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Multiply self-decoraposable measures in
gemeralized convolution algebras

by
NGUYEN VAN THU (Wroclaw)

Abstraet. The aim of the present paper is to prove a representation theorem for
multiply self-decomposable probability measures in generalized convolution algebras.
Moreover, a one-to-one correspondence between the clags of multiply self-decomposable
measures in a generalized convolution algebra and the class of multiply monotone
functions on the real line is established.

1. Introduction. Let IT denote the class of all probability measures
supported by the half-line [0, oo), endowed with the weak convergence.
Let 4§, denote the unit mass at the point # > 0 and let T.,» > 0, denote
the map given by (T,P)(E) = P(» 'E) for P e IT and B a Borel subset
of [0, co). In the sequel we shall preserve the terminology of [3] and [5].
In particular, by 0 we shall denote a generalized convolution defined on I7
sueh that (I7, 0) stands for a regular generalized convolution algebra.
Further, for P e IT we shall denote by D, its characteristic function.

The concept of multiply self-decomposable measures for the ordi-
nary convolution has been introduced in [2]. Tn a similar way one can
define multiply self-decomposable measures in the algebra (17, 0) as follows :
Let I7, denote the class of all self-decomposable measures in (I7, 0), ie.
such measures p that for every number ¢ in (0, 1) there exists a measure @,
in II sueh that p = T,poq, or, equivalently,

(1.1) Py(t) = Pylet) Py, (t)  (t [0, co)).

Next for every integer n > 1 let 17, denote the class of all measures in I,
such that for every number ¢ in (0, 1) the component ¢, belongs to 17, ;.

Bvery measure in IT, (n = 1,2, ...) will be called n-times self-decompos-
able and every measure in II,: — N II, will be called completely self-
n=1

decomposable. Since every stable measure in (7, 0) is completely self-
decomposable (Theorem 2, [5]) the set 11, is non-empty. It is evident that
I, <1I,,, =1, (n =1,2,...), which, however, according to Example 2.5
cannot be replaced by the equality..
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2. netimes self-decomposable measures. Consider a measure p e II,
(n =1,2,...). It is wellknown that for every number ¢ in (0, 1) the mea-
sures p and @, are both infinitely divisible. Further, for the characteristic
function @, of an infinitely divisible p in (II, 0) we have the formula

F Qtr)y—1
(2.1) D, (t) = expf —%—m(dﬂﬂ),
0

where m is a finite Borel measure on [0, oc), being the spectral measure
for p, W is defined by

1— Q(=), 0 <2< oy,
1-Q(x), 2>,

W) =I

where 2, is a positive number satisfying the condition 2(x) < 1 whenever
0 < # < @ and Q is the kernel corresponding to (7, 0).

We now proceed to establish some properties of spectral measures m
corresponding to n-times self-decomposable measures.

Let [0, co) denote the compactified half-line. For a subset H of [0, oo]
such that & < (0, oo] and a Borel measure m on [0, co] we put

m(dw)

(2.2) L,(B) = W)

where the integrand is assumed to be (1—Q(w))™ if # = co. Denote
by M, the set of all finite Borel measures m on [0, o] satisfying for every
system of numbers ¢y, ¢y, ..., 6, from the interval (0,1) and all Borel
subsets B with E < (0, o] the following condition:

n

(2.3) Im(E)+2(—1)" D Lalitegt - ;,;E)

o=t iigsn rerig=1
distinot

By virtue of Lemma 8, [5], and by an easy induction we get the
following proposition:

2.1. PROPOSITION. 4 Borel measure m on [0, oo) is the speciral measure
for a n-times self-decomposable measure i (II, 0) if and only if me M,,.

Suppose that the measure m is concentrated on the open half-line
{0, co) and put

T om(@
(24) () = f ”;V(,(t)) (—oo<u< oo).

Obviously, for a < b we have Im([e'b, %)) = J,,(b)—dJ,,(a). Further,
for arbitrary #,,15,...,%,>> 0 we put ¢, =e % (i =1,2,...,n). Conse-
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quently, by (2.3), m e M, if and only if for every system Gy byt tyy .. 41,
of real numbers with a << b and #,,1,, ...,1, > 0 we have the inequality
(2.5) 4 J.b— 4 J,(a)=0

ity dy tylgety

where 4 is the difference operator defined inductively on real
tyby.odyy

functions g by
4 g(a) =, 4 (gla)—g(a—1)) (aeR, ty,t, ..., 12> 0).

tylgenidy, fly.ady _y

Moreover, the funetion J,, satisfies the condition Lim J,,(u) — 0, which
U-r—00

together with (2.5) implies that the function J, 18 n-times monotone

(for the definition of multiply monotone functlons, see [2])

Hence we get the following criterion:

2.2. PROPOSITION. A Borel measure m on the open half-line (0, oo)
is the spectral measure for an n-times (resp. completely) self-decomposable
probability measure in (II, 0) if and only if the corresponding function J,,
defined by formula (2.4) is n-times (resp. completely) monotone.

Let N, be the subset of M, consisting of probability measures on
[0, oo]. It is clear that the set N, is convex and compact.

Given a measure m in ¥, (» =1,2,...) concentrated on the open
half-line (0, o), we get the n-times monotone function J,. By virtue
of Proposition 4.1, [2], it follows that there exists a unique left-conti-
nueuns monotone non—decreaging and non-negative function ¢,, on the real
line such that

u Un—1Up—2

(2.6) =/ J . f G (O didus ... du,

—0Q —00 -—00

(—9°< % < oo). Hence and by virtue of (2.4) we get the formula

~logi Un~2 Yn—3

@.7) m(E):fw(t) f
B

—00 —00 —00

Uy
i
) f G (0) B0ty Bty .. At

(B <.(0, o0)). In particular, for B = (0, o), equation (2.7) becomes

—logt Yn—2 ¥n—3

(2.8) 1~f t)ff

—00  —00

13
f_qm v)dvduydu, ... du,_ 2i

Conversely, if g¢,, is a left-continuous, monotone non-decreaging and

‘non-negative funetion normalized by condition (2.8), then the probability

measure m defined by means of formula (2.7) is a spectral measure corres-
wonding to an n-times self-decomposable measure in (I7, 0). In such a way
Pe get a one-to-one correspondence between all measures in ¥, eoncen-
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trated on the open half-line (0, co) and all left-continuous, monotone
non-decreasing and non- -negative functions normalized by condition (2.8).
Tt hints at such a correspondence preserves convex combinations of el-
ements. Consequently, extreme points are transformed into extreme points.

We now proceed to find all functions g being extreme points. First
we note that the extreme points are functions which for some x are con-
stant on both half-lines ( — oo, s) and (s, oo). Henee for an extreme point ¢
there emsts aunique number s> 0 such that ¢(z) = (n—1)! Oy Xogs,c0)s
where 0, is & real constant (depending on s), y is the indicator of & set B
and the constant (n—1)! is introduced to simplify further notations.
Conversely, one can easily prove that such functions are extreme points.
Let us denote by m, (s > 0) the extreme point of the set N,,, » =1,2,...,
corresponding to the function ¢(@) = (n—1)! Cofpogye,c0- BY Virtue of (2.7)
we geb the formula .

. n—1 dt
(2.9) my(B) = C; fwm (log—*) -
where B < (0, oo) and for a real number i we write 1, = max(Z, 0)
The constant C, is determined by condition (2.8). Namely,
=1 dg
(2.10) j w() log =.

Putting, in addition, m, = d, for s =0 or oo, respectively, we :get the
following proposition: :

9.3. PROPOSITION. The set {mg: s € [0, co]} coincides with the set of
extreme poimts of N, (n=1,2,...).

Now, by Krein-Milman—Choquet Theorem [1], we geb the following
statement: u e N, (n =1,2,...) if and only if there exists a probability
measure » on [0, co] such that

[ f@uaey = [ ( [ fla)ym,(da))»(as)

[0,00] [0,001 [0,00]

for all continuous bounded functions f on [0, «o]. Moreover, if u is concen-
trated on [0, oo), then » does the same. Hence and by (2.1) we have the
following theorem: .

2.4. TeEOREM. The class of characteristic functions of n-times
m =1,2,...) sef-decomposable measures in (I, 0) coincides with the class
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of functions of the form

@11) B, = exp| [ ( feo=2 (1og %)czb) y
8 _ -1
X [fw(u) (logg) 1%{] ]v(ds),
0

where v is a finite Borel measure on [0, co).

2.5. ExamMpre. For a fixed number s > 0 let us form a characteristie
function ¢ as follows: .

- (2.12) @(t) = exp {J ﬁ(—t—ﬂg;l (log 5}—)"—1 dw}.

By virtue of Theorem 2.4, ¢ is n-times self-decomposable. Further, by
the uniqueness of representation (2.1) the spectral measure m corresponding
to the funetion ¢ is given by the formula

n—-1
(2.13) m(B) = f (log 8) “2) o,
B + @
Hence the funetion J,, defined by (2.4) is of the form
. ~ n—1 g,
(2.14) I, (1) = f (log s) =
. o + @X

which, of course, is n-times ‘monotone. On the other hand, J,, is not

" (n-+1)-times monotone. Consequently, by Proposition 2.2, ¢ is not (n-+1)-

times self-decomposable, which shows that for every » =1,2,...

I, < I, ., < I,.

3. Completely self-decomposable measures. Given a finite Borel measure
m on the open half-line (0, co) we define fumetion J, by means
of formula (2.4). By Proposition 2.2,.m is a spectral measure for a com-
pletely self-decomposable measure in (77, 0) if and only if the funection J,,
is completely monotone. Suppose that J,, is completely monotone; then
there exists a unique completely monotone funetion P, such that

[
(3.1) Jn(t) = [Pulu)du (—oc0<1< o0).
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Hence and by (2.4) the meagure m is uniquely determined by P,,:

at
2 m(B) = [ wit)p,(—logh—.
E

Tn particular, for a probability measure  on (0, co) we get the formula

- dt
(3.3) 1= [ wi)pa(—logt) —

Conversely for every completely monotone function p,, on the real-line
normalized by condition (3.3) the probability measure m defined by (3.2)
is completely self-decomposable. Of course the correspondence m > p,,
is one-to-one and preserves the convex combinations of elements..

Denote by o the class of all completely monotone functions p on’
the real line normalized by condition (3.3). Given #> 0 and an extreme
point p of ', define two functions p; and p, g

p(u)+p(u—1t)

pi(u) = 1te ’

(u) p(u—1) -

(u) l—e¢

(o< U< ),

where ¢ = f (w)p(—logu—1) du' It is “evident  that for sufficiently

large t we have 0<e<land then the fu:uctlons p, and p, are both com-
pletely monotone. Moreover, p; and p, are normalized by condition (3.3).
On the other hand, we have, for every u & (— oo, 00),

P(u) = H1+0)p1(w)+ 31 —0)pa(u) |

“which, by the assnmption that p is an extreme point, implies that for all
% € {—o0, c0) and for sufficiently large ¢ > 0

p(u— t)-— 'u,)j w (v logv—t)—-—

Consequently, the funetion p is of the form
Pp(u) = ae™ (a,8>0; —o<u< o).
Since, by the proof of Theorem 2, [B], the integral

~ow(l)

e

sy

dat
w(t)p(—logt)—t—— =a
0
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is finite if and only if 0 << $< x, where % is the characteristic exponent

of the algebra in question, and by condmon (3.3) the constant a is given
by

(3.4) o« = ( NM)MI

tl +8

the function p being an extreme point of the set 2 is of the form
. T w(t)dt
(3.5) Ps=(f —t(,:;)s—)e”“ (—oo<u< oo; 0<8< 2).
0

Putting Ny, =(\N,,
n=1

. w'w(t) 1o w(i)
(3.6) 'm,s=(0 Wfu) Ef Tl (0<s<w)

and, in addition, m, = &, for s = 0 or oo, we get the following proposition:
3.1. PROPOSITION. The set |mg: s &[0, x)U{ oo}} coincides with the
set of extreme points of N .
Now, by Krein-Milman-Choquet Theorem [1], we get the following
statement: u e N, if and only if there exists a probability measure » on
[0, x)U{co} such that

[ f@ae) = [ ([ flaym(da))»(ds)
[0,00] [0,2)U{oc} [0,00]

for all continuous bounded functions f on [0, c0]. Moreover, if 4 is concen-
trated on [0, co), then v is concentrated on [0, x). Consequently, by (2.1),
it follows the following theorem:

3.2. TurorEM. The class of characteristic fumctions of completely self-
decomposable measwures in (II,0) coincides with the class of functions of the
Jorm

BT @ —exp{ f f e (tﬁ: ( wl(f,) du) 'u(ds)},

where % 18 the characteristic exponent of the algebra in question and v is a finite
Borel measure on the interval [0, x).
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An estimation of the Lebesgue functions of biorthogonal systems
with an application to the non-existence of
some bases in ¢ and I

by
STANISLAW KWAPIEN and STANISEAW JERZY SZAREEK (Warsaw)

Abstraet. We prove the non-existence of a normalized basis in I consisting of
uniformly bounded functions and the dual fact for C. In the proofs we make use of
Olevskil’s technique from [6], Chapter I. We show also, using methods of p-absolutely
summing operators, some connections between integral and numerical inequalities,
which together with econsiderations of Olevskil’s type give a new proof of the Botka-
riev inequality from [1].

0. Introduction. In this paper we show, answering the gquestion of
Olevskii ([6], p. 36, (vi)), that there is no normalized basis in L' 0,1)
congisting of uniformly bounded functions. We prove also the “dual”
fact for the space (0, 1). Thede results generalize a theorem of Olevskif
(see [6], Chapter I, § 2, Theorems 2 and 9): )

No uniformly bounded orthonormal system is & basis in I* or 0. Our
statements admit two methods of proof. The first one makes use of Olevskii’s
technique, the second one starts from a certain inequalify on averages of
partial sums of numerical series proved by Bodkariev ([17]).

The paper consists of four sections. Seetion 1 has a preliminary charac-
ter. In Section 2 we prove the equivalence of the approaches of Bodkariev
apd Olevskil. As the common vocabulary for them we muse the theory
of absolutely summing operators. Section 3 contains the proofs of the
non-existence of a normalized structurally bounded basis in I*, the “dual”
result for ¢ and some further strengthenings. Section 4 contains in fact
the new proof of the Bodkariev inequality, which is based on the results of
Section 2 and the proof of Theorem 1 of Section 3.

To make the paper selfcontained we present a complete proof of
Lemma B, (Section 3), which is essentially a special case (and conse-
quently much easier to prove) of Theorem 1 (Chapter I, § 1) in [6] (see re-
marks on p. 35, [6], also Lemma 1 of [2]).
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