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A characterization of some weak semi-continuity
of integral functionals

by
TRAN CAO NGUYEN (Warsaw)

Abstract. In this paper we give a characterization of lower semicontinuity
of the integral functional Tr(u) = [ f(4, u () u(dt) on the space L, of integrable func-
7

tions from T into a Euclidean space, The semicontinuity is considered with respect
to the weak topology w (L, §8), where § is a subspace of L.

1. Introduction. Consider the integral functional of the form
L(w) = [f(t,w®)u(@), weI(T,R",
T

where 7' is an abstract space, and u is a fixed, finite, nonnegative, non-
atomic and complete measure on 7. We denote by & the o-field of y-mea-
surable subsets of T. We assume that the space LT, R") is separable.

Concerning the integrand we assume ag little regularity as possible:
namely, throughout the paper we assume the following

. AssUMPTION A. f: TXR"—> RU{+ oo} is such that for each inte-
grable u, f (¢, u(t)) is measurable and there is @ u, such that f(t, uy () i8 in-
tegrable and the integral is finite.

Notice that Assumption A does not imply that the domain of I,
is the whole space L,(7', R"). A priori, it may happen that both the nega-
tive part and the positive part of f (t, u(t)) have the integral divergent
to infinity and I.(%) cannot be uniquely defined. If only one of them is
divergent, then I,(4) = —oo 01 oo, .

In this paper we shall characterize the property that the epigraph
of I,, that is, the set » ’

epil; = {(u, a)| &> I{u)} < Ly xR,
is closed it we consider in I, the weak topology w(L,, 8),- 8 being & sub-
space of L. We say in that case that I, is w(L,, §)-lower semicontinuous
((Ly, 8)-Ls.c). .
In fact, if the domain of I, is the whole L; or if we put I (u) = +oco
whenever the integral cannot be defined uniquely, then the closedness

6 — Studia Mathematica 66.1
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of the epigraph is equivalent to the l.s.c. of I;(u) for each u e I,; that is,
for each % we have hmmflf(v) = I (u).

¥ 8 =1, then w (Ll, 8) is the I;-weak topology, and in this cage
the characterization of the l.s.c. of I, is comparatively simple (see [9]).
In the case where T is a bounded domain of R* and u is the Lebesgue
measure Olech [6] gave such a characterization also when § is equal to ¢
(the space of continnous functions) or 0%, In [7] he proved it for the case
= O, using his characterization of the w*-closure of subsets of Z, (see [8]).
In this paper we present an extension of Olech’s result to a more
abstract setting. This allowed us to simplify the proof. In particular, in
Theorem A we did not need to use any analogue of the above-mentioned
characterization of w*-closure. Clearly, we need to specify the subspace S.
In fact, our first result applies to the case where § is approximatively
decomposable. The definition of this property and some other auxiliary
facts are given in the next section. In Section 3 we state the main result
while the proof of it is given in Section 4. Section b contains an alteration
of a similar result but under different assumptions concerning S. The
approximative decomposability assumption is replaced in Section 5 by
the existence of a certain subspace 87 < L (T, R) of “multipliers” of S.

2. Approximatively decomposable subspace. A space § or a set of
integrable functions is called decomposable if and only if for each measu-
rable A = T and any s;,s, from § the function X451+ 27\ 482 belongs
to 8 (see [10], [11]).

In analogy to this we shall call § approwmimatively deéomposable if
for each measurable 4 < 7, any s,, s,e8 and each 6> 0 there is an
8, € 8 such that s,(t) = A(t)s;(£)+ (1—A(1)) 8,(8), 0 < A(f) < 1 is measurable
and such that

llss— (%481 + g~ a82)llz, < 0

Clearly, if 8 has this property, s,, ..., s, € § and T,, ..., T, form a dis-
joined meagurable decomposition of 7', then for each 6> 0 there is an
8, €8 such that

85(t) e co{s;(t)} for each ¢

- Sl

We notice that if 7' is a compact topologmal Hausdorff space, then
the space of continnous functions is an approximatively decomposable
subspace of L. Similarly, if T is a compaect smooth manifold, then the
space C® or 0°° is also approximatively decomposable.

One more example. The subspace of simple funetions, that is, functions
assuming a finite number of values, is decomposable while the space of
piece-wise constant functions is approximatively decomposable.

and

<9
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The decomposability of the space was used in [10], [11], [2] to prove
the representation I} = I. or If = I;. In Theorem A we proved
I% = Iy by using approximative decomposability. We believe that the
notion of approximative decomposability may be useful also in other
situations and that our result is closely related to those in {101, 111, [21.

3. First characterization.

THEOREM A. Suppese that f satisfies Assumption A and assume S
is an approwimatively decomposable linear subspace of L (T, R®). Then
the following three conditions are equivalent:

(1) I s w(L,, 8)-Ls.c.
(i) The epigraph of I, is closed and conves.
(i) There is a funciion f: T x R" — RU{-+ oo} defined by the formula
(1) Ft, u) = sup(— Wit 4 <s,(0), w),
where the denumerable {s;} belong to § and P, are integrable on T, so tha,
for each w e L, (T, R"),
@) F(ty w(®)

The proof of this theorem will be given in the next section. Before
that we shall make some remarks and comments.

Condition (ii) differs from (i) only in convexity. We notice also that (ii)
and Assumption A (I,(%,) finite) imply that there is an s, € § such that

(3) . Lu) = a+ (s, w).
Indeed, denote by D the epigraph of I,. Then from (ii) it follows that

= f(t, u(t)) p-ae. in T.

D = M {(u, a)| aa+{s,up < o(a, s)},
acR
‘where o
(4) ¢(a, 8) = sup (aa+<s, u))

(u,a)eD
is & support function. Since D is an epigraph, then ¢(a, s) = +co if a > 0.
Inequality (3) means that ¢(—1,s8) < co. I ¢(a,s) = +oo for each
a < 0, then D would be of the form A x R, where 4 is w(L,, §)-closed
convex ; hence I(u) would be equal — oo on .4 and + oo elsewhere, contrary
to the assumption that I,(u,) is finite.

It iz & general fact that a convex and lower semicontinuous funetion
on a linear topological space either is never equal to — co or is equal to
—oo on 4 convex and closed set and to <+ oo elsewhere.

Another general property of convex sets which will be useful for us
is the following statement. Tf (ii) holds, then

(5) D = Q{(u:a' —a+{s, uy < e(—1,8)})
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Indeed, if (@, @) ¢ D, then there are «,,s, such that a;@+ sy, @
> ¢(ay, 8,). Since the latter has to be finite, we have a; < 0. I o, < 0,
then we can put ¢; = —1, because ¢ is homogeneous, and we conclude
that (%, @) does not belong to the right-hand side of (5). If ¢; = 0, then
there is a 6 > 0 such that

o[—8, 85y (L — 8)s;) < — 8T+ (88,4 (1— ) sy, T,

which follows from the continuity of both sides with respect to 8. Thus
again (%, @) does not belong to the right-hand side of (5). Hence (5) is
proved.

The function f in condition (i) is % x B-measurable, convex and
lower semicontinuous in the second variable for any fixed ¢. This follows
clearly from (1). It is interesting to note that f may not have any of these
properties and still (2) holds.

However, condition (iii) means more. One can prove that the & x &-
measurability condition of f(t, u), convexity and Ls.c. in % imply (1),
but in general we cannot say more about s, than that they are measurable
and bounded.

To get a better understanding of condition (iii) we will give an equiv-
alent version of it. For this purpose consider the function f*(¢, -) conju-
gate to f; that is,

(6) Fot ) = sup(—f(t, w)+<u, 2)).

Tt is well known that f* (t, +) is convex and l.s.c. Moreover, we have

f** =f-
Notice that from (1) and (6) it follows that

F it s:0) < i)
and (2) implies

F* {8y 5:0) = esssup (—£{t, w(n) -+ <uit), 5,(1)3),

uel;

where esssup stands for the essential supremum. The general formula
(M 7 (s s(t)) = essiup(—f(t, w(t) + <u(t), s (1)) |
uelq

for each s e § such that the right-hand side of (7) is integrable can be
proved by using measurable selection theorems (see for example [1], [5]).
Denote the right-hand side of (7) by ¥, (t). :

Lit P be the set of all ¢ € L, such that 7, (t) is integrable, and denote
by Q(t) the domain of f*(z, -); that is,

Q) = | [, p) < + o).
Bach s e P is a selector of Q, thatis, s(f) € Q(f) u-a.e. in T. The opposite
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does not hold in general, but because of (1) if s e L, is a selector of Q,
then s belongs to the I,-closure of P.

The following two conditions are equivalent versions of (i) :

(iii") There is an f(¢, w) £ x B-measurable, comver and Ls.c in u Jfor
each fived t such thal (2) holds and there is a sequence {8} = 8 such that
cleo{s;(#)} = cl@Q(f) uy-a.e. in T and P + O.

(ii") There is a denwmerable L,-dense subset of P contained in 8§ and

Flt,w@®) = esigup(—ws(t)+<za(t), 8(2))) p-ae. in T.

In particular, if § is the subspace of continuous functions, then (iii’)
means that ¢l (f) is equal to a lower semicontinuous set-valued function
u-ae in T,

The implication (iii) = (iii’) follows immediately from (1), (7). Let
(iii’) hold. Without loss of generality we may assume that

(8) el{s;(1)} = elQ(?).

Since L, is separable, there is a denumerable subset {u;} I-dense
in P. Thus w,(t) e clQ(f) p-a.e. in T for each %. By (8) for each j there is
a sequence {s;,...,s; } < {s;} such that

ue(t) = D's; (B +n(t),

where [ln( )| 1z, < 1/24. Therefore from the approximative decomposability
of § there is an sf e §NP satisfying llst —ttllz, < 1/j. Then {s}} < § is
a Ly-dense subset of P. Since we may include {s,} in the sequence {s},

el {sL(t)} = clQ(f) u-ae. in T

and
fityw) = s}}g(—f*(t, sE(0) + <sh (), w)).
We have
F™ (6, w() > esssup(—* {5, s(2) + <s(0), (1))
> esiz;xp(—f* (t, sk (0) -+ <54 (0), w())) = flt, w(t)).

This together with (2) completes the proof of the implication (iii’) — (iii’’).
Let (iii”") hold and suppose {s;} is the L,-dense subset of P. Defining

Ftyu) = sup (— %y, (1) +<8:(t), )

and using the definition of 7,, one cah check that (iii) holds.
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- 4. Proof of Theorem A. First we state two results which will be needed
in the proof.

ProposirioN 1. Let K < L,(T, R") be decomposable; then for any
o € L, we have

(9)  sup<u, ¢> =sup [ <Cu(t), p(t)>p(dt) = [esssup<u(t), p(i))u(de).
zeK ueK g T uekK

PROPOSITION 2 (an extension of the Liapunov theorem). Under the
same assumption as above, for any @, ..., ¢, € L the set

B ={(m1,...,

18 CONVET.

The proofs of both propositions can be found in [9].
To prove that (i) implies (i) we need only to check that D iz convex.
We will prove this if we show that the set

D, =" {(u, a)] aa+<s,ud> < of
a<0

seS

)| @ = [<u®), gdp(@), vek, i=1, ..,k
T

a, 8)},

where ¢(a, s) is defined by (4), is contained in D.
Let (%, a) be any fixed point of D, and consider a meighbourhood
of it in the w(ZL,, §) topology, that is, a set

N ={(u,a)| la—73| <e, Ku—7,s)| <&, i=1,..., x},

where 8; & 8 is arbitrary but fixed. To prove that NND is not empty we
need to show that % =(a, <u, s, ..., <&, s;>) belongs to the closure
of the set

B={zeR" oy =a, 5, = u,8>, (u,8)eD, i =1,...,k}.
But we have

B ={oc R g= f o(t) (@), f ult), s, (t)>(dt),

o(t) > f(t, w(?) p-ae. in T, ueLl}.

Hence, by Proposmon 2, B is convex and the closure B of B i3 given by

B
B= N {m € RF by, + befb‘i ( 2 )}

beRF+1
Indeed,
(zifiﬂs (b 0+ g b, ) = fu)]E)D (boa +<u, 2 b, si>)

Since aii+ <%, &) < o(a, 8) for each (q,s), we have, in particular, b,a-+
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+ 30,8, 80 <
proved.

This part of proof is the same as in, the case of w(Ly, 0) eons1deled
by Olech [8], but we have included it here for the convemenee of the
reader.

We shall now prove the implication (i) — (iif). Since the space
L, (T, R") x R is separable, by the Lindeléf theorem [3] (see Theorem 4
on p. 12) it follows from (5) that there exists a denumerable sequence 8,
guch that

(10) D = N {(u, @)l ~a+<u, 8> <

where ¢(s f 7, (

ofby, > bys;) for each by. Therefore 7 e B, which was to be

o(s},
Ji(di) = o(~1, ;). Define f by relation (1) with s,
0) and with ¥,(t) = ¥, (). Notice that (3) iﬁiplies that
I;(u) = Tf 1,

for each w such that I, is defined on it. Then I, is defined on the whole L.
Indeed, let u, € L, be such that both the negative part and the positive
part of f(¢, u,(¢)) have the integral divergent to infinity. Denote

B = {3 f(ty ul(t)) < 0},

the same as 111 (1

() (@) > — oo

and define
” u (t), teB,
U(t) =
0=l i,
where %, i3 the function in Assumption A. Then f flt, () p(dt) = —oo0'

which contradicts the above statement. Now we sha,ll prove thagt
(11) Flt, w() <f(t, wt) w-ae in T
for every w e L,. If I,(@) < +oo, then by the definition of ¥; we have"
Tl 7)) > — () + @),
u(®)) = sup (— P (t)+ Cut), s;(t)
I; (@) = 4 oo and 1mppose that
It w(®) < flt, ﬁ(t))

on a get B of poswwe measure. Because I,(%) > —co, we may assume
without logs of generality that f 1ty a(p) (dt) < +oo. Define

8;(t)> pae in T;

thus f(z, M) < St u(t) pae. in T. Let,

. @(t), teB,
(t) = {uo(t), 1 ¢ B.
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Then I,(#)< + oo, and thus

f(t, w(e) < f(t, (1) p-a.e in B,

which contradiets the above supposition. Thus (11) holds for each .
Now let Iy(u) < -+ co. Then

= [sup(— ¥ (8) + {si0), WD) (ds)
7 2

> [(— 2,0+ {s:(0), T(0))) (A1)

i
= —o(8;)+ <8, B3

hence, by (10), (@, I7(%@)) € D and therefore I3 (%) > I;(%). This together
with (11) implies (2). Let I3 (%) = +oco. Then, supposing that f(t, %(t))
< f(t, () on a set B of positive measure and introducing a function «
as above, we can reduce this case to the previous one. Thus (2) holds and
the implication (ii) = (iii) has been proved.

To prove that (iii) implies (i) notice that by (7) ¥;in (1) can be assumed
to be equal to f*(t, s;(t)) p-a.e. in T. Thus '

flt, w (@) = sup(—F(t, 8:(0) + ¢s:0), w(0)).

This implies that for any fixed # € L, and each ¢ > 0 there is a sequence

815 ...y 8 and a disjoined measurable decomposition 7,,...,7T, of T
such that

k
(12) . Flou@) = 3 (= i) +<oult), w22, () + (1),

=

i=

where the l}l-norm of () is less than e. But S iy approximatively decom-
posable, and hence for each 6> 0 there is an s;e 8, s5(t) € co{a ()i

such that the L,-norm of 5,— 2 %z;8:18 less than 8. Let s,(t) = 5“ A;(2)8,(2),

=1

where 4;(t) > 0 and 2 A:(t) = 1. By (12) we have
(13) Floy w(@) = (=7t s0) + <so(0), w(e)) +
k
HF s = 3 A0F, )+

=l

-

(20) =22, () 1t 3,00) +

Mw

+

i

]
-

k

+<2 3;(’5)71'1(’)—34 >+’7(t .

i=1
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Because of the convexity of F*(t, -) the second term of the right-hand
gide of (13) is nonpositive; thus, integrating (13), we get

(14) Ir (0) < —Ip(se) + <5 up+r+ [ n(a(d),
T

where
r —Zf — 2z OV * (85 8:(00) (@) +< D sim,— 85, )

Since u, s; are fixed and both Ai— X, and >'s, %z, — 8y are in I, and sinall
in the Ll-norm, we can choose & 8 50 small that [rl < &, which implies that

Ii(u )\sgp(~1f-( )+ <8, u)).
The opposite inequality is obvious; thus
Ip(u) = sup(—If;(s)—l—(s, up).

Hence the epwmph of I, is closed, and thus (i) holds and the proof of
the theorem is completed.

Remark, In Theorem A we do not suppose that 8 separates points
of T,. In L, we can introduce the equivalence relation m: (4, %) en
itf (uy, 8 = {u,, 8) for every seS. Then on the quotient space I,/=
the functional I; can be defined uniquely. Indeed, if there is a (uy, u;) € 7
such that I,(u,) < I(u,), then the sequence {u,} econverges to u, in w(L,, §)
but liminfT,(u,) < Ix(u,), which contradicts the lower semicontinuity

u
ot 1. "

5. Another characterization. Here we introduce other assumptions
on the space § to get the lower semicontinuity of the functional I,. Consider
the following assumptions:

There is a linear subspace 87 of L (T, R) such that

() If y e LY, and <{y,s™> =0 for each st € 8%, then v is a singular
functional.

(B) os eS8 if o e, s e 8;1 e and either 8T is cmalgebmor o (Yest

for each a € SI such that o(f) << ¢ < 0 for some &.
Denote

E = {{v, w) € L] o(t) > flt, u(t)) u-ae in T}.

Let 8’ = 8% x 8 be the Gartesianproduct. If K is w(L,, 8) closed, then there
is a denumerable {(sf,s,)} < 8", s/(t)<0, and {¥;} = L, such that it
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can be represented in the form
(15) K = ({(v, u) € Ly| <{s{(2), 0(8)>+<5,(1), u(t))— P, (t) < 0}
: p-ae. in T,

This fact follows from the decomposability of K and the separability of I,
and the proof can be found in [8].

THEOREM B. Assume that f satisfies Assumplion A and there exists
a linear subspace 87 of L (T, R) satisfying () and (B). Then the conditions
(1)-(iil) are equivalent to the following condition:

(iv) K is w(L,, 8")-closed and there is an s e 8 and a Y (t) integrable
and such that

(16) —f{t, w(®) +<s(t), u(t))—PH) < 0 p-ae in T.
Jor every u e ;.

Before proving Theorem B we recall some information concerning
the space LF,. '

The linear functional A e LY is said to be singular with respect to u
if there is a sequence of measurable sets E, such that B, , < B,, u(E,) -0
ag 7 —> oo and {4,y ™z, P> = 0 fot every 9 € L, and any %,

The linear functionai A e L is said to be absolutely continuons with
respect to u if it has the form

Gopy = [, @) u(@)  for every ¢ e Ly,
T

where A(-) e L,.

It is known (see for example [4], [12]) that every linear functional
Ze L7, can be represented uniquely as the sum 2,--1,, where Aqy As are
absolutely continuous and singular parts of A with respect to u. A e Lk
is nonpositive iff for each ¢ € L, @(t) = 0 p-a.e. in T we have the inequality
<4, > < 0. For a nonpositive 1 e L* both %, and 2, are also nonpositive.

Proof of Theorem B, In Theorem A the approximative decompo-
sability was used only in the implication (iif) = (i); hence to prove The-
orem B it is enough to verify the implications (iv) = (i) and (iii) = (iv).

Assume that (iv) holds, and let {uo} = L, converge w(L,, 8)-weakly
to u, € I;. From (16) we have

y = limint [ f(t, u, () u(dt) > — co. -
e 7

If y = + o0, then there is nothing to prove. Then let y < -+ co. There
is & subnet still denoted by {a} and such that lim7;(u,) = . From that
and from (16) it follows that - a

J 110t 1 (0))+ <s(8), 0 (6)) — W) p(dt) < M.
r
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Hence, by virtue of the Alaoglu theorem ([3], Theorem 2, p. 424), there
exigts another subnet -—f (t, u,,(t))-}—(s(t), Ug (1)) —¥(t) converging in
the w (L%, L) topology to i e L% . Denote
vo= —A+<8, U () —¥F()eLi.
Then by (B)
an lim [{F(t, walt)), s7(0) Y u(dt) = ¢v, 87
T

tor every s’ e 87. We wish to show that
(18) (vy, uy) € K, where v,(t) = dv,[du(t).

Since K is assumed to be closed, K = K and representation (15)
holds for K. Therefore to show (18) it is enough to prove that for each
fixed 4
(19) CsT (1) 20 (8> +<8:l0), (8> — Wy (8) < O p-aie. im T

Suppose that S is an algebra. From (17), (15) we deduce that <s’é (t),
f(t, ua(t))>+(si(t), U (t)> — ¥;(t) converges to a non-positive A’ EIIIDu 111
the w(LX, L) topology. On the other hand, by (17) for each s’ e§
we find that
() ST thal ) = Gy wd ()= Fe()D
converges to
8T ) (87900 (1) + <84y wo» (+) = Wi )>+ <8787y 90>
The latter functional is singular, therefore, using assumption («), we have
SE(1) 0 (£) + <5 (), w()> — Wy(H)— A (1) = 0 pae. in T.

Since 4,(t) < 0, we have (19) and hence algo (18) follows. Notice that »,

is nonnegative and therefore, applying (17) for s7(¢) = 1, we obtain by (18)
y = Hmind [ £(2, w,(0)) p(d8) = <pay 1>+<ray 1> > [ Ft, wo(0)) s (@0).
a 7 T

Thus (i) holds if 87 is an algebra.

Suppose now that the other alternative of (B) holds.

Notice that, ag in the proof of (5) in Section 3, by (16) one can prove
that (15) holds also with si(t) < & < 0. Thus, if the second part of (B)
holds, then we can put in (15) s!(t) = —1 for each 4. Therefore we may
now repeat the proof word for word except that we need not use the assum-
ption that 87is an algebra. Hence (i) holds also in this case. Thus the proof
of the implication (iv) = (i) is completed.

Agsume now that (iii) holds. Then by (1) and (2) we clearly have

(20) K = (N{(v,u) e Ly| —v(t)+<s:(0), w(t)> < ¥(t) p-ae. in T},
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where 8; € § and ¥, are integrable. Thus (16) holds. By the same argument
as above one can see that if (v,, w,) converges to (#y, %) in the w(L,, 8)
topology, and — o,(£) 4 (8;(2), % (t)> < ¥;(t) p-a.e. in T for each «, then
the same inequality holds for the limit function. This and (20) prove that K
i3 w(Ly, 8')-closed. Hence (iv) follows and this completes the proof of
Theorem. B.
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