',, then #fel, , = I't,, so

155 Py £ flloo < O FFlaeg B2 < C|f| 100542

But because of the differential equation I =%=0 governing the
Poisson semigroup,

2

GEPJf = G*Pf.
Thus f e I'; and |f[Z < O|fl., henee |fl}, < C|if llgay -
(4.5)  PROPOSITION. If  is mot an integer, I'* < I',, and Il Iy dominates
I gy«
Proof. Let a' = k- 8, where k is an integer and 0 < B < 1, and suppose
feTy. By Proposition 3.6, f ¢ ¢* and -
D, 1 Xl < CUFIE.
i<k .

It remains to show that for |I| < &, Xif eIy and | X;f|, < O|f |}, Fix I;
replacing a by a—|I|, we may assume that Il = k. The proof of Prop-
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osition 3.6 shows that
t

I1X2f = XrPflle < [ 18, X1 Pof loolls < Oy If1548.

o

Also, by Lemmas 4.2 and 3.4,
X Pof (2y) — X1 Pf (2)] < Oalyl ) 1%, X1 Pof Nl < Calyl IF 154,
1

Hence, for all », y € @ and ¢ > 0,

1X1f (my) — X 1f(2)] ,
< [ Xof(wy) — X1 Py f (2y) | + | X Pof (oy) — X1 Pof (@) + | X, Pof () — X of ()]
S IREOHE + CylylP—Y).
Taking ¢ = |y|, we are done. -
(4.6)  PROPOSITION. If & is a positive integer, I’y < I, and | ligzy dominates

I lly- |
Proof. Suppose f e I';. By Proposition 3.6, f € #¥~! and

D IX Sl < Olifliy-
i <ke—1
As in the proof of Proposition 4.5, we must show that X;fe Il and
X fli< Cllflyy for |I]<k—1, and it suffices to consider |[I| = k—1.
By Theorem 3.9 and Proposition 4.5, for each r > 0 we can write f = f,+f7,
% -

where f, € I, _apys f* € D qupmy 1l ge—ian) < CUF UGy ™ 1 Wt sy << OUF gy
Thus by Lemma 4.3,

1 Xzfy (@y) + Xpfploy™) —2X 1f, (@) < AN Xff, 1 [y 12 < AC|FliGyr™ 1y,

(X7 (wy) + X f" (wy ™) — 2Xf" (@) << A1 X1 g ly PR < AC 17 7™ [y 1.
Thus for all #,y e @ and > 0,

X1 f(@y)+ Xpf(wy™") — 2X 1 f (@)] < AC|FIiGy (' ly ™= 40721y ).

Taking » = |y|, we are done.

We have now established that Is < I, for all a > 0, and that I", = I'*
whenever a is not an even integer. The most delicate part of the argument
now comes in showing that I', = I'y. For this we shall need to invoke the
theory of the Poisson semigroup.

The infinitesimal generator of the Poisson semigroup {P,} is — #'%,
the negative of the square root of the sub-Laplacian, defined on the domain

D = {fe#: lim t~(P,f—f) exists in the uniform norm}.
0
It follows easily from Proposition 3.8 that I™ < Dif a > 1. Since I', = I

4 — Studla Mathematica 66.1
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< Ify =y, we see that I, < Iy, =TIy, = D. We wish to study
more closely the functions #£'%f, fel}.

If Y is a left-invariant differential operator on &, ¥ will denote
the right-invariant differential operator which agrees with ¥ at 0. Thus
for any fe 9, ¥f =f+¥d and ¥f = ¥6+f. Also, we recall from [3]
that a kernel of type A (1> 0) is a ¢ function on & {0} which is homo-
geneous of degree A—@. Such functions, being locally integrable on @,
define distributions. We shall not repeat here the definition of a “kernel
of type zero”, which is more complicated, but simply remark that if K
is a kernel of type 1, XjK and X;K are kernels of type zero for 1 << j << n.

If f e OF, it follows from Seection 3 of [3] that

FEf = FTBgf = (f+ FO) xRy = [+(SOsRy) = [+ S B,
where R,, a kernel of type 1, is the convolution kernel of # 2, and #R,
is thus well defined as a distribution. (The use of the associative law is
justified since everything except R, has compact support.) Let us fix
@ € 0 such that @(z) =1 for |z <1 and ¢(z) =0 for |z| > 2. Then,
it we set @, = #(pR,) and G, = £ ((1—¢)R,), we have
(£.7) |72f = fxGo+frGe, (fe07).
(4.8) Levma. If fe ¥, then fxG, is well-defined and is in I, for all
a > 0. Moreover, ||f %Gyl < Callfle-

Proof. G, is €%, and it agrees outside the support of ¢ with the
function #R,, which is homogeneous of degree —@—1. Hence, for any
multi-index I,
' |X,G, (@) = O(je|~ 2"y as @ oo.

In particular, X,G, e L* for all I, so
X (f*Ga) = f+ X166
forall 7, and
”-Xl(f*gm)"m < "XIGmﬂluf”m'
The assertion then follows from Lemma 4.2.

Next, if fe 2, f+G, is well-defined as a distribution since G, € &',

and we have

n

2 (f*X,;8)% (X;6%(pRy))

1

(4.9)  f*Gy= — Zf* (X;8%X;0% (pRy)) =

= - Exjf*‘f@(qozel)-

(4.10) - Levma. The mapping g»g*ij(qul) is a bounded operator on
I (j=1,...,m)
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This lemma will be proved in the next section. Assuming it for the
moment, we establish the following proposition, which completes the
proof of Theorem 4.1.

(4.11)  ProposITION. If k s a positive integer, Iy = Iy, and || |,
dominates || -

Proof. Consider first the case & = 1. If f € Iy, then X;f e I, 50 (4. 9)
and Lemmas 4.8 and 4.10 imply that the mapping

f=fxGy+f+G

is bounded from I, to 1. We know, moreover, that I, = D. The argu-
ments used by Hunt [4] to characterize infinitesimal generators of prob-
ability semigroups on & can then easily be extended to show that the
formula (4.7) remains valid for f € I,. (See, in particular, Sections 4, 6,
and 7 of [4]. The measure on the complement of the origin which Hunt

calls @ is, in our case, .#R, (z)dz.) In short, if f € I', then Ffel =TI7, s0
183Pef e = 0 P — £ Moo < | L2 T8 < Ol £ P Syt ' < 0, I gyt

Thus f & Iy and [f iy < Cllfllg - |

The assertion is therefore proved for ¥ = 1, and the general case
follows by induction on % as in the proof of Proposition 4.4.

5. It remains to prove Lemma 4.10. The compactly supported distri-
butions K; = X;(¢R,) have the following properties:

(a) K; is 0* away from 0 and is supported in {w: [#] < 2}.
(b) K; agrees with a kernel of type zero (namely XiRl) on {w: || <1}

(c) As a linear functional on 0%, K; annihilates constant functions,
for

Ejy Oy = —{pRy, X0 = —(pRy, 0) =0,

A compactly supported distribution having the properties (a), (b), and (c)

, will be called a truncated singular kernel. We shall prove the following

generalization of Lemma 4.10 (the generalization is necessary for the
proof): .
(6.1) ProrosITiON. If K is a truncated singular kernel, the mapping
f—>f*K is a bounded operator on I,, 0 < a < 2.

The proof will be accomplished by 2 series of lemmas.
(8.2)  LemMA. If K is a truncated singular kernel, the mapping f—f+E -
s a bounded operator on I'y, 0 < a < 1.

Proof. Koranyi~Vigi [5] have shown that convolution with a kernel
of type zero preserves I',nL? (0 <a<1, 1 <P < o), and their argu--
ment shows equally well that convolution with K preserves I\, and that
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If+ Kl < 01fl. (0 < a<1). Also,
[f«E(@)] = |B.V. [ flay ) E@)dy| = | [ [floy™) —F(2)1 K (9)dy)
Oilfle [ 191*1y1 2dy = Colfl.,

i<
80 that [fx K], < C,fl.-
. Next, if ye@, define the operator 4, on functions on & by 4,f(z)
= f(zy) —f(=).
(6.3) LemumA. Let F be a kernel of type 1. There emist constanis & > 0,
0 > 0 such that whenever max (ly|, |z, |w|) < ¢z,

[4,4,F (z)) < Clyll2l |=|~9,
14,4, 4,7 (2)] < Clyl |2 [w] |2792.

Proof. If w,y,z, w are replaced by rz, ry, rz, rw (r > 0), both sides
of these inequalities are multiplied by r*~%, so it suffices to prove them for
l#] =1 and max(|y}, |2|, |w]) < . Here ¢ is to be taken small enough so
that when z,y,2,w are thus restricted, the products wwey, swz, mwy,
@zy, @y, w2, 2w are bounded away from O (which is possible by (1.2)).
In this case, since F is 0= away from 0, it follows from Taylor’s theorem
and (1.3) that

(4,4, F (@) < Oy llyliflel
14y 4, 4, F (@) < Cs iyl el vl

Calyllel = Calyl el o0,
Culyll2] 0] = Ol lyl 2! o] (o]0

n N

(5.4) LmmmA. Let F be a kernel of type 1 and K a truncated singular -

kernel. Then FxX is C* away from 0, and for i,j =1, vy Ty
IX;(FxE)(2)] = O0(le|™*"%)  as @ oo,
XX (F+xE) (@) = O(j5]™*9) as 2> co.

Proof. F+K is well-defined as a distribution since F e 2'\Ked,
and since ¥ and K are C° away from 0 it follows easily that F+K is.

Let ¢ be as in Lemma 5.3, and assume that |z| > 2/s. As K annihilates

constants, for any z e @,
A(FsK) (@) = 4, [ [Flay™)~F(0)]K(y)dy = [ 4,4, 1F () E(y)dy.
Since K (y) = 0 for |y] > 2,‘ Lemma 5.3 implies that for 2] < 2

4, (F+E) @) <C [ fallyllol ™y dy < O’ o] jo] 2.

i<z

Take 2z = exp(iX;); then [¢| is proportional to £, so dividing both sides
of this inequality by ¢ and letting £ - 0,

IX(FxE) @) < O jz |7 (ja]| > 2/e).
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The second estimate follows similarly: if |2| < 2, |w| < 2,
A,(F+K)(@)] =|[ 4,4, 4, F (@)K () dy
<C [ wliellyllel™"2 lyi=%dy = 0wl |2| jo]=9-2.

fvi<2

Take w = exp(sX;), # = exp(tX;), divide both sides by st and let s — 0,
t — 0, obtaining
VXX (F+E) @) < O o™ (jo] > 2/s).

(6.5) LmMmA. There exist kernels ¥y, Fy, ..., F, of type 1 such that for
n

all fed’, =YX +F,
1

Proof. See [3], Lemma 4.12.

(5.6) LmmMA. If K s a truncated singular kernel, the mapping f—~ f+K
is & bounded operator on I,, 1 < a << 2.

Proof. Let 1 < a< 2, and suppose fel, has compact support.
We claim that then f« K eI, and there is a constant C > 0, independent
of f, such that ||f* K|y < O fiflly- To begin with, by Lemma 5.2 we know
that f+K el, ; and |[f*Elqgey <O|flley, S0 we must show that
X;(F«K)yel, ,forj=1,...,nand

(8.7) Z | X5 (F* K)oy < C’Z [y P
1 1
n
Write f = } X;f+F; as in Lemma 5.5. Then
1

(5.8) X, (f+EK) = x,.(i’ X frF k) = Zn’ X X;(F+ K ).
1 1

Now K agrees with a kernel K, of type zero on the set {#: |#| <1}, 8o
Fix K = Fx K+ Fx (K~ K.

By Proposition 1.13 of [3], F,* XK, is a kernel of type 1. Also, the integrals

defining X, (F,«(K —K,)), for any I, are absolutely and uniformly con-

vergent, since F,e L™ *+I'" (r = Q[(Q@ —1)), and X,(K—K,)elL?

1 <p< oo, |I|] > 0). Hence I, (K — K,) is a O function. Choose ¢ € C7°
with p(z) =1 for || <1 and ¢(z) = 0 for || > 2. Then

X (F+K) = ( (F, *K))—i—X ((1 o) (T, *K))
= X (p( T K)) + X; (ol Fox (K — Ko))) + X; (1 — ) (Fyx K)
=H,+H,+H,.
H, i3 a truncated singular kernel, so by Lemma 5.2,
XfxH) eIy y, ”-Xzf*Hlll(a—l) 1 X oy -
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H, vanishes for [#] <1 and equals X,(F+K)(z) for lwl 2. Thus by
Lemma 5.4, H; e °, Hy e I, a,ndXLHBEL for ¥ =1, ..., n The same
is true of H,, in fact H 5 € CF. Therefore

X of = (Ho+ Hy)lloo < I1Hs -+ Hglly 1 X llo s
and, by Lemma 4.2, X,f+(H,+H,y) e [, , and

X e (Hat Homs < Co{IE o (Bt Holloat S 1, (X (o))
1

< O {IHa+Hali+ ) 1K Ha+ H) )} 1 f |-

Combining all these estimates, we see that
1K # Xy (B K)omry < Ol X i llo—ry-

In view of (5.8), we have proved the desired estimate (5.7).

~ To complete the proof of the lemma, we need to remove the restrietion
that f have compact support. If f € I, is arbitrary, we still have f+K e I',_,
and [f*K|o1) < Cfflle-y by Lemma 5.2. To handle derivatives we
proceed as in the proof of Lemma 4.3; choose ¢ € CF with [jp[, = 1 and

o(@) = 1f01' iwl <1, and set ,(#) = p(ex), f; = @.f. Then llpll; = 9l = 1
as ¢—>0,

lim |y < Y Tl 1o = I o
&, &0
Moreover, by the preceding results,

”fa*-K”(u) Oufs”(a}

But since K is supported in {z: |z| < 2}, from (1.2) it follows that for ¢
sufficiently small, if || < 1/2¢ and |y| < 2D,

[*E (@) =fxE(z), X;(f+E)(@) = X;(f+K)(=),

A, X;(f=K) () = 4, X;(fx K)(z).
Hence

1 (F+ Bl hmlIX;(f.*K)iiw\lmOHf.ll(u) Clif s
and

sup {4, X;(f+X)(#)[/ly|**: ¢ e@, |y <2V
<Lm | X (£ B) oy < EMCf 1 < Clif sy -
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Also
sup {|4, X; (f+E)(@)l/ly|*": w e @, |y| > 2"V}
< [ Z(F* E oo < O lif ey -

Thus | X;(f* K)oy < Olfll, and we are done.
Proposition 5.1 is now an immediate consequence of Lemmas 5.2
and 5.6, Propositions 4.4, 4.5, and 4.6, and Theorem 3.10.
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