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Let o be an algebra of subsets of a set X. A set function p: & — [0, oo[
is called

normalized if pX =1,

a submeasure if y is monotone and subadditive and y@ = 0,

a measure if yp is finitely additive.

For a submeasure ¢, the permeability of ¢ is defined by

a(p) = sup {uX | 4 measure on <, u < ¢}.

Popov ([4], Theorem 2) and Topsge ([6], (1)) remarked that a(g)p
can be expressed in terms of multiple coverings of X (see also [3],
Satz 2.2). A finite sequence ¥ = (4, 4,,..., A4,) of elements of & is
called a k-fold ewact covering of X if the characteristic functions of A4,
satisfy

m

D1y, =k1y.

=1

For a k-fold covering ¢ = (4,, 4,,..., 4,,) let

1™
8(¢,9) = ']“29’*4{'

=1
THEOREM 1. There 48 a measure p’ < @ with
u'X = a(p) = inf {(¥, ¢)|¥ is a multiple evact covering of X}.

A proof is given in [4].

The simplest example illustrating the theorem is the following (see [4}
and [5])

Example 1. Let X, = {1, 2, ...,n}, » > 2. We define a normalized
submeasure ¢ on 2(X,) by ¢0 =0, ¢X =1, ¢4 = } otherwise. Let.
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A, =X,— {8} (¢1=1,2,...,n). Then ¥, = (4,, 43, ..., 4,) 18 an (n—1)-
fold covering of X, and

8(€,, @) = m
On the other hand,
, card A
A = w1

defines a measure u’' < ¢ with 4’ X, = a(p) = 8(%,, ¢).

Products of the configurations (X,, ¢,) can be used to show that
for every & > 0 there are a finite set X and a normalized submeasure ¢
on 2(X) with a(p) < e and that there exist non-trivial submeasures
on infinite algebras with a(¢) = 0, so-called pathological submeasures.
‘This was done by Popov ([4], Section 3) — his example seems to be the
first and the prettiest one — and by Herer and Christensen [2]. Other
constructions are given by Preiss, Vilimovsky and Topsge in [6] and below
in Example 3.

On finite algebras, however, pathological submeasures do not exist:
if ¢ is a normalized submeasure on #(X,), then ¢{¢} > 1/n for some 4,
80 that ud =1/n for ¢ A and ud = 0 otherwise define a measure
sp<o with uX 6 =1/n.

The goal of this paper is to determine (as far as possible) the minimum
permeability of a normalized submeasure on an n-point set:

a, = inf{a(p)|p normalized submeasure on #(X,)}.

It is clear that ¢; =1 and a,,, < a, for all n. The remarks above
imply

1 n
— a“\

n o 2(n—1)

(n>2) and lima, =0.

Topsege [b] gave these relations and asked for more information on,
the a,’s. L. Vasak also dealt with these numbers. At the 19756 Winter
School in Stefanovs, Ozechoslovakia, he posed the interesting question:

What is the smallest number ¢ with

q
?
2(¢—1)

We think that this number is 11 but we were able only to prove
6<¢<1l

a, <
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Example 2.
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The sets given as lines in this matrix form a 5-fold covering of X,,.
Any two of them do not cover X,,. Assigning to every set the value %,
we generate a normalized submeasure ¢ on X,; with

8 11
o < alp) <8(?,9) = o <320

For small n, we can determine a, by considering all multiple exact
coverings € of X, with the following properties:

(a) € has no exact subcoverings. (If € splits into two disjoint exact
coverings ¢, and €,, then 8(%,;,¢) < 8(¥,¢) fori =1lor¢ =2.)

(b) € does not contain disjoint sets. (Replacing disjoint sets A and B
of € by AUB we do not enlarge 8(%, ¢).)

(¢) The sets of € separate the points of X,. (Otherwise, ¢ may be
realized as a covering of X,,, where m < n.)

For every such ¢ we determine
a(¥) = inf {8(¥, ¢) |p normalized submeasure on #(X,)}
and get
a, = min{a,_,}U{a(¥)|¥€ covering of X, with (a), (b), (¢)}.

X, does not have a covering of the desired kind, hence a; = a;, = 1.
The only covering of X, is &, (see Example 1). On X, there are €, and

%’4’ = ({1, 2, 3}, {1, 2, 3}’ {1’ 4}7 {2, 4}’ {3, 4})
COonsider €, and an arbitrary normalized submeasure ¢ on X,. Then

m=1) Dot = Sipatosys 31 =201,

im1 i<i i<j

which implies

= n
Z?’As =5 and  3(%,,9)>

{m=}

n
2(n—1)
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Example 1 verifies that
n

R Trm T

The same method applies to ¢,. Three copies of €, can be splitted
into 7 families which cover X,. Thus
7

€ o) = —
8(%,, 9) > 3.3

for every normed submeasure ¢, the equality holding if

2 . 1
¢{1,2, 3} =3 and  ¢{i, 4} ~ 3

Hence a(¥€;) = 7/9.

Now we are able to determine

3 d . (3 7 4 2

aq =Z an: a, =M{Z,§,'€}=°3—.

To get a; = 5/8 we must consider 9 non-isomorphic coverings, and

for n > 6 our method becomes too expansive. However, as well as for many

combinatorial functions [1], we can establish a rather simple asymp-

totical estimation. At first we show, roughly speaking, that submeasures

with small permeability admit small values on certain large sets and
large values on small sets.

PROPOSITION 1. Let o/ be an algebra of subsets of X, ¢ a submeasure,
and u a measure on Z. Further, letr, s € 10, uX[ and ¢ > a(p).

(a) There i3 a set B € of with uB > r and

B<el1+lo "X)
¢ € g,uX—r.

(b) There is a set C € o with uC < 8 and
X
¢C>¢X—e(1+log”—s-).

For illustration, let X = X, , ¢ normalized, 4 the counting measure,
and r = 8 = n/2. With ¢ = 1.1a(p) we get sets B and C satisfying card B
= cardC = [#/2] and ¢B < 2a(p), ¢C > 1 —2a(p). Thus, for a(p)< %,
we have ¢B # ¢C. If a(p) is small, then ¢ becomes very asymmetric in
the sense that sets of equal cardinality have g-values near zero and one
(cf. [6], Proposition 1).

Proof. There is a k-fold covering ¢ = (4,, 4,,..., 4,,) of X with
8(¢,9)<e. If Beof and B +# X, there exists an ¢ with
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(i) pA;<c¢

Indeed, the sum over ¢ =1,2,...,m taken on the left-hand and
right-hand sides of (i) equals k8(¥, ¢) and ke, respectively.
Now let
/‘Ai

pX -

B, =A4;, where p4; <e¢

Suppose that B; is constructed for j <p—1 and B,_, # X. Then
let B =B, , and let B, = BuAi , Where 4; = A‘p fulﬁ]ls (1) For some
P m we get B, = X

We consider a fixed p and write #, = 0, 2, = uB; (j = 1,2,...,p—1)
and a = puX. Further, let 2, be a number with z,_, < 2, < uB,. By the
construction we get

o, — 2, yB —o
A, < 21 4 » — Tp
?’Bp ¢ 1'} 8[ @ — mj- a_wp-l ’

where the right-hand sum is majorized by

Tp

d» a
f = log .
J a—z a—o,
Consequently,
.. uX uB,—w, ]
ii B, < ¢ [log + .
(1) #5 pX—-o, pX—-2,

Now we choose p in such a way that uB, |, <r < uB,. With s, = rand
B, = B, (ii) yields the inequality of (a). To verify (b), we put r = uX —s,
use (a) and let ¢ = X — B.

THEOREM 2.
1 2log2
—_— .
(@) 0.41 +logn In —log2 +logn for n>2
(b) 1 < liminfe,logn < limsupa,logn < 2log2.

Proof. (b) follows immediately from (a). We are going to prove the
left-hand inequality of (a). It is true for n = 2 and » = 3. Let » > 3 and
&> a,. By the definition of a, and by Theorem 1, there are a normalized
submeasure ¢ on X, and a k-fold covering ¢ = (4,, 4,,...,4,) of X,
with 8(¥¢, ¢) < e In the construction of the proof above, let X = X,
and let 4 be the counting measure (44 = card 4). Choose p in such a way
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that cardB,_, <n—3 and ¢ = card B,> n—3. For #, = n—3 from (ii)
we obtain
n qg—(n—3)
(PBP < 8(10g-§- 4 ——4—).

Now recall that a(p) < e. This means that every subset C of X con-
taining one or two points fulfills ¢C < ¢, and every three-point subset D
satisfies pD < (4/3)e. (If this is not true, then there is a measure x4 on
P (D) with u < ¢ and uD = a3°(4/3)e = &. But u can be extended to a
measure on 2(X) majorized by ¢. This contradicts a(¢) < e.) Since ¢ is nor-
malized, we have ¢B,+¢(X —B,) > 1. Hence we have

for ¢ =n—-3,

n 4
e log-g +E- =1;

for ¢ =n-2,
n ~1°
— —_— > .
e(log 3 + y +1) 1;
for ¢ =n—-1,
n 2
log— 4+ — =>1;
s(og3 + 1 +1) H
for ¢ = n,
e(lo 'n+ )
g3 vy e
In each case,
1

e —.
0.41 +logn

This holds for every ¢ > a, and, consequently, for & = a,,.

Let us prove now the right-hand inequality of Theorem 2 (a). For
every m > 2 there exists an r with 2"<n < 2. We have a, < a;r_;,) and
loggn < r+41. Example 3 below shows that a,r_,) < 2/r. Hence

2 _ 2log2
—1+logen  —log2+logn

<2<
Tn r

Example 3. Let V = {0, 1}" be the r-dimensional linear space over
the field K, = {0,1} and X = V —{0}. We consider hyperplanes, that
means (r —1)-dimensional subspaces of V, and use the following two facts:

(1) Every point of X is contained in the same number of hyperplanes.

(2) The intersection of r —1 hyperplanes is 4 one-dimensional linear
subspace of V, hence it contains an element of X.
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Let € denote the family of all complements of hyperplanes. From (1)
and (2) we directly obtain

(1") € is an exact covering of X.

(2’) The union of » —1 sets of € does not cover X.

Assigning to every member of € the value 1/r and to X the value 1,
we generate a normalized submeasure ¢ on #(X). Let m = card¥ and
let k be the multiplicity of €. Since every set of € contains 27! points of X,
we have

m-2""! = k(2" —1).

Hence

1 k(2"-1) 1 2
aur_ S 8(%,9) = % o T

ProBLEM (P 1057). Does there exist, for some 7, a covering €’ of X
which is better than € in Example 3 in the sense that a(¢’) < a(¥)%?
We conjecture that this is not possible, thus

lima,logn = 2log2.
Let us state now an interesting corollary to Proposition 1.

For a submeasure ¢ on &/, we put

B(p) = inf{uX |y measure on &, u=> ¢}
and for 4 e

u'A = sup {Zqu‘I n positive integer, 4; < A, Aje s, A, pairwise ‘dis'jo'mt} .
i=]

The following analogue of Theorem 1 is easy to show:

If W’X = oo, then there is no measure majorizing ¢, and there is a Se-
quence A, A,, ... of disjoint elements of o with D pA, = ooc.

If WX < oo, then pu' is a measure, u' > ¢ and u'X = f(p).

THEOREM 3. Let ¢ be a nmormalized submeasure on <.

(a) If a(p) #0, then

B(9) > alg)exp (a_(la —2).

(b) If a(p) = 0, then there is no measure u = ¢, and there ewisis a se-
quence of pairwise disjoint sels A, A,, ... of & with D pA; = oo.

Proof. Let y> ¢ and s = ¢ > a(p). By Proposition 1, there is a ¢
with

X
8= uC = ¢C > l—s(l—i—log%—).



318 CH. BANDT

Consequently,
X 1
e(1+log"—)>1—e and uX> aexp(— —2).
€ €

This is true for every u > ¢ and for every &> a(p). Thus (a) is
Pproved, and a(p) = 0 implies that uX is greater than any finite number.
By the remark on u’, the proof is completed.

Part (a) states that small a(p) implies large B(¢). The converse does
not hold: the submeasure ¢ defined on X, by ¢4 =1 for A # @ satisfies
B(g) =n and a(p) =1.

Statement (b) is connected with the interesting question whether
there are continuous pathological submeasures. By Theorem 2 of [2]
.and Theorem 4 of [4], this question is equivalent to a well-known problem
-of Maharam. However, the condition given in (b) is much weaker than

discontinuity (consider ¢ = 1/7, where A denotes Lebesgue measure on
{0, 1)).
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