Multiply self-decomposable measures in generalized convolution algebras

by

NGUYEN VAN THU (Wrocław)

Abstract. The aim of the present paper is to prove a representation theorem for multiply self-decomposable probability measures in generalized convolution algebras. Moreover, a one-to-one correspondence between the class of multiply self-decomposable measures in a generalized convolution algebra and the class of multiply monotone functions on the real line is established.

1. Introduction. Let Π denote the class of all probability measures supported by the half-line $[0, \infty)$, endowed with the weak convergence. Let δ_x denote the unit mass at the point $x \ge 0$ and let $T_x, x > 0$, denote the map given by $(T_x P)(E) = P(x^{-1}E)$ for $P \in \Pi$ and E a Borel subset of $[0, \infty)$. In the sequel we shall preserve the terminology of [3] and [5]. In particular, by 0 we shall denote a generalized convolution defined on Π such that $(\Pi, 0)$ stands for a regular generalized convolution algebra. Further, for $P \in \Pi$ we shall denote by Φ_P its characteristic function.

The concept of multiply self-decomposable measures for the ordinary convolution has been introduced in [2]. In a similar way one can define multiply self-decomposable measures in the algebra $(\Pi, 0)$ as follows: Let Π_1 denote the class of all self-decomposable measures in $(\Pi, 0)$, i.e. such measures p that for every number c in (0, 1) there exists a measure Q_c in Π such that $p = T_c p \circ Q_c$ or, equivalently,

Next for every integer n>1 let H_n denote the class of all measures in H_1 such that for every number c in (0,1) the component Q_c belongs to H_{n-1} . Every measure in H_n $(n=1,2,\ldots)$ will be called n-times self-decomposable and every measure in $H_\infty:=\bigcap_{n=1}^\infty H_n$ will be called completely self-decomposable. Since every stable measure in (H,0) is completely self-decomposable (Theorem 2, [5]) the set H_∞ is non-empty. It is evident that $H_\infty\subset H_{n+1}\subset H_n$ $(n=1,2,\ldots)$, which, however, according to Example 2.5 cannot be replaced by the equality.

2. n-times self-decomposable measures. Consider a measure $p \in \Pi_n$ (n = 1, 2, ...). It is well known that for every number c in (0, 1) the measures p and Q_c are both infinitely divisible. Further, for the characteristic function Φ_p of an infinitely divisible p in $(\Pi, 0)$ we have the formula

(2.1)
$$\Phi_p(t) = \exp \int_0^\infty \frac{\Omega(tx) - 1}{W(x)} m(dx),$$

where m is a finite Borel measure on $[0, \infty)$, being the spectral measure for p, W is defined by

$$W(x) = egin{cases} 1 - \varOmega(x), & 0 \leqslant x \leqslant x_0, \ 1 - \varOmega(x_0), & x > x_0, \end{cases}$$

where x_0 is a positive number satisfying the condition $\Omega(x) < 1$ whenever $0 < x \le x_0$ and Ω is the kernel corresponding to $(\Pi, 0)$.

We now proceed to establish some properties of spectral measures m corresponding to n-times self-decomposable measures.

Let $[0, \infty)$ denote the compactified half-line. For a subset E of $[0, \infty]$ such that $\overline{E} \subset (0, \infty]$ and a Borel measure m on $[0, \infty]$ we put

$$(2.2) I_m(E) = \int_E \frac{m(dx)}{W(x)},$$

where the integrand is assumed to be $(1-\Omega(x_0))^{-1}$ if $x=\infty$. Denote by M_n the set of all finite Borel measures m on $[0, \infty]$ satisfying for every system of numbers c_1, c_2, \ldots, c_n from the interval (0, 1) and all Borel subsets E with $\overline{E} \subset (0, \infty]$ the following condition:

$$(2.3) I_m(E) + \sum_{k=1}^n (-1)^k \sum_{\substack{i_1, i_2, \dots, i_k = 1 \\ \text{all of true}}}^n I_m(c_{i_1}^{-1} c_{i_2}^{-1} \dots c_{i_k}^{-1} E) \geqslant 0.$$

By virtue of Lemma 8, [5], and by an easy induction we get the following proposition:

2.1. Proposition. A Borel measure m on $[0, \infty)$ is the spectral measure for a n-times self-decomposable measure in $(\Pi, 0)$ if and only if $m \in M_n$.

Suppose that the measure m is concentrated on the open half-line $(0, \infty)$ and put

(2.4)
$$J_m(u) = \int_{e^{-u}}^{\infty} \frac{m(dt)}{W(t)} \quad (-\infty < u < \infty).$$

Obviously, for a < b we have $I_m([e^{-b}, e^{-a})] = J_m(b) - J_m(a)$. Further, for arbitrary $t_1, t_2, \ldots, t_n > 0$ we put $c_i = e^{-t_i}$ $(i = 1, 2, \ldots, n)$. Conse-

quently, by (2.3), $m \in M_n$ if and only if for every system $a, b, t_1, t_2, \ldots, t_n$ of real numbers with a < b and $t_1, t_2, \ldots, t_n > 0$ we have the inequality

$$2.5) \qquad \qquad \underbrace{\int_{t_1 t_2 \dots t_n} J_m(b) - \int_{t_1 t_2 \dots t_n} J_m(a) \ge 0, }_{t_1 t_2 \dots t_n}$$

where Δ is the difference operator defined inductively on real functions g by

Moreover, the function J_m satisfies the condition $\lim_{u\to-\infty} J_m(u) = 0$, which together with (2.5) implies that the function J_m is *n*-times monotone (for the definition of multiply monotone functions, see [2]).

Hence we get the following criterion:

2.2. Proposition. A Borel measure m on the open half-line $(0, \infty)$ is the spectral measure for an n-times (resp. completely) self-decomposable probability measure in $(\Pi, 0)$ if and only if the corresponding function J_m defined by formula (2.4) is n-times (resp. completely) monotone.

Let N_n be the subset of M_n consisting of probability measures on $[0, \infty]$. It is clear that the set N_n is convex and compact.

Given a measure m in N_n (n=1,2,...) concentrated on the open half-line $(0,\infty)$, we get the n-times monotone function J_m . By virtue of Proposition 4.1, [2], it follows that there exists a unique left-continuous monotone non-decreasing and non-negative function q_m on the real line such that

$$(2.6) J_m(u) = \int_{-\infty}^{u} \int_{-\infty}^{u_{n-1}} \int_{-\infty}^{u_{n-2}} \dots \int_{-\infty}^{u_1} q_m(t) dt du_1 \dots du_{n-1}$$

 $(-\infty < u < \infty)$. Hence and by virtue of (2.4) we get the formula

$$(2.7) m(E) = \int_{E} w(t) \int_{-\infty}^{-\log t} \int_{-\infty}^{u_{n-2}} \dots \int_{-\infty}^{u_{n-3}} \dots \int_{-\infty}^{u_{1}} q_{m}(v) dv du_{1} du_{2} \dots du_{n-2} \frac{dt}{t}$$

 $(E \subset (0, \infty))$. In particular, for $E = (0, \infty)$, equation (2.7) becomes

$$(2.8) \quad 1 = \int_{0}^{\infty} w(t) \int_{-\infty}^{-\log t} \int_{-\infty}^{u_{n-2}} \int_{-\infty}^{u_{n-3}} \dots \int_{-\infty}^{u_1} q_m(v) \, dv \, du_1 \, du_2 \dots \, du_{n-2} \, \frac{dt}{t}.$$

Conversely, if q_m is a left-continuous, monotone non-decreasing and non-negative function normalized by condition (2.8), then the probability measure m defined by means of formula (2.7) is a spectral measure corresponding to an n-times self-decomposable measure in $(\Pi, 0)$. In such a way pe get a one-to-one correspondence between all measures in N_n concen-

trated on the open half-line $(0, \infty)$ and all left-continuous, monotone non-decreasing and non-negative functions normalized by condition (2.8). It hints at such a correspondence preserves convex combinations of elements. Consequently, extreme points are transformed into extreme points.

We now proceed to find all functions q being extreme points. First we note that the extreme points are functions which for some x are constant on both half-lines $(-\infty, s)$ and (s, ∞) . Hence for an extreme point q there exists a unique number s>0 such that q(x)=(n-1)! $C_s\chi_{(\log 1/s,\infty)}$, where C_s is a real constant (depending on s), χ_E is the indicator of a set E and the constant (n-1)! is introduced to simplify further notations. Conversely, one can easily prove that such functions are extreme points. Let us denote by m_s (s>0) the extreme point of the set N_n , $n=1,2,\ldots$, corresponding to the function q(x)=(n-1)! $C_s\chi_{(\log 1/s,\infty)}$. By virtue of (2.7) we get the formula

$$(2.9) m_s(E) = C_s \int_E w(t) \left(\log \frac{s}{t} \right)_+^{n-1} \frac{dt}{t},$$

where $E \subset (0, \infty)$ and for a real number λ we write $\lambda_+ = \max(\lambda, 0)$. The constant C_s is determined by condition (2.8). Namely,

$$(2.10) C_s^{-1} = \int\limits_0^s w(t) \left(\log \frac{s}{t}\right)^{n-1} \frac{dt}{t}.$$

Putting, in addition, $m_s = \delta_s$ for s = 0 or ∞ , respectively, we get the following proposition:

2.3. Proposition. The set $\{m_s: s \in [0, \infty]\}$ coincides with the set of extreme points of N_n (n = 1, 2, ...).

Now, by Krein-Milman-Choquet Theorem [1], we get the following statement: $\mu \in N_n$ (n=1,2,...) if and only if there exists a probability measure ν on $[0,\infty]$ such that

$$\int\limits_{[0,\infty]} f(x) \, \mu(dx) \; = \int\limits_{[0,\infty]} \left(\int\limits_{[0,\infty]} f(x) \, m_s(dx) \right) \nu(ds)$$

for all continuous bounded functions f on $[0, \infty]$. Moreover, if μ is concentrated on $[0, \infty)$, then ν does the same. Hence and by (2.1) we have the following theorem:

2.4. Theorem. The class of characteristic functions of n-times $(n=1,2,\ldots)$ self-decomposable measures in $(\Pi,0)$ coincides with the class

of functions of the form

where v is a finite Borel measure on $[0, \infty)$.

2.5. Example. For a fixed number s>0 let us form a characteristic function φ as follows:

(2.12)
$$\varphi(t) = \exp\left\{\int_{a}^{s} \frac{\Omega(tx) - 1}{x} \left(\log \frac{s}{x}\right)^{n-1} dx\right\}.$$

By virtue of Theorem 2.4, φ is *n*-times self-decomposable. Further, by the uniqueness of representation (2.1) the spectral measure m corresponding to the function φ is given by the formula

$$(2.13) m(E) = \int\limits_{n} \left(\log \frac{s}{x}\right)_{+}^{n-1} \frac{\omega(x)}{x} dx.$$

Hence the function J_m defined by (2.4) is of the form

$$(2.14) J_m(u) = \int\limits_{s-u}^{\infty} \left(\log \frac{s}{x}\right)_+^{n-1} \frac{dx}{x}$$

which, of course, is n-times monotone. On the other hand, J_m is not (n+1)-times monotone. Consequently, by Proposition 2.2, φ is not (n+1)-times self-decomposable, which shows that for every $n=1,2,\ldots$

$$\Pi_{\infty} \subseteq \Pi_{n+1} \subseteq \Pi_n$$

3. Completely self-decomposable measures. Given a finite Borel measure m on the open half-line $(0, \infty)$ we define function J_m by means of formula (2.4). By Proposition 2.2, m is a spectral measure for a completely self-decomposable measure in $(\Pi, 0)$ if and only if the function J_m is completely monotone. Suppose that J_m is completely monotone; then there exists a unique completely monotone function P_m such that

$$(3.1) J_m(t) = \int_{-\infty}^{t} P_m(u) du \quad (-\infty < t < \infty).$$

Hence and by (2.4) the measure m is uniquely determined by P_m :

(3.2)
$$m(E) = \int_{E} w(t) p_m(-\log t) \frac{dt}{t}.$$

In particular, for a probability measure m on $(0, \infty)$ we get the formula

$$1 = \int_{0}^{\infty} w(t) p_{m}(-\log t) \frac{dt}{t}.$$

Conversely for every completely monotone function p_m on the real-line normalized by condition (3.3) the probability measure m defined by (3.2) is completely self-decomposable. Of course the correspondence $m \leftrightarrow p_m$ is one-to-one and preserves the convex combinations of elements.

Denote by \mathcal{X} the class of all completely monotone functions p on the real line normalized by condition (3.3). Given t > 0 and an extreme point p of \mathcal{X} , define two functions p_1 and p_2

$$p_1(u) = rac{p(u) + p(u - t)}{1 + c},$$
 $p_2(u) = rac{p(u) - p(u - t)}{1 - c}$ $(-\infty < u < \infty),$

where $c = \int_{0}^{\infty} w(u)p(-\log u - t) \frac{du}{u}$. It is evident that for sufficiently large t we have 0 < c < 1 and then the functions p_1 and p_2 are both completely monotone. Moreover, p_1 and p_2 are normalized by condition (3.3).

On the other hand, we have, for every $u \in (-\infty, \infty)$,

$$p(u) = \frac{1}{2}(1+c)p_1(u) + \frac{1}{2}(1-c)p_2(u)$$

which, by the assumption that p is an extreme point, implies that for all $u \in (-\infty, \infty)$ and for sufficiently large t > 0

$$p(u-t) = p(u) \int_{0}^{\infty} w(v) p(-\log v - t) \frac{dv}{v}.$$

Consequently, the function p is of the form

$$p(u) = ae^{su} \quad (\alpha, s > 0; -\infty < u < \infty).$$

Since, by the proof of Theorem 2, [5], the integral

$$\int_{0}^{\infty} w(t)p(-\log t)\frac{dt}{t} = a\int_{0}^{\infty} \frac{w(t)}{t^{1+s}}dt$$

is finite if and only if $0 < s < \varkappa$, where \varkappa is the characteristic exponent of the algebra in question, and by condition (3.3) the constant α is given by

$$\alpha = \left(\int_{0}^{\infty} \frac{w(t)\,dt}{t^{1+s}}\right)^{-1}$$

the function p being an extreme point of the set \mathcal{K} is of the form

$$(3.5) p_s = \left(\int\limits_0^\infty \frac{w(t)\,dt}{t^{1+s}}\right) e^{su} \quad (-\infty < u < \infty; \ 0 < s < \varkappa).$$

Putting $N_{\infty} = \bigcap_{n=1}^{\infty} N_n$,

(3.6)
$$m_s = \left(\int_0^\infty \frac{w(t)}{t^{1+s}} dt \right)^{-1} \int_E \frac{w(t)}{t^{1+s}} dt (0 < s < \varkappa)$$

and, in addition, $m_s = \delta_s$ for s = 0 or ∞ , we get the following proposition:

3.1. PROPOSITION. The set $\{m_s: s \in [0, \varkappa) \cup \{\infty\}\}$ coincides with the set of extreme points of N_∞ .

Now, by Krein–Milman–Choquet Theorem [1], we get the following statement: $\mu \in N_{\infty}$ if and only if there exists a probability measure ν on $[0, \kappa) \cup \{\infty\}$ such that

$$\int_{[0,\infty]} f(x) \, \mu\left(dx\right) \, = \int_{[0,x] \cup \{\infty\}} \left(\int_{[0,\infty]} f(x) \, m_{\mathbf{s}}(dx)\right) \, v(ds)$$

for all continuous bounded functions f on $[0, \infty]$. Moreover, if μ is concentrated on $[0, \infty)$, then ν is concentrated on $[0, \infty)$. Consequently, by (2.1), it follows the following theorem:

3.2. THEOREM. The class of characteristic functions of completely self-decomposable measures in $(\Pi, 0)$ coincides with the class of functions of the form

(3.7)
$$\Phi_{x}(t) = \exp\left\{\int_{0}^{x} \int_{0}^{\infty} \frac{\Omega(tx) - 1}{x^{1+s}} dx \left(\int_{0}^{\infty} \frac{w(u)}{u^{1+s}} du\right)^{-1} \nu(ds)\right\},$$

where x is the characteristic exponent of the algebra in question and v is a finite Borel measure on the interval [0, x).

References

- [1] G. Choquet, Le théorème de représentation intégrale dans les ensembles convexes compact, Ann. Inst. Fourier 10 (1960), pp. 333-344.
- [2] Nguyen Van Thu, Multiply self-decomposable probability measures on Banach spaces, Studia Math. this volume, pp. 161-175.

184

Nguyen Van Thu

- [3] K. Urbanik, Generalized convolutions, ibid. 23 (1964), pp. 217-245.
- 4] Levy's probability measures on Euclidean spaces, ibid. 44 (1972), pp. 119-148.
- [5] Generalized convolutions II, ibid. 45 (1973), pp. 57-70.
- [6] R. E. Williamson, Multiply monotone functions and their Laplace transforms, Duke Math. J. 23 (1956), pp. 189-207.

INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY WROCŁAW, POLAND

and

INSTITUTE OF MATHEMATICS HANOI, VIETNAM

Received May 12, 1977

(1293a)

STUDIA MATHEMATICA, T. LXVI. (1979)

An estimation of the Lebesgue functions of biorthogonal systems with an application to the non-existence of some bases in C and L^1

by

STANISŁAW KWAPIEŃ and STANISŁAW JERZY SZAREK (Warsaw)

Abstract. We prove the non-existence of a normalized basis in L^1 consisting of uniformly bounded functions and the dual fact for C. In the proofs we make use of Olevskii's technique from [6], Chapter I. We show also, using methods of p-absolutely summing operators, some connections between integral and numerical inequalities, which together with considerations of Olevskii's type give a new proof of the Bočkariev inequality from [1].

0. Introduction. In this paper we show, answering the question of Olevskii ([6], p. 36, (vi)), that there is no normalized basis in $L^1(0,1)$ consisting of uniformly bounded functions. We prove also the "dual" fact for the space C(0,1). These results generalize a theorem of Olevskii (see [6], Chapter I, § 2, Theorems 2 and 9):

No uniformly bounded orthonormal system is a basis in L^1 or C. Our statements admit two methods of proof. The first one makes use of Olevskii's technique, the second one starts from a certain inequality on averages of partial sums of numerical series proved by Bočkariev ([1]).

The paper consists of four sections. Section 1 has a preliminary character. In Section 2 we prove the equivalence of the approaches of Bočkariev and Olevskii. As the common vocabulary for them we use the theory of absolutely summing operators. Section 3 contains the proofs of the non-existence of a normalized structurally bounded basis in L^1 , the "dual" result for C and some further strengthenings. Section 4 contains in fact the new proof of the Bočkariev inequality, which is based on the results of Section 2 and the proof of Theorem 1 of Section 3.

To make the paper selfcontained we present a complete proof of Lemma B₁ (Section 3), which is essentially a special case (and consequently much easier to prove) of Theorem 1 (Chapter I, § 1) in [6] (see remarks on p. 35, [6], also Lemma 1 of [2]).

Aknowledgement. The authors express their gratitude to Professor A. Pelczyński for inspiration and valuable discussions.