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On homogeneous rotation invariant distributions
and the Laplace operator

by ZoriA SzmyDT (Warszawa)

Abstract. This note deals with some special classes of distributions distinguished
by their behaviour with respect to some linear transformations. For example, Theorem
4 gives a characterization of rotation invariant distributions u € D’ (E"*\ {0}), where
E" denotes the n-dimensional Euclidean space. This result is more complete and,
moreover, is obtained in an essentially simpler way than the analogous characteriza-
tions (with proofs based on the concept of the Haar measure on locally compact groups)
given by other authors. Also some applications are added. For example, Theorem 4
mentioned above allows one to find a fundamental solution of the Laplace operator
4, for n > 2 in a completely natural way.

We begin with some general remarks which serve as an introduction
to this paper as well as to two other papers which follow it.

As it is well known, with the help of the Fourier transformation one
can obtain fundamental solutions of the linear operators with constant ¢oef-
ficients. A partial differential equation is transformed into an easily
solvable ordinary equation and it remains to “re-translate” its solution
applying the inverse Fourier transform. The difficulties which arise consist
in the computation of the Fourier transformations involved, which is
sometimes very troublesome. Fortunately, we can avoid such computa-
tions taking into account some properties of the fundamental solution
we are going to find. These are mostly the property of homogenity and
invariance with respect to some linear transformations. For example,
in the study of the Laplace operator, since it is rotation invariant, ortho-
gonal transformations appear. Similarly, it is natural and convenient
to exploit Lorentz transformations in the study of the wave operator.

Genarally, the problem of characterization of homogeneous distribu-
tions and distributions invariant with respect to some affine transforma-
tions proves to be an important one.

A characterization of homogeneous rotation invariant distributions
is given in Section 23 of [1], which, although elementary in its form,
was obtained in not an elementary way. The proof presented there refers
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to the theory of the Haar measure on locally compact groups. A similar
approach to finding a fundamental solution of the Laplace operator 4,
for » > 3, is also applied by Treves in his recent book [5].

In Theorem 4 of Section 3 of this paper we give a characterization
of rotation invariant distributions. We prove it in a completely elementary
way. Then, in Section 4, this theorem is applied to determining, up to
a constant factor the general form of homogeneous rotation invariant
distributions defined outside the origin. We end the paper with Section 5
containing an application of these results to the Laplace operator.

A first theorem on the characterization of distributions invariant
with respect to the Lorentz transformations is due to Methée [2]. He also
has applied this theorem to finding all Lorentz-invariant fundamental
solutions of the wave operator. This method of determining a fundamental
solution of the wave operator did not pierce into text-books owing to its
difficulty and complexity. Treves, who presented the above mentioned
application of the Methée theorem (omitting the proof of the theorem
itself) in his book [4], did not place it in the text-book [5]. The difficulties
of this problem are serious and it seems rather impossible to give a complete,
elementary and short proof. But such a proof can be clear and natural,
as it will be shown in the following papers.

In paper [8] a comprehensive and elementary proof of the Methée
theorem is presented. Moreover, this paper gives another characterization
of Lorentz invariant distributions, namely one stated in differential terms.
Also, as far as only basic facts from the theory of distributions are being
used in these proofs, they may by suitable(!) for introductory text-books
on partial differential equations, which as a rule discuss the wave operator
(which is of course Lorentz invariant).

In Section 1 of the present paper we collect the principal notation
and definitions used troughout this paper and two others which follow.

We also give some auxiliary theorems which will be useful in the next
sections.

In Section 2 we characterize homogeneous distributions in the one-
dimensional Euclidean space, adding as an application and an immediate
consequence a proof of a theorem due to Zielezny.

The contents of the remaining Sections 3-5 has already been exposed.

1. Notation, definitions and auxiliairy theorems. The variable in the
n-dimensional real Euclidean space £ will be denoted by & = (zy, ..., z,).
We denote |z| = (zi+ ... +22)% If 2,y € E", we write -y = 2,9, + ...
cer +T,Y,.

(1) I have included some of the results of this paper, which are basic for finding
a fundamental solution of the wave operator, in the appendix to my book [3] as soon
as they were obtained.
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Half spaces are defined and denoted as follows:
E, = (0, +o0), E ={t,x):t>0,zeE"} (nelN),
F. =0, +), E™ ={t,2):t>0,5cE"} (neN).

Half spaces B, E**!, E*, E"*! are defined analogously. Here and in the
sequel NV denotes the set of positive integers, N, is the set of non-negative
integers, and Ng denotes the product of n copies of the set N,. For a € Ny,
a = (ay,...,a,), we set |a| = ay,+ ... +a,.

We shall be concerned with complex valued functions defined in
an open set 2 c E*. We denote by C*(R), k € Nyu{+ oo}, the sct of
functions defined in 2 and continuous together with their derivatives
up to order % including % if k < + oo, or with the derivatives of any order
if &k = -+ oo. The symbol C¥(2) denotes the set of functions of class C*(Q),
whose supports are compact subsets of 2 (2).

As usual, S(E™) stands for the space of (*-functions rapidly decaying
at infinity. D'(£) denotes the space of distributions in £, and §'(E") the
space of tempered distributions in E". By L!°°(Q2) we denote the class of
locally integrable functions defined on Q.

DEFINITION 1. Let 4 = f(y) be a one-to-one mapping of O into Q (3)
of class C® with non-vanishing Jacobian J = Dx/Dy. A substitution
# = f(y) in a distribution % € D'(2) is denoted by uof and defined by

||

It is easy to see that v = wof e D'(£2).

Remark 1. The substitution vof~! is also well defined and it is
equal to the restriction of u to f(Q).

DEFINITION 2. A distribution % is said to be ¢nvariant with respect
to the transformation f if wof = u.

L1 -
1) (u-Of)[tp]=u[(¢0f‘)—] for ¢ e 03(0).

We shall consider some specific cases of a linear transformation f:
(2) fly) = Ay for y e E* (Det A £ 0).

(a) Inversion (4 = —1I).

(b) Rotation (Det 4 =1, A~! = A', wherc A denotes the transposed
matrix to 4).

(¢) Homothety (4 = rI with r > 0).

(3) Every function q:ec"g (2) can be identified with a function from C%(Q)
with compaect support in 2, 2 < Q.
(®) If ¢ € 0 (R2), then the funetion gof~! € CP(f(£2)) can be regarded as a func-

tion from CP(RQ) (see footnoe (%)). If f(2) < 2, we say that Q is invariant with respect
to the transformation f.
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Remark 2. Let 2 be an open set symmetric with respeet to the origin.
Let w e D' (Q) and set

wlp] =ulp] for peCP(R), ¢(=x) =¢(—z) for ze .

Distributions invariant with respect to the inversion are precisely
the even distributions, i.e., such that % = w.

DEFINITION 3. Let €2 be a region invariant with respect to homo-
theties f,, f,(y) = ry for y € Q (r > 0). A distribution % € D' (2) is called
homogeneous of order m iff for every homothety f, we have

(3) wof, =1u (r>0).

We begin with an easy to prove

PROPOSITION 1. Let f,(x) = tx for © € E" (t € E') and let k be an integer.
If k is even, then the distribution w e D' (E"\{0}) is an even distribution
homogeneous of order k if and only if it satisfies the equation

(4) uwof, = t*u  for t e E'\{0}.
If k is odd, the distribution w € D'(E"\{0}) is even and homogeneous of
order k if and only if it satisfies the equation
t*u  for t> 0,

uof, =
I —t*u  for t < 0. |

THEOREM 1 (*). Let 2 <= E™ be a region invariant with respect to homo-
theties. A distribution w € D' () is homogeneous of order m iff it satisfies
the Euler equation

(5) mu == >11£L‘ ou
—J:ll jafv]-.

PROPOSITION 2. Every two distributions on E"™ homogeneous of order
p > —n and coinciding outside the origin are equal.

Proof. Any distribution w with support at the origin is equal to a finite

sum ) a,D?d, where 6 denotes the Dirac distribution at the origin. The
laj<k
distributions D"é are homogencous of order —n —|al < —n, hence the

assertion follows. .
Remark 3. Let u, v e D'(E") be two distributions homogeneous
of order p, coinciding outside the origin. Suppose p = —n—k with k€ N,.

Then there exist constants a, such that u—v = ) a,D%4.
lal=k

(%) See [1], p. 111.
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To conclude this section let us list some properties of the Fourier
transforms F, F~! of the substitution, which can be easily derived(°)
from the definitions given above.

PROPOSITION 3. Let f be a non-singular linear mapping (2). Let f
= (fY) denote the mapping given by the transposed matriz to A~'. Then

(6) F(uof) = Fuof  for we S (BY).

|Det A |
The analogous equality holds for F~'.

Applying Definition 2 and that of rotation, we derive from (6) the
following

COROLLARY 1. The Fourier transformations F, F~' commule with
rotations and consequently preserve invariance with respect to rotations.

From Definition 3 and Proposition 3 follows

COROLLARY 2. The Fourier transforms F and F~' of a distribution
u € 8’ (E") homogeneous of order m are distributions homogeneous of order
—m — n.

2. Homogeneous distributions in E'.

THEOREM 2. If v € D'(E") is homogeneous of order k, it is necessarily
a function of the form Or* for r > 0. If v € D'(E*\{0}) is homogeneous of
order k, then it is a function C,7* for r > 0 and C,7* for r < 0. In particular,
if v € D' (EY\{0}) is homogeneous of order 0, then outside the originv = C, Y +
+C,, where Y denotes the Heaviside function.

The proof follows from the Euler equation kv = rv’, which has only
classical solutions on E'\{0}.

COROLLARY 3. Suppose that a distribution w € D'(E') satisfies the
equation
(7) uof, =u for te E*\{0} (fi(z) =t for x e E').

Then u ts a constani distribution.

Proof. By Theorem 2, outside the origin we have uw = C+C(CY;
hence C = 0 by Proposition 1. Therefore Proposition 2 yields v = C
on K. ;

THEOREM 3 (Zielezny [7]). Fiz «* € E! and v € D'(E'). Let
hx) =2*4+ex for v e B (¢ € BY).
If there exists the limit w = lim voh,, it-is necessarily a constant distribution:

-0 e—>0

ulpl =c [ g()dt for g e CF(B") (°).

(5) See for example [3], Section 20.7.
(¢) Following the definition given by S. Lojasiewicz, ¢ is called the value of the
distribution w at the point z*.
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Proof. Following Zielezny, we first prove that the limit distribution
u satisfies equation (7). Indeed, we have:

uof, = lim ((voh,)of,) = lim vohy = u.
e—>0 &0

By Corollary 3, # is a constant distribution.

3. Rotation invariant distributions.

DEFINITION 4. Let g e C°(E™\{0}) and let w, denote the surface
measure of the unit sphere in £". The symbol g, will denote a function
defined in E"\{0} by

1 1
(8) Js (.’D) = N

PR g(n)de, =
" Inl=}zl

[ o160, (.
1&]=1

If g e C°(E™), then setting ¢,(0) = ¢(0) we extend g, to a continuous
funection in E™. )
Let us note the following, easy to prove,

LEMMA 1. The assignment g, for ¢ € C°(E"\{0}) is a continuous
mapping of the space D(E"\{0}) into itself.

DerFINITION 5. For any distribution « e D'(E"\{0}) we denote by
u, the distribution defined by

ug[@p] = ulg,] for ¢ € D(E"\{0}).

The correctness of this definition is provided by Lemma 1. In the
case when # is a continuous function in E"\ {0}, Definition 5 coincides
with Definition 4.

LemMA 2. If a distribution u from D'(E") and a Cg(E™)-function v are
rotation imvartant, then the convolution wxv is a rotation invariant C™-
Junction.

Proof. Because v € O (E"), the convolution wxv exists and it is
a (C*-function given by
9) (uxv)(2) =ulv(x—§&)] for vxe K.

Since the fuhction » is rotation invariant, there exists a function % such
that v(y) = h(|y|) for y € B". Let f(y) = Ay be a rotation in E". Then

from (9) we see that
(((wxv))of)(y) = ulh(1Ay — £D] = ulh(ly — A" &))]
= u[h(ly—§&)] for y e E;

(") Here do, is the element of the surface area of the sphere {5: || = |x|}; the
meaning of do; is analogous.
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the last equality follows from the assumption that w is invariant with
respect to rotations. Applying once more formula (9), we obtain ((u*v)of)(y)
= (uxv)(y) for y € B". )

LeMMA 3. If w € D' (E™) is a rotation invariant distribution, then w = u,
in E*\{0}, where u, € D' (E"\{0}) denoles the distribution defined by Defi-
wition 5.

Proof. Let y be a rotation invariant C;°(E")-function such that

fydz =1, suppy < {x: |z| < 1}. Set 1 (y) = e "y(n/e) forn € B, £ > 0,
En
and observe that

(10) lim %% —» in D'(E").

e—>0

Morcover, the functions A¥ are rotation invariant and consequently,
by Lemma 2, so are the functions % xA®. Thus there exists a function &
such that (w=A*)(2) = h(lz|) for # € E”. Therefore

1
(1) (uxi(z) = — | h(lonl)do, = R(|@]) = (wxi)(@).
* n=1
Let ¢ € Cy°(E™\{0}). Applying (10), (11), Definition 5 and Lemma 1
we obtain
ulp] = lim (uxi®)[p] = lim (u%2®), [p]

£=0 &—0

= lim (u*A2)[p,] = u[g,],
&~>)

i.c., the desired assertion: u[p] = u[gp,] for any ¢ € C5°(E"\{0}).

Remark 3. It is possible to replace in Lemma 3 the assumption
u € D'(E") by the more natural » € D'(E"\{0}). In fact, we have the
following

PROPOSITION 4. If w € D' (E"\{0}) is a rotation invariant distribution,
then w = uy, in E"\{0}.

Proof(®). Fix arbitrarily ¢ € C(E"\{0}). Let 0 < e < u be such
that suppy = {#: ¢ < |#| < u). Choose a rotation invariant C*-function
such that (z) = 1 for |z] < ¢/4, p(2) = 0 for [x| > £/2. Let y(2) = 1 —p(x)
for x € E*. Observe that y € C°(E") is rotation invariant and yp = g,
yp, = @,. It is easy to sce that the formal definition

ul[y] = ulypyl for yeCF(E™)

defines a distribution # e D'(E") which is rotation invariant. Moreover,
(el = ulp], #lp,] = u[p;]- From Lemma 3 we immediately obtain
4lp] = us[p]; hence ulg] = ulp] = i,[p] = ulp] = ulp,] = us[p].

(®) I have invited my student B. Ziemian to prove this proposition. Here I
reproduce his proof.
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Now we can give a full characterization of rotation invariant distri-
butions.

THEOREM 4. Let u € D'(E"\{0}). The following three properties are
equivalent:

(i) u is rotation imvariant.

(ii) v, = u on E"\{0}.

(iii) There ewists a distribution h e D'(E.) unique in D'(B.) such
that

(12) ulp] = h[Te] for ¢ € CT(E"\{0}),

where

(13) ° (Te)(r) = [ pl@)do, for ¢ CX(E"\{0}).
lz|=r

Proof. (i)=(ii) by Proposition 4.
(ii)=>(i): Let f be any rotation. Then for every function ¢ € C° (E"\ {0})
we have

(wof) [p] = ulpof™'] = u[pof~'1 = ul(gpof),] = ulg,] = u,[p] = ulpl.
(ili)=(i): Let f be a rotation. Then by (12) we have

(wof)[¢]l = u[pof™'] = h[T(pof~1)] = h[Tp] = u[p].

(if)=>(iii): Let

(14) Py)a) = L for y e or(mL).

o, [z
We see that Py € C3°(E"\ {0}) and that the formal equality
hiy] = u[Py] for y e CY(EY)

in fact defines a distribution & e D'(E').
Let ¢ € Cy (E,\{0}). By (ii) and (8) we have

(Te)(|))
Im|n—1

ulp) = wls] = ulp = u| = | = wiptzon = hizon

Now suppose that there is h, € D'(E') such that w[p] = k,[T¢] for
@ € O (E,\{0}). By (12) we obtain: h[Te] = h,[Te] for ¢ € C7°(E"\{0}).
Let a € C3°(E'.). Then the formula ¢(z) = a(|z|)/w,|z|** for |z| > 0 de-
fines ¢ € C°(E"\{0}) such that T¢p = a. Therefore h[a] = h[Tp] = h,[Tp]
= h,[a].
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4. Homogeneous rotation invariant distributions in E"\{0}, » > 2.

THEOREM 5 (°). If u e D’'(E"\{0}) is rotation invariant amd homo-
geneous of order k, then w is of the form C|z[* outside the origin.

Proof. By Theorem 4, u[g] = h[T¢] for ¢ eCP(E"\{0}), where
h[y] = u[Py] for v € C3°(E",) and Py is defined by (14). Let

g(t) =¢ for teE', G, (zv)=e forazeE* (¢>0).
Observe that for every u € O°(E') we have

y(lez])

wnlwln_l

(P(yog.) () = = "7 (Pyo@.,)().

Hence by the homogeneity of  we derive that
(15) hog, = &b (> 0).

Indeed, for every y € Cy°(E') we have
1 1
(hog)[¥] = —hlyog,.] = —ulP(yogy)] = e "u[Pyol]

= (u0@,)[Py] = “u[Py] = “Rh[y].

We know that & € D'(E"). Hence, by (15) and Theorem 2, k is given
by a function e¢r* for » > 0. Thus

ulp] = h{Tg] = ¢ [ r*(To)(r)dr = ¢ [ lo/*p(z)ds
0 E"

for ¢ € C°(E™\{0}).

5. Fundamental solution of the Laplace operator 4, for n > 2. After

performing the Fourier transformation E = FE the equation 4,E, = &
takes the form (19)

(16) — el B, = (2m)7t",
Let H, denote the function

(A7) H,(z) = -(27:)-*"—[5[? for » € E*\{0}.

From now on we distinguish two cases: (i) n > 3, (i) n = 2.

(%) This Theorem is a slight generalization of a theorem proved in [1], p. 112,
in which % was assumed to be a distribution on E®. The proof given by W. F. Donoghue
makes use of the Haar measure on the orthogonal group.

() We define ¢(z) = (Fp)(x) = (2n)~ 1" [ e~ 25 (&)dE for ¢ € S(EM).

En
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(i) » > 3. If n > 3, the function H, is in L\>°(E™) and defines a tem-
pered solution E, of equation (16). It is a rotation invariant distribution,
homogeneous of order —2. Thus, by Corollaries 1 and 2, E, = F'H,
is rotation invariant and homogeneous of order 2 —n. Applying Theorem 5
and Proposition 2 we conclude that F, is a function, namely F, (x)

1 1
=(C,——. It is well known that €, = — ——————. To prove this

we put @(2) = exp(—}|#°) in the equality
1 -
Canqa(w)dw = F'H,[g].
En

(i) » = 2. If n = 2, the function (17) is not locally integrable on E?,
but it is so on E*\ {0}. The distribution H, € L'Y° (E*\{0}) has an extension
H e §'(E*) defined by

~ 1] p(2)—p(0) p(2)
Byl - - [P2 2w [£2a
(18) [v] | @+ o &

j|®
lzl<1 lz)>1

for y € S(E?).

The tempered distribution H satisfies equation (16) with » = 2, thus
F'H is a fundamental solution of the operator A,. It is well known that,
by employing Bessel functions(!!), a direct computation of F~'H leads
to the result

. 1
(19) (F7'H) () = O+ 5. loglal

with some constant €. One can avoid this computation taking into con-
sideration some properties of H. First of all, it is evident that H is rotation
invariant. Furthermore, for any homothety f, we have

Hof. =r*(H —logr-8) (r>0).

These propertics imply that the distribution E = F~'H is rotation in-
variant and satisfies the equation

1
(20) Eof, = E+ 2—10gr (r > 0).
T
By Theorem 4 there exists a distribution k € D'(E",) such that E[¢]
= h[T¢] for ¢ € C7(E*\{0}). Let ¢.(t) = ¢t for t € E'. Proceeding as in
the proof of Theorem 5, but applying this time equation (20) instead

(1) See [6], §9 or [3], §21.
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lo
of the homogeneity condition, we obtain (kog,)[y] = h(y]-+ %l[y)]
k3
for y € C7(EY) (¢ > 0), i.e.:

cloge
h{yogy.] = ehy]+

S—1[y]  for y e OP(EY) (6> 0).

Let us differentiate both sides of the last equation with respect to ¢ and

1
then set ¢ =1. We obtain —h[fyp'(1)] =h[1p]+2—1[1,0] and conse-
T
1 1
quently th'[yp] = —2—1[1p] for y € CY°(E%). Hence h(t) = 2—logt+0 for
kg T

1
t> 0, and therefore K = 2—10g|m|+0 outside the origin. Thus there
7

are constants a, such that

1
E = —1log|z|+C+ Eaan'é.
27
laj<k
By (20) we conclude that all a, are equal to zero and so we obtain formula
(19). Set

1 o
H,(x) = %log lz|  for x € E*\{0}.

Clearly E, € L' (E?) is a fundamental solution of A,.
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