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Lot m be a natural number, @,,(z) the mth eyclotomic polynomial,
and { = [, a suitably chosen primitive mth root of unity. By a J-field
we mean an algebraic number field which is either totally real or a totally
imaginary quadratic extension of a totally real field. For the general
theory of such fields we refer the reader to [4]. Clearly abelian extensions

of @ (l.e. subfields of cyclotomic fields) are J-fields. Subfields, joins, and.

normal clogures of J-fields are also J-fields.
Let i be a J-field. By S, we denote the set of archimedean valu-

ationg of K. Wollowing Gyory [4], we eall o non-archimedéan valuation v

of K real iff w(a) = y(&) for all o & K, wheke 4 denotes the complex conju-
gate of a. If K, denotes fhe maximal real subficld of XK, then yp is real if

and only if 4 is either ramified or inert in the extension K [X,. Let § be
2 finite set of valuations of K containing 8. An element o of K is called

an S-integer (S-unit) iff pla) <1 (w(a) = 1) for all valnations y of K
not contained in §.

Let p > 3 be a prime and put K = @(f,). Grossman [3] has investi-
gated the diophantine equation

{1) ] Dl€) =1

where & and. # arve units of I and £ is not a root of unity. e showed that
the cquation (1) has no solutions I m > 2, m 5 3,6, and determined
the solutions fox m == 3 or 6. Ho further noted. that it K is any J-field, 5
8 o unit of K, and £ is a non-zero number of X which is not a root of
unity, then from the validity of (1) it follows that m < m, for some cons-
tant wm, deponding on the degres [A: @] From the results of Schinzel ({7],
ek, also [6)) it follows that the sayne holds for any field K. Grossman asks
whether m, may be found independent of [K': @] in the cage when K
iz a J-field. The following theorem answers this question in the affirmative.

Tunorim 1. Let & be o non-zero algebraie number not a root of unity
such that Q&) is a J-field. Suppose that m = 5, m % 6, and that D, ()
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is an S-unit for some finite set 8 2 S, of valuations of the field Q(&, &)
such that every v € 8\8,, is real. Then Q(£) is an abelian extension of
and m < my for some absolute constant M.

From the proof it ghould bé easy to obtain a numerical value for mq.
One should also be able to find all posgible solutions for the remaining
values of m as in [3]. A natural guestion is what can be said in the cage
when & is & set of valuations of @ (£) and not of @ (&, {). Obviously the the-
orem does not remain true in this generality. This is seen trivially by taking
£ totally real. Less trivial oxamples are the following ones. Take
¢ =34V3, £ =V—a Then K = Q(£) is a non-normal oxtension of @
whieh is a J-field. We have

By(8) = &+1 = a* 41 = 13+0V3,
B(f) = £+1 = a4+ 1 = 2534+ 144V3,
Byg(£) = £ 41 = o’ +1 = T{L7059 1-1036873).

Let & denote the set of primes of X lying above 13 -{-61/3, 253 -1-144V3, 7,
179594103683, and put § = §,uU 8" It is not hard to check that the
primes in §” are real.

In connection with the result of Schinzel it is also natural to consider
representations by the homogenized cyeolotomic polynomial b, (@, y)
= y%™ @, (x/y). In this ease we can prove

THEOREM 2. Let & and % be non-zero algebraic numbers such thai Q& 9)
is a J-field. Let 8 2 8, be a finite set of valuations of the field @ (&, n, )
such that every v e 8\ 8, is real. Suppose that & and n are S-integers and
that ®,,(E,n) 18 an S-unit. Then either /& is a root of unity or there ewisi
absolute constants m, < m, such that m << my and for m = m, Q (/& n/é n/&)
is an abelian ewtension of §. '

In the case when #/¢ is a root of unity, writing # = §0°, w = nf,
we have @, (@, n) = 0"™d, (§, 7). It is easy to construct cxanples
where o is an S-unit for a suitable § showing that there is no absolute
bound, for m, but excluding this case the guestion still remains open
whether there then iz such a bound.

Finally, taking into account the close eonnection bebween the nature
of @, (£, n) and the existence of a primitive divisor of the exprogsion & — 4™
(see [6] and [7)), one is led to ask whether there exigts an-absolute con-
stant m, such that the expression £ — ™ has & primitive divisor for m 2 ™y
when (£, %) = 1, £{/n is.not a root of unity, and Q (&, n) iz a J-field.

Proof of the theorems. We ghall uge an idea of Newman (cf. [2])
© combined with results of Gryory [4] and the recent rvesults of Conway
and Jones [1] on relations between roots of nnity. We bogin with a proof
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of the first part of Theorem 1. Pub &, = &— % ((k, m) = 1). Let v bo any
valuation of tho field (¢, {) which does not belong to §. Since (0, (&)
=1 and &,(») is a monic polynomial with integral coefficients, we have
w(£) <¢ 1. Therefore clearly y(c,) = 1 for each %, so that the s, are S-units.
From [4], p. 164, Th. 1, it follows that g, = /e, is a oot of unity for
each %. From the assumption of our theorem g(m) = 8. Therefore it is
possible to choose { wo that ¢ is not purely imaginary. From the equa-
tiong &, == gyay, €. == p_16.4 wo obfain
(0r— 0-1) 8y = (1-F o_){&— CHI),
{er—o-i)eos = (b4 @) (E—L71).
Since & is not purely imaginary, ¢, ¥ —1, whenee g, # o_;. Thus e,
belongs to a cyclotomie ficld so that Q(&) is an abelian extension of §.
Thig proves the first part of Theorem 1. The sccond part is clearly conta-
ined in Theorom 2, whemee in what follows we shall only he concerned
with the proof of that.

As above we now. denote g, = (§— 7 p)(E§—*y) for any &k with
(k, m) == 1, where again the g, are roots of unity. We assume that %/&
iz not a root of unity otherwise there is nothing to prove. We always
suppose that m ix sufficiently large. Take any # with (r;m) =1, r = +1
modm, We have

(2)

=Ll o~ D) = 0,

(3) £~ (?37'-—;9“1(5——{;‘1?;) =0,

E—{T"p—p(§—1"n) = 0,

E—Un—g,(§—L1"n)

Oongider (3) a8 a system of homogeneous ]in?_aar equations in the unknowns
&, %, &, 5. The determinant of the coefficient matrix '

1 =" —o 0l

1wl =gy 0™
"” A
Ul g, 0t

must vanish, Computing the determinant we obtain

R G A R A B
= 01,0 ($M e BT ) gy 0 (L - 20T LR
o 0y 0_1"(5»24'__24-'—4'-[-1 - é‘ﬁ) + leer(é-w -—-2C’““‘1—\« C-a) = 0.

Suppose that the rank of (4) is less than tbree. Then in particular
the leading three by three minor determinant of (4) vanigshes so that we
have '

(6) (=N gk (& =8 Moy F {0 e, = 0.
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Using the language of Conway and Jones [1], let T' denoto the vanishing
formal sum of roots of unity corresponding to the left-hand side of (6).
Consider the root fo,. If T does not involve fg,, then there is another
erm on the left-hand side of (6) equal to = {g,, and these bwo terms cancel
out. On the other hand, if 7 does involve {g,, then there is % minimal
vanishing subgum Ty of T involving Zg,. From [1], p. 235, Th. b, it follows
that the reduced exponent of 7, divides 30. Thus in both cases thero i
another term on the left-hand side of (6) equal to alg,, where a7,
‘This term eamnot be —Z&" g, if m is large enough. Tlence we have an
equation of the form

alg, == C‘m—b{’u
Writing X = £" we obtain from (3)
@) EX —i—a {0, X (E—nX) = 0.

Consider (7) as an equation in the unknown JX. Since 7/€ is not aroot
of unity, (7) does not reduce to an identity. As there are only = linite
number of equations (7), we obtain a contradiction for m sulficiently
lazge chooging # suitably. Hence the rank of (4) must be three, so that
all the ratios of £, 7, £, 7 belong to a eyclotomie field, Thiy proves the
second assertion of Theorem 2. :

Before proceeding further with the proof of Theorem 2 we neoed the
following

LmMMA. Let & and n be non-zero comples numbers satigfying the condi-
tons '

& :_"751

(ae{0,1}; be{0, &=1}; we{R1l}.

n=y, &0 =i~ (keZ, (Bym)=1),

where v and the oy, are roots of unity. Then either £ == L 1 or m < my for sonie
-ahsolute constant m,. ‘

Proof. Determine 6, so that 6} = g,v~" For each k with (&, m) =1
we then have

{(8) Efn = (0,88 — 67 L) N0, 057,

.and mn partienlar we see that 07 =1, {~*. Combining the equation (8)
ag it stands and with % replaced by 1 we goti the ralation
— 6,645+ 6,07 ¢ 4-0,0,8F — 07 00 0 —

____61—-10?—6-15-—1 0 Gl—lekcml _!_ grlgglc—ln_ﬂlﬂﬂlé«--k e (0,

(9)

We suppose that m > my for a sufficiently large absolute constant m,
and show that then £ = 4-%. Arguing as before we obtain a non-trivial

r
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equation of the for.m.

(10) b0l = 010" (a,be {1} e, de {0, £1}; 0¥ = 1).

Consider first the possibility b = 1. Then we must have ¢ = 0, other-
wise we obtain a contradiction choosing & suitably which is poss,ible for
large enongh m. From (9) we now find that the only possibility isa = d
—~1, whence 67 == o*{~% Trom (8) with % == 1 ;evca‘get

el = (L~a)Li(L~al?),
and Wca_hu.vu a contradiction by ussuming that ¢ was originall ¥ 80 chosen
that this equation does not hold for any a with ¢ = 1.

Thus b = —1. Put X == £* Combining (8) and (10) we obtain

G U el I

SBinee this equation .1ml.s‘t reduce to an identity, we easily find that ¢ = —1
and &fn = 4 1. This proves the lemma.
Consider now the relation (5). Again we have a non-trivial equation

(1) ag o™ = 00" (Wve{£l, &7} a,be{0, £1, +2};

o™ = 1),
where A7 denotes the product of primes <2 20. We cannot have Oully ™= 010
otherwise we gebt a contradiction for a suitable 7. (Note that if a m_ll
then b = -1, which ix fmpossible for large m.)
Suppose first that g,e, = g.o_,. Write X = {7, 22 = qg, o,
8o that g, 0., = 72 X'% From (3) we have :

(X —qH(E—~7X) = X4 (EX — ) (£—nX).
This cquation must reduce to an identity, whenee necessarily a = 1 aﬁd_
G '.j;,a . T”(E’Wuﬁ“),

Hence (¢4 %)* = r*(£.1. 5)% Choosing the sign of ¢ suitably we thus have
ofther & = w8, %9 w1 ov & == 7w,y = o However, from the lemma we
infer that in both cases /€ is a root of unity, a contradiction.

Suppose next that 4 = -1 and o ==». Then a ¢ {0, 1, 2). Writing

A = {7 wo hawvo from (11) g, == ag., 2" X"%, and then (3) implies

EX — o = ag, 00 X4 (£~ X),

&n. = 12 &n.

This equation could only reduce to an identity for ¢ = 2, but even then
we get a contradiction hecause n/¢ is not & root of unity. The remaining
Cade % == -1, ¥ = —p j8 dealt with similarty. This completes the proof
of Theorem 2.
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Rosser’s sieve
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1. Introduction. Statement of the results. Let there be given a finite
integer sequence .« and a sequence P of primes. A Dhasic problem of the
gieve is to estimatbe, for any real number z = 2 the sum (sifting funetion)

S(st,Pye) = 3 1
(a,;‘(e.;%#‘l

where P(2) = [] p. The séquence & can be almost arbitrary. The

Nz peP
only knowledge we need about .« is 2 good approximation formula (in
an avarage sense) for the number of those elements from & which are
divigible by the squarefree number d|P(2);

#y ={ac & a =0(modd)}.
We assume that |« may be written in the form

w (&)

(1.1) ot =22 X+R(, @),

d
where ?—fzml X i3 eonsidered as a main term and (s, d) is an error term.

The arithmetic funetion «(d) is multiplicative and. for each prime number

p el it satislies )

(1.2) 0 < w(p}<p.

Sinee wo need the formuly (1.1) only for d|P{z) we are free to define w(p)

= 0 for p ¢ P, _ o
Our next agsumption ig about dimension. There exists s parameter

%= 0 (dimengion) and a congtant K > 2 such that for all 2> w> 2 we
have ‘ »

(1.3) IY (1w 9_1%’_)) ‘1_< (11()__‘)_5_%)” (14— lozrw:) .

WELD <8



