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It is well known that for the construction of non-trivial measures
one usually, if not always, reduces the problem to a purely set-theoretical
property. In Marczewski’s paper [4], the set-theoretical aspects were
isolated by the introduction of the notion of a compact paving, and the
relation to the set functions under consideration was achieved by assuming
that an approximation property was satisfied.

Recall that a paving & on the set X is compact if, for any countable
subpaving X", of 2" with empty intersection, there exists a finite subpaving
Xy of X, with empty intersection.

A slight but useful variation of Marczewski’s definition was recently
suggested by Mallory [3]. We formulate his definition as follows. The
paving X is monocompact if any decreasing sequence of ¢ -sets with
empty intersection contains the empty set.

Let us mention some facts which are all easy to establish and which
illustrate the differences between compact and monocompact pavings.

A compact paving is monocompact but the converse is not true.
If X" is monocompact, then neither the closure of ¢ under finite unions
nor the closure of > under finite disjoint unions nor the closure of ¢~
under countable decreasing intersections need be monocompact. So, in
some respects, the property of monocompactness is not so well behaved
as that of compactness. On the other hand, in other respects, we have
the reverse situation; e.g., if X", and 2", are monocompaet, so is H#,UX,.
Also, we may mention that if (), is a family of algebraically o-inde-
pendent pavings (i.e., for a countable subset I, of I and for a family (K,)ido

of non-empty sets from the corresponding pavings ', we have ﬂ K, # 0)
and if all the pavings J¢; are monocompact, then so is U Ay (tlns property
also holds for compact pavings provided we add the condition that all
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the pavings °; be closed under finite intersections). Finally, we mention
a property shared by both concepts: If n: X — Y is surjective and if
X" is a monocompact [compact] paving on Y, then n~!(>¢") is a monocom-
pact [compact] paving on X.

Let (X, &, u) be a finite, finitely additive measure, i.e., o/ is an
algebra and u: o — [0, oo[ is finitely additive. A paving %" on X is an
approximating paving for u if, for all A € o and for all ¢ > 0, there exist
Kex and Beo with Bc Kc A and u(B)> u(d)—e

LemMA 1. Let (X, o, u) be a finite, finitely additive measure, let
A, S Ay S ... be subalgebras of of and assume that, for each n, X", i3 an
approximating paving for u|sf,. Then, for any decreasing sequence A,24,2...
with A, € o,,n > 1, and for any & > 0, there exist sequences (B,) and (K,)
with B, € of,, K, € X, n>1, such that the inclusions

A4, 4, A,
ul ul ul
K, 2B, 2K,2B,2K,2...

hold and such that
lim ”(Bn) > lim ”(An) —é&.
n—o00

n—00

The proof follows a well-known pattern and is left to the reader,

It follows from the lemma that a finite, finitely additive measure
with a monocompact approximating paving is countably additive (and
hence extends to a measure on the generated o-algebra). Also, we see
that a measure with an approximating compact paving has an approxi-
mating compact paving consisting of measurable sets. These results are,
essentially, due to Aleksandroff ([1], Theorem 3.5) and to Marczewski
([4], (i) and (iii) of Section 4). For refinements see [3], Theorem 1.2, and
[8], Theorem 6.1.

With Marczewski we call a measure compact if it has a compact
approximating paving. And we call a measure monocompact if it has
a monocompact approximating paving.

In order to formulate a further consequence of Lemma 1, extending
one of the above-mentioned results, we first introduce a definition. Let
I = (I, <) be an upward directed set and let, for each ¢ € I, ¢, be a paving
in X. We say that the family of pavings (J¢,),r is asympiotically mono-
compact if for every sequence (i,),-, from I there exists a sequence (j,),>;
from I with j, <j,<... such that j, >, for all n and such that, for
every decreasing sequence of non-empty sets K, = K, = ... with K, e X
for all =,

NEK, 0.
1
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Of course, this is a sequential notion so that the terminology
“gsequentially asymptotically monocompact” might have been more sug-
gestive.

We notice that (o¢;),.; is asymptotically monocompact if the following
simpler condition is fulfilled:

For i, <i;<...and K, 2 K, 2 ... with K, e X', , K,, # @ for all n,
we have () K, # @.

The drawback — if you consider it a drawback — with this condition
is that it requires each individual paving J; to be monocompact. Note,
however, that if X', = o¢; for all < < j, then the two conditions are equi-
valent and, in fact, amount to monocompactness of the paving LI) Xy

The corollary to Lemma 1, we wish to point out, is

THEOREM 1. Let (X, o, u) be a finite, finitely additive measure. Assume
that there exist an upward directed set I and pavings o, X; for iel
such that

oA; 18 a subalgebra of A,1el;

AN A, e, d;S A for i <j and | A; = A;

X, i8 an approximating paving for u|f;, it el;

(9 )icr T8 asymptotically monocompact.

Then u i3 countably additive.

We shall see in the sequel that u of Theorem 1 even extends to a
perfect measure.

Let (X, o, u) be a measure. If there exist I, (&;) and () satisfying
the conditions of Theorem 1, the measure u is called asymptotically mono-
compact.

THEOREM 2. A finite measure is perfect if and only if it is asymptot-
teally monocompact.

Proof. Let (X, #, u) be a perfect finite measure. By Theorem III
of Ryll-Nardzewski [7], the restriction of x4 to every countably generated
sub-o-algebra of # is compact. This easily implies that 4 is asymptotically
monocompact — the defining property even holds in a strengthened
form, since each ., may be taken compact and since the sequence (j,)
from the definition may always be chosen constant.

To prove the converse, we first state a result due to Musial:

A finitely additive probability measure (X, <, u) extends to a perfect
measure if and only if, for every sequence &/, = &/, < ... of finite subal-
gebras of &/ and for every ¢ > 0, there exists a sequence 4, < 4, < ...

with A, € o}, u(A4;) >1—e for all £>1 and such that (M 4, # O for
1

every sequence 4, 2 4, 2 ..., where 4, is an atom in <, with 4, < 4,
for all k> 1.
This follows from Theorem 7.2 of [5].



380 F. TOPSOE

What we shall prove is the following strengthening of Theorem 1:

If (X, o, u) is a finitely additive probability measure and if I, (&;),r
and (¢;),.; have the same properties as stated in Theorem 1, then x extends
to a perfect measure.

To prove this, we shall appeal to the above-mentioned result of
Musial. So consider a sequence &/, < &, < ... of finite subalgebras of «f
and an e > 0. First determine a Souslin scheme 4(n,,...,n,;) such that

1° For each k and each atom A4 of «f, there exists precisely one
multi-index (n, ..., n,) such that

ANy ..oymy,) = 4.

2° If A(nyy ..., 1m;) is not an atom of «,, then
A(nyy...om) = 9.

o0
ARy oeoy M) = U(Nyy ooy Myy 1)
1

Now choose — using, among other things, the finiteness of the alge-
bras o/, — & sequence j, <j, < ... from I such that & < &, for al
k > 1 and such that, for every sequence of non-empty sets K; > K, 2 ...
with K, € o, k> 1, we have

NEK, #9.
1

Then we construct two Souslin schemes K (n,, ..., n;) and 4 (n4, ..., 1)
such that

4° K(nyy ..., m) e Ay and A(ny, ..., m) € ;.

B° A(Myyeeeymy) S KNy ooy M) € A(Byy ooy mp)NA(Nyy oy ).

6° p(U{A My .eeymy) | (Byy..oymy) eNFY > 1—e.

If ¥ =1 in 5° we take A(ny,...,n,_;) = X.

Now put

A = U{d(yy ooy m) | B (B ...y 1) #~ B}

It is a matter of simple checking to show that the sets A4, have all
the properties which were demanded in Musial’s result.

It follows from the theorem that every monocompact measure is
perfect. This result was first obtained by Pachl, using a different method,
in an oral discussion with the author. It is not unlikely that a monocompact
measure is even compact, but we do not know this.

Note that, for finite measures defined on countably generated o-alge-
bras, the concepts “compact”, “monocompact” and “perfect” coincide.
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We turn to a study of projective limits of probability spaces. We refer
to Musial [6], and to the references mentioned therein. Mallory’s paper [3]
is particularly important for what we have in mind.

For the purposes of this paper, we call (X,, %;, uy 7y); a projective
system if I = (I, <) is an upward directed set, if (X,, 8,, u;) is a probability
space for each ¢ e I, if m;: X; — X, is a measurable measure-preserving
map for all ¢ < j, if ny = 7y my, for all ¢ < j <k, and if = is the identity
map X; — X, for each 1.

We say that (X, #;) is a target space (associated with the projective
system (X;, %, pu; 7y);) if X is a set and if, for each ¢ € I, #, is a surjective
map X - X, such that n; = n,m; for all j > i. Note the requirement
of surjectivity. It implies — if there at all exists a target space — that
all the =;’s are surjective. Had we wanted to, the requirement could
have been replaced by the weaker condition that =;(X) be a thick subset
of X; for each 1.

With regard to a given projective system and an associated target
space, we congsider the algebra % of cylinder sets, which consists of all
sets of the form n;'(A) with ¢ € I and A € #,. On ¥ we consider the finitely
additive probability measure u defined by

p(ri'A) = p(4), iel,Aeca,.
We write
p = limgy,.
<
This notation is not meant to imply that u is countably additive.
In fact, it is our major concern to find conditions ensuring that this is
the case. The extra conditions we shall consider will involve a family

of pavings ¢, approximating the measures u;.
From Lemma 1 we deduce

LEMMA 2. Let (X, By piy 7y); be a projective system and let (X, m,)
be an associated target space. Assume that, for each i, X} is an approzimating
paving for u,. Then a necessary and sufficient condition that lim u; be

-
countably additive is that, for any sequence t, < 1, < ... on I, for any sequence
(K,) with K, e X, and for any sequence (B,) with B, € &, 8such that

73, (Ky) 2 2 (By) 2 n, (K,) 2 ;' (By) 2 ...
and
N #(B,) =@,
the equality
lim 4 (w7} (B,,)) = 0
holds. ”—m
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From Theorem 1 or from a slight variation of Lemma 2 we get

LEMMA 3. If under the assumptions of Lemma 2 the family of pavings
(@7 (H ) )ser 18 asymptotically monocompact, then lim u; is countably additive.
-—

The condition of this lemma involves both the family (.¢';) and the
target space. It is convenient to split the condition into two. Before doing
80, we introduce some terminology.

We consider a projective system (X;, #;, u, my); and a target space
(X, m,). Let ¢, <i3< ... and let 4, 4,, ... be sets with 4, < X, yn= 1.
Then (4,) is called subconsistent if =, ; (4,) < 4, for all n < m or, equiva-
lently, if =, (4,) < A, for all n>1. By surjectivity of the =’s,
this is also equivalent to the sequence (w;'(4,)) being decreasing. We
call (B,) subordinated to (A,) if B, < A,,n > 1. The sequence (4,) is
consistent if m, . (4,) = 4, for all n<<m.

The following notion is due to Bochner [2] (a special form was con-
sidered by Marczewski in [4], Section 6):

A projective system and an associated target space satisfy the condi-
tion of sequential maximality if, for all sequences i, <i,<... from I
and for all consistent sequences (,),., with z, € X, ,n > 1, there exists
ze€X such that =; (v) =, for all n.

The other notion we shall consider depends only on the projective
system and is as follows.

Let, for each i e I, X; be a paving on X,; then the family (),
is called projectively monocompact if, for every sequence 7, <1i,<...
from I and for every subconsistent sequence (K,),., of non-empty sets
with K, e X, ,n > 1, there exists a consistent sequence of points (x,),,
subordinated to (K,),,.

Quite clearly, combining the two concepts, we get

LEMMA 4. Let (X, By puyy 7y); be a projective system and assume
that ('), 18 a projectively monocompact family of pavings. Then, for any
target space (X, m;); for which the condition of sequemtial maximality t8
fulfilled, the family (n7'(,));r 8 asympiotically monocompact.

If, furthermore, n;(X;) < X' for ¢ < j, the projective monocompact-
ness is also necessary for the above conclusion to hold.

In the formulation of the next result, a chain in a paving X is a sub-
paving X", of X such that, for all K,, K, € X, either K, < K, or K, <K,
holds.

THEOREM 3. Let (X;, B,y pyy 7y)r be a projective system of probability
spaces and let (X,;);.; be a family of pavings such that each ;18 an approxi-
mating paving for p; and such that my(X;) < A; for i <j. Assume that
one of the following two conditions i8 satisfied:

1° For every i and for every chain of non-empty sets in X';, the intersection
of the sets in the chain is a non-empty member of X,.
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2° For each i, X; is monocompact, and for each ©<j, each y e X;
and each decreasing sequence (K,),., of sets in o, with K,Nnny'(y) | D>
there exists an n such that K, Na=j'(y) =

Then, for every target space (X, n;); such that the condition of sequential
maximality 18 fulfilled, limu; 18 countably additive.

-

Proof. In both cases we verify projective monocompactness of
(H)iex- So, let 4, < ¢ < ... together with a subconsistent sequence (K,),,,
of non-empty sets from the pavings " i, be given. To save notation, we
write z,, and ¢, in place of =, ; and X i,y respectively.

Case 1°. Choose by Zorn’s lemma a minimal subconsistent sequence
(K,) of non-empty sets from the pavings -, subordinated to (K,). As (K;)
- defined by
(*) K:: = n “nm(K;n)

m=n
is of the same type, K, = K, for all n. It follows that (K,) is consistent.
A consistent sequence (a:n) subordinated to (K,), hence also to (K,), is now
easily constructed.

Case 2° Define K, as in (*) with K, = K,. Then K, # @ for all n.
By a well-known argument, (K, ) is consistent. The proof is then completed
in the same way as in case 1°.

It seems difficult to formulate a simple condition sufficient for projec-
tive monocompactness (or just for countable additivity of limg,) and

covering case 1° as well as case 2° of the theorem. Case 1° is <;ery close
to Mallory’s Theorem 2.4 of [3] (but our proof is simpler).

We remark that if, in case 1°, we assume only that each of the pavings
X', is monocompact, we cannot conclude that (x7);,,; 18 projectively
monocompact. To see this, take I = N, X; = N* for ¢>1 and let =y
be the usual projection maps. Then

N® = ) N
1

is a tree (we may add the empty multi-index to get a tree with a root).
Let (K,) be a subconsistent sequence. Then T = | JK, is a tree. The
condition that the K,’s be non-empty means that T contains arbitrarily
long branches. In order that the sets K, be members of monocompact

pavings X, such that =, (X)) € X ,, n<m, it is necessary and suffi-
cient that K* # @ for all n, where
= n T (K n) o
man

In terms of T this means that at each level there is a point in T which
supports arbitrarily long branches. Projective monocompactness means
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that T' contains an infinite branch. Having translated the relevant prop-
erties into the language of trees, it is easy to construct an example as
announced — the tree in the figure will do. We point out that since
the X s in this example are countable, we cannot contradict the conclusion
of Theorem 3 that limg; is countably additive.

-

[ XX+

I

7o

It would be interesting if one could obtain sensible results assuming
that the following property, a little stronger than monocompactness,
is satisfied for each paving J¢;:

The intersection of the sets in any descending sequence of non-empty
members of ¢ is a non-empty member of »¢°,. With this condition, exam-
ples as the one given above are ruled out in case where the spaces X,
are countable (cf. Added in proof).

Finally, we remark that the conclusion of Theorem 3 may be strength-
ened. Firstly, the measures limgu; that appear in the conclusion are

<

not only countably additive, they even extend to perfect measures. Second-
ly, the sequential maximality condition may be weakened to almost
sequential maximality (cf. [5], Definition 4.5), which means that for
1; <9, < ... and € > 0 there exists a subconsistent sequence (A4,) of meas-
urable sets with x; (4,) > 1—¢ for all » and such that, for any consistent
sequence (z,) subordinated to (4,), there exists € X such that =, (z) = =,
for all n.

Acknowledgement. The author has had helpful discussions with
Kazimierz Musial and with Jan Pachl.

Added in proof. David Fremlin has pointed out that examples
of the type under consideration do exist with all the sets X; of cardinal-
ity w,. Fremlin’s construction is as follows: Take X, = o}, »>1, and
let x,, be the usual projections. Then the sets K,,n > 1, defined by

i{n ={(&y &2y -y &) [ 1> Ea> ... > &)

turn out to have the claimed properties.
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