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Lehmer’s numbers
by

A. Rorxmwioz (Warsaw) and R. WasEn (Djursholm)
‘The nth Lehmer mamber u(8, ) with respect to the trinomiai

flz)= 2" — VLe+M (L and M are rational integers) with the roots .ﬂp‘
and § is defined by

N __ % — :
8. B — I(ﬁ" PiE=p it 2,
B —P—FY i 2.

We ghall write, for brevity, «, instead of »(8, 3.
Since wy == 0,1y = 1, %, , = Lo, —Mu, for 24n and w,, , = w, . —
~ Mu, for 2|n, the numbers 2, are rational integers and form a recurring
gequence, the so-called Lehmer sequence with respect to f(z). The nth
term in the associated recurring sequence is defined by
"+ B (B+B it 2=,
B it 2n.

(1)

Since vy == 2, vy = 1, 0., = I, ,—Mp, for 2|n and v,,, = ¥, 4 —
-~ Mw, for 2¢n, these numbers are rational integers. We can assume
without any essential loss of generaliby that (L, M) =1 and L > 0 (cf. [5]).
In the sequel any trinomial f = a®—VILa--M is supposed to be such
that L and M are rational integers,

K e L—4M =K(f) #£0, L>0, M=s0, (L,H)=

One of the most interesting applications of the sequences v, concerns
tests of primality. In this context we have found it convenient to intro-
duce the following concepts:

DEFINITION 1. n satisfies the Luces condition for f =t —VEs+M
iff » iy 0dd, (n, KL) =1, and »[ Vi gepnys-

From Professors J, Brillhart and S. Wagstaff we get #he following
information.
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Let p be odd, p > 2. Write p —1 = d-2°, where d is odd ?Jllcl.shxsi
a posgitive integer. Then p is called a strong pseudoprime fo base tif either

(3) 1% =1(modp), or

(4) 12" = —1(modp) for a certain non-negative ¢ < &.

The concept of strong pseudoprime,. useful inl 1311@ investiga:tjf)lsl ic;f
rimality is dide to John Selfridge. Pomerance, Seliridge and Wa.g: .a; 0‘3
:;E])’r. gaive o list of all pseudoprimes (composite) to base 2 below 25

207). ‘ _ - . N B

e E&n 1)(1(1 » which satisfies the Lucas condlt.lon‘for fle) = —({+ 121
is a strong pseudoprime to base ? satisfying (4) with v = ¢—1.
: DEFINITION 2. A sequence {3, of integers is called an s-sequence
iff g, == s, —2 for i2= L. ’ _

1‘For any trinomial f with roots f, B, a.nd_ for‘ any natural numberlh,
it §, = VY)/(p+ B, then the following generalization of & well-known rela-

0 - . . . .
tion (cf. [18]) results by induction: ,

(5) (BB By = Vs n22.

Denote by M, the pth Mersenne number M, = 21’.-m 1, where p is an
odd prime. A Wellf)kn'own theorem. of Tueas and Lehmer {see [4], {67, [18])
runs as follows: : N |
M, is a prime iff M,|8, s, where 8, = 4 and {817 is an s-sequonce.
»
If f(2) = #—V2e—1 then

=2 if 8, =4.

(6) ) Sy_g = Vzn—u ‘
Sui)pose thatm = M, satisties the Lucag condition for f = 2* —1/2],_? — 1.
h ' ' = —l) = d m|V, —(ELm))z = ¥ gp—1-
hsive (KL|2P—1) = (3]|2°—1) 1 an ot .
g:w %; (6§ wm I= M,|8,_, and so by the theorem of Lucas and Lehmer M,
? o - . 2l .
is a)iwrime. On the other hand, if M, is a prime, then M, | 8,_. by the the
orem of Yucas and Lehmer. By (6) this implios that

(1) _ M|V,

Since m = Mﬁ is a prime, M, is odd and 2[M,-(KL|M,}= 27
(L = 2, (KL|M,) = (3|M,) = —1), we have by (T) m = M|V e (ictiimgin
=32, 1 A
‘and m = M, satisties the Lucas condition for f == z“——l/jzzu-l. .]“[fmcei
the Lmeas and Lehmer theorem can be given in the following equivalent
form: -
REFORMULATION OF THR® [UCAR AND LEHMER THEOREM (2 13@..121'31011 ar
case of Theorem 1). M, is a prime iff M, satisfies the Lucas condition for

f= 2-V2z—1.

icm
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In a similar way we arrive at the following reformulation of theorems
of Pepin. and Proth: ‘ :

PEpin's TuBoREM. The Fermat number F,=2"4114s a prime iff
B, |3%~ D2 11 (see [1], p. 376).

PROTH’S THEOREM. Lot N = k-a"+1 where 0 < k < 2* Suppose that
(a|N) = —1. Then N is a prime iff a¥-V2 = —1(mod N} (see [117,
[12], [177).

REFORMULATION 0F PEPIN’S TIUEOREM (& particular case of Proth’s
theorem). ', is a prime iff F,, satisfies the Lucas condition forf =gt daz+ 3.

REFORMULATION OF PROTH'S THREOREM (a particular case of the refor-
mulation. of Riesel’s theorem). Let ¥ and a satisfy the conditions of
Proth’s theorem; then N is a prime iff N satisfies the Lucas condition for
f=a~(a+Da+ta. '

The following theorem of Riesel can also be reformulated.

RIESEL’'S THEOREM ({see Theorem 5 in [101}). Suppose that n > 2, b is
odd < 2", N =Rh-2"—1,r = |a®— b2 D) with square free D, g = (w—l—bl/ﬁ)?/r :
integerin Q(VD), (8, N} = 1inQ(VD), DI¥) = —1 and (7| N) (a*— b2D) pr
= —1. Then a necessary and sufficient condition that N be a prime is

(8) S-n,_g = O(mOdN) T,.f ‘S'IJ = Si-‘l —9 with SD = ﬂk*l-ﬂ""h..

Note that § is a unit. Hence if §is not up to a sign a power of the funda-
meéntal unit in @ (I/D), then § muit be a root of unity. We have the following
three possible cases: (I) f = £1;(I) § = 445 (II) § = + (—1 4V —3),2.

By a straightforward calculation it may be shown that (I) is imposs-
ible. This case corresponds to the situation where ab = 0. Hence without
any loss of generality we may assume that ab 5= 0. Cage (III) can likewise
be shown to he impossible. Case (II) corresponds to the only possibie
imaginary field in the method of Riesel, namely to the Gaussian field
@ (). In this cage his method works for exactly N = 3 nad N = 11. As
noted by Riesel, & and b may be supposed to be rational integers. This
follows directly from the definition of § = (a+bVD)*/ja*~b*D| since
it @, b equal, respectively, '/2 and 5'/2, &’ and b’ being odd rational in-
tegers, then 8 = (a' - b’l/D)z/Ja"’—b_"*‘D]. Moreover, a similar argunient
may be applied to show that we may also assume that (¢,b) = 1 and
that &> 0 and b > 0. Altogether this implies that e and b may always
be assumed to be relatively prime natural nuntbers. In practice, Riesel
finds suitable ¢ and b by taking the fundamental unit & in Q (1/3), where 1>
is chosen so that (D) = —1, and writes it in the form &= (a1 8V Dje/

ja®—b*D| if ¢ has such a representation. Obviously Riesel chooses 7 ag
ja*— b2 D| in order to get a pogitive &,. T
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TaeorEM 1 (Reformulation of Riesel’s theorem). Suppose a, b, D, b
and  satisfy the conditions in Riesel's theorem. Then N = h-2" —1i8 & prime
iff N satisfies the Lucas condition for f = 2*—2az~-(a*—.Db?).

First we shall prove the following

LeMya 1. If a, b, D, k and n satisfy the conditions in the Riesel theorem,

{8} denotes the s-sequence in the Riesel theorem and {87} the s-sequence
determined by ‘
8 = [(&+bVDy* 4 (a — bV DYM J(a% — B2 D),

then §* — 8, sen (a*—bD),

Proof. L 4*—02D > 0. We have
85 = Ua+WD Y™ (a—0VDP")/lat — DI = 4 B o= ' p7" = 8.

II. a*—82D < 0. Wa get ' |

8 = — (8" = —8,.

This completes the proof of Lemma 1.

Proof of Theorem 1., Suppose that «,b, D,k and n sa;tisfy. the
conditions in the Riesel theorem and that {§,);° and {87 }7° are asin Lemma L.
We note that (8, N) =1 in Q(VD) implies that (r, N) =1 in Q (VD).
Now if NV is a prime, then by the Riesel theorem

{9) ' N8,
and so by Lemma 1
{10) N|8_,.

I f — 2~ %ae-(a*—b2D) then, since

85 = [(a+bV D)™+ (6 — bV D)™ /(a? — b2DY*
: if ¢ and ¥ denote the roots of f, we get
(11) (P g, = T

,.2n-1;

7= 2

and, by (10), NV, | Now D(f) = 40D so (D(f)| N} = (40°D| )
= —1. Hence [N—(D(f)|HN}]/2 =h-2"" and so N|VV, , fmplies
that N satisfies the Lucas condition for f. On the other hand, if & satis-
fies the Imeas eondition for f, then ¥ VY, _, and so by (11), N|(y YAt
X 8p_y. Bubt pf= tr =+ |a?—bD{ and (r, N) =1 in Q(¥D) and so
certainly also in @ and we have N|8;_,= 4§, ,. This completes the
proof of Theorem 1.

- In view of what we have already shown it would be of interest to
know if there are infinitely many composite numbers satistying the Luneas

icm
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condition for any fixed trinomial f. For a special clags of compogite num-
bers satisfying the Lucas condition, mamely those corresponding to tri-
nomials with positive discriminant, we prove the following stronger

TeEOREM 2. Lét K = K (f) > 0. Buvery arithmetical progression ax+ b,
where (a, b) = 1, which contains prime numbers w such that

(12) | V{Q—(Kmn)]fz: (n, 2KL) =1

containg also composite numbers n which satisfy (12), i.e. every arithmetical
progression ax-+b, where (o, b) = 1, which contains prime numbers which
satisfy the Lucas condilion containsg algo infinitely many composite numbers n
satisfying the Lucas condition for any fized trinomial f = 22 —VLz+M.

We shall write, for brevity, K instead K (f) and V instead of V7 (4, 3).

The idea of the proof of Theorem 2 consists in using the conditions
in the theorem to show that if the prime p and the number & satisfy
certain conditions in whieh % is chosen as a suitable fonetion of p,
then pefag+b}, kefan+1}, k>1, (,5) =1, | Vppomrmny. and
%\ Vigo—rimmy: 20d so of course pk e {ax+d} and pk is a composite
number satisfying the Lueag eondition for f. Then we ghow that there
are infinitely maany couples (p, k> satizfying these conditions, and so
the proof iz complete.

With no essential logs of generality we can assume that 2| e and 245.

We write ¢ = m (ML) for the conductor of the quadratic character (ML| »)
and denote by Ry, and B, the sets of residues modm (ML) for which
this character takes the values +1 and —1, respectively. Then the fol-
lowing facts are well known:

(13) Bzl = Byl = do(m(ML));

(14) For any proper divisor & of m (ML), for any g, where (g, d) =1
there is at least one element in Ky, and R,y congruent to gmodd;

(13) m(ML)j4-ML and if m(ML) = 0(mod?2) then 4|m (ML)

LA 2. Por all pairs of arithmetical progressions {a,s+b,}, {@a® -+ by}
such that (@y, b)) =1, (as,b) =1, if {@@+btn{a,x-b}#@ then
there ave ay, by such that {a,2--b,} N{ay@+ b} = {ayz-- by}, where (ay, by) = 1.

The proof may be omitted.

Lguma 3. Let I = K (f) > 0,(L, M) =1, {a, b) = 1,2|a, 6= m(ML)
a or ¢|a and b=z d;(mode) for a certain d;c B,y ; then there exist infinitely
many & which salisfy the following relations:

(16) (as+b, EL) =1, as+b=>1,

(17) as-+b = d,(mode) for some d; € Byyy.
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Proofl. I. ¢fo. In this case d = (&, 0) > 1 I8 o proper divisor of ¢
and (d,b) = 1. Hence (14) applies and ensures that there is a d, e i,
{d;, ¢) = 1 such that ’

(18) dld;—b, (d;,0) =1,
We regroup (17) and get

(19 ¢'8 =d;~b{mode) with ¢ ==m(ML).
On putting a/d = a', ¢/d = ¢’ we got

.

20 ‘ g gm0 ‘
{ ) a's = = (mode'}.

‘ Since (a’, ¢') =1 and d|d;—b, (20) is solvable and all solutions arce
given by {¢'z-+r}, x =0,1,2,... for a suitable r. Since s = o'z -1+
we have as+b = a(¢'z+2)+b = ac’z+ (ra+b). If (ac’, ar+b) > 1, thexi
there exiats an odd prime p such that p |¢’, p [ra+b. Then plas+b = ao'w+
‘—i— (m_—!—b), Ple. Bub as+b = d,(mode), and hence p|d;, which iz imposs-
ible, since (¢, d;) = 1. By Dirichlet’s theorem there are infinitelff many o
;311;?:11 that as+b = ac’w 4 (ra--b) is & prime > KL. Then (16) and (17)
_ II. ¢l Tn this case it is obviously necessary and sufficient that

= d;(mode) for a certain d, in B, in order that (17) be satisfied. If
¢la, b = d;(mode), then for every s: as+ ¥ = d,(mode¢). If as-+b is a pri-
me > K1, then (16) and (17) hold. This completes the proof of Lemma 3.

Now we shall give well-known facts from the theory of Lehmer’s
numbers. ' '

Put
n

Q=0 6 = [] 3—t:p) = [[ (5 —Fye,

r=1 iin
(rn)=1

“where £, is a primitive nth root of nnity and u is the Mobius funetion.
We have |

] - 3 ﬂ
‘Qn!uﬂ.i Qn!vmﬂ if 2!”; le-[rn it 2'1/“'—7 Wblﬂ’i PI’“»
wm

iy B P
i3 an odd prime and (KL, p) = 1.

Uy [ Uy, I MmImy IV , if is a ime. (KT, -
and(Mnj; - _1., [ (LA PY2 P 15 an odd prime, (KL, p) =1

Let {er+d}, i =1,2,...,0(c)/2 be the [p(c)]/2 arithmetical pro-

- gressions with minimal difference determining the odd primes for which ML

Is a quadratic non-rvesidme, {d,}7* = R,,,.
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We denote by ¥W(p) the assertion that for an odd prime p-there exigt
integers s, d, and 1 satistying the following conditions: '
(21) p = b(moda), (KL, p) =1, (ML|p) = —1;
(22)  p—(KL|p) = 2*p,p:ps4*h, Where Py, Py, ps and ¢ are odd primes, '
(2p1PoPag, 1) = 15
(23) 2 as-+b—(KL|es+b), (2*aKL, ¢)sa+b—d;

(24)  as+b>1, (KL, as+b) =1, d; e Rypy

(25) (ac KL, p1paps) = 1,
(26) 2 acKLp,p.ps@,(2° ac KLp,peps)lg—1, where
palgligl ... ) =2¢hg .. gp(@—1ME—1) - (= 1)
LEvMwma 4. If K > 0 then @, > 0.
Proof. Since @, is symmetrical n § and B, we may assume that

f = (VL+VK)/2 > 1; hence '~ f* > 0 and the lemma follows from the
formula Q, = J](8 — By, .

iln
LEMMA 5. If g2, me,(m)|q—1 where g is a prime, then
e == L{modm).

For the proof see Lemma 5 of [13]. _

A prime p is called a primitive prime factor of the number u,, if p|u,
but p+ KLy ... %, ;. It is & wellknown fact (see [16]) that if K > 0,
n > 12 then u, has at least one primitive prime factor and all primitive
prime factors of w, are divisors of @,. Hence if 5y, %, > 12, X > 0 then
On, = @y, implies n; = 7. This means that for » > 12, K > 0 we¢ may
introdnee the notion J(k) =n if & =Q,,.

Lmmwa 6. Let n = 2% 3-27; then

I. The greatest prime divisor + of n divides Q, iff r is & primitive prime
Sactor of w0, where v®|n; :

II. All prime factors w of Q,, different from v are primitive factors of u,,
they are relatively prime to KL and they are of the form nz+ (KL u).

For the proof of Lemma 6 see [5]. _

(lOROLLARY. (22) and (26) imply that for af least one 1< 3 we have

(27) P[Q{p—(KLm)]fp,;a

(28) the greatest prime factor of [p —(KL|p)]1/p; does not divide Qi)
Proof. Putk;= Quumye = 1, 2, 3. Suppose that p |k, for at least

two 4’s. Since [p— (I L|p)]/p; # 2%, 3°2% i =1,2,3, Lemma 6 implies

and ensures, in view of p > [p— (EL|p)lfpy, ¢ = 1,2,3; that p is a primi-

tive prime factor of the numbers wyq, (J{k;) > 12), which is impossible
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sinee i # j implies that J(k;) = J(k;). Hence we may assume that pik,
and ptk,. Denote by » the greatest prime divisor of p—(KL|p). Since
T =g PiPaPs, in view of ¢ |p—(HL(p), p1p:psl¢—1 wo have r> p,
and » > p, and so 7 is the greatest prime factor of J(%,) and J (%,). Hence
in order to complete the proof it iz enough to show that »tk, or rik,.
If # |, and 7|k, then by Lemma 6 T it follows that » is a primitive factor
of wygype 8nd wgg,e, where 1o [p—(EL|p)]/p; ¢ =1,2,3, which is
impossible since certainly J (k) /r® =& J(ky) /r” '
By ¥{p, k) we denote the conjunction of ¥(p), (27},
the equality

(29) b = Q- mrim)m;

Levva 7. P(p, k) implies that

(a) % = 1(mod2 acKLp,p,pa),

(b) (k, KL) =1, (EL[k) =

(c) every prime divisor q; of kis prime to KL and. = (KL |g,) (modJ (%)),

(d) & = (KL|k){modJ (k)),

(e) k = 1{mod2[p—(KL|p)l},

() [p—(EL|p))/2 | [kp — (EL [kp))/2; {{kp ~ (KL |lep)]/[p
= 1(mod2), '

(&) Bl Vg oy

(28) and

—{EL|p)]}

(1) 21V pp—mrime
(1) Rl Ve mripiyas

(k) pk is a composile number satisfying the Lucas condition and is
of the form ax--b.

Levma 8. If s, d,y A are infegers amd g, py, Py, s are distinct odd

primes satisfying the wlatzms (23)—(26) then there exists an integer m
such that

m = b-+sa(mod2*a KL),
{30) m = d;(mode), ¢ = m(ML),

m = (KL|b+sa)+lq2(m0dlﬂq“), where
and all primes p in the progression
(31) P ac KL Pn +m,
satisfy ¥ (p), the above progression represents infinitely many primes and for
each of them there emists a & = 1(moda) such that vk iz a composite number
satisfying the Lucas condition for f = z*-—l/mz—f«M = b(moda).

Prootf of Lemma 7. Bince 2*acKLp,p,p,p. (2" acKLp, paps)ig—1,

¢'lllp—(EL|p)]/p;y Lemma b - applies and we get = Qe
= {med2'aELp,p,p,) and (a) holds. b {iciniiog

U= D100,

icm
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Now 2|a and so, by (a), k = 1(mod 4 KL), and thus certainly (KI, %)
— 15 hence (KL|k) = (KL|4KLa+1) = (EL|1) = 1.
Since P—(KL|p) = 2*p,popyg*h, we have [p—(KL|
*. By Lemma 6 II {e} now follows directly.

)][_pi #2,

Bay that [ == [] ¢} i the decomposition of % into pnme factors
By (b), (KL|k) —1 We have by (c¢),

[ .
k= n gt = [ [(EL|g) = (EL|k){modd (k)
) ge=l
and (d) holds.

By (b) and (d) we have k= 1(mod[p—(KLjp)l/p), where
[p~(EL|p)]/p, = J (k). Now, by (a), & = 1(modp,). Since p;||» —(KL|p)
and 2%||p —(KL|p), we have: k= 1(m0d2[p~(KL|p)]) and the proof
of (e) is complete. :

Since (KL,p) =1 and (KL |k) = 1 by (b), from (e) it follows that

kp —(BL|kp) = [2(p—

(EL\p))t-+1]p — (KL|k) (EL|p)

or & certain . Since, by (b), (KL | k) = 1, we have
[kp — (KL |kp)]{2 = (2pt+1)[p —(EL|p)]/2

and this completes the proof of ().

Formmula (g) follows directly from the formula §,!V,,, where 2Z|a.

From (f} it follows that Vi, erms | Vipegrpnye a0d, sinee (LM |p)

=—1, we have: p|V,_ zrpe a0d (i) follows, Since by (€ k| Vipimzimms

thus k| Vip_ @opne | Vier—gopmy: 20d (j) holds.

Since p = b(moda), & = 1(moda), (p, k) =1, (k) follows from (i)
and (j). .

Proofof Lemma 8. The linear system of congruences @ = b; (modm,),
o= by{modm,) is solvable iff (m,, m,)|b, —b, and the solutions belong to

{ﬂ%— ®-em, - bl}, where ¢ i8 a wsolution of the congruence
(1m1,m3)
by—b, .
LS. (1 nod — 2 ) The question of the solvability
(g5 Mea) (1, My) {1y 5 M)

of the linear congruences z = b {modm,), & = by(modm,) is equivalent

m
to - the question whether {m,s+5b.F N {myw-1-D,} == {(—mﬂﬂ——i—) @ - emy + bl}
12 7Va -

for o certain ¢.
In our case, since (2*aKL, ¢)|b+sa~d;, the congruence system
@ = b--sa(mod2*a KL), & = d;(mode) iz solvable and exactly all sol-
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PaKLe A . "’
nti e e-2'aKL-4-b+ sa,} for a cortain ¢, Since
utions belong to { kL, o) x4 :

(2"aKLo, pipeps) =1, (2'acKL,q) =1, | = PiPaPs it follows that
(2"aKLe¢,12¢%) = 1. Thus
{Mf_ m—]—e-Z"aKL—i—b—inml N{2g*s+ (KL |b+sa)+1-¢4) # 0

(2"a KL, c) J o
and this implies that any number m in this infersection s:wissfiesg.the lineax
system m = b-+sa(mod 2 KL), m = di{mod ¢), m = (KL é:‘ﬂ.) -+
+i*(mod 12 ¢?). Nextiwe prove that if m is anumber satislying the l_ensh linear
system, then ¥(p) holds for all primes p in the progression Qac KLI*@w-+-m.

Since m = b(mode)and all the primes in the progression 2*ac K LI% g% -
+m arve == m{moda), we have p = b(moda). Moreover, (KL,p)>1
implies in view of m = b+ sa(mod2’a K L) that (KL, b--sa) > 1, which
is impossible in view of the assumption of our lerma, and hence the condi-
tion (KL, p) = 1 is satistied. Since m = d;(mod¢), we have (ML|p) = —1.
Since 24b-+sa>1, 11, 2|a, we have p = b+ sa(mod4KL), p =0+
tsa+4KLz In view of the fact that 24b+sa for all ¢ wo get
(EL{b+sa) = (KL|b+sa+4ELz) = (EL|p).

Sinee p = m(mod12g®) and m == (KL |b -+ 5a) - P, P, Pa g (mod pip;p3e°),
it follows that p —(KL|p) = lg*(modl%g?) and 8o we have p,|p — (KL |p)
for i =1,2,3 and ¢*|p—(KL|p). Since p belongs to the progression
Yac KLl x+m, we have p = 2'aKLos,+m for a certain s,. Since
m = b+sa+2'aKLs,, we get

p—{KL|p) = 2*aKLos, +2'aKLs,+(b+sa—(KL|b+ sa))

in view of (KL |p) = (EL|b+sa).

Since by (23), 2*|b+sa—(EL|b--sa), we have in view of 2|a,

2'llp — (KL|p). R |
' If (p,1) > 1 then, since p = m(modl) by (31), by (30) we get
(KLib-+sa)| > 1, which is absurd.

Finally we prove that the progression 2’4o KL 1% g% --m represents infi-
nitely many primes. In view of Dirichlet’s theorom on primes in arithmeti-
cal progression it is clearly enough to show that (2*acEL1%¢® m) == 1.

Since b is odd and 2 |a by (30), it follows that 2 4 m and so (m, 2) = L.
{m, a) =1 gince otherwise, by (30}, (&, b-+}sa} = 1 in conbradiction to
the condition in the lemma that (a, b) == 1. (m, o)=L since otherwise,
by (30), (d;, ¢) > 1, which is impossible since ex-- d, represonts infinitely
many primes, (KL, m) = 1 since otherwise (KL, b4sa) > 1 by (30) in
contradiction to {24); hence in order to complete the proof it is enough
_to show that (Ig, m) = 1, and this iz clear in view of (30).

‘Hence there are infinitely many primes p satisfying ¥(p). Moreover, by
Corollary to Lemma 6 for each such. prime p there is a % such that

icm
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k= Q—xrimyy, Satisties (27) and (28). Hence we have ¥(p, %) and so,
by Lemma 7, pk is a composite number gatisfying the Lucas condi-
tion for f == 22 VL6Lz+M and belonging to am+ 5. This completes the
proof of Lemma 8.

TeMMA 9. Any arithmetical progression ax-+-b such that (@,b) =1
and ¢ =m(ML)ta contains infinitely many composite numbers satisfying
the Lucas condition for any fized trinomial f = 2 —V Lz -+ M, where K{f) > 0.

If ¢ = m(ML)|a, K = K(f) = 0, then ax+ b contains infinitely many
composite numbers satisfying the Lueas condition for f if b = d,(mode)
Jor a eertain d; € By . :

Proof of Lemma 9. We may find three distinct odd primes p4, ps
and pg snch that (acKL,T) =1, where [ = p, P,ps. This follows in fact
from the existence of infinitely many primes. Choose for example the
three smallest sueh primes. By Lemma 3 there exigt infinitely many s
which satisfy the following relations:

(as-+b, KL) =1, as+bdb= d,-.(modc)

for some d; e R,;,. We define 1 by the condition 2%b--se— (KL |b+sa).
Clearly (2*a KL, ¢)|b+sa—d;. Next by Dirichlet’s theorem there ave infi-
nitely many primes g such that 2*acKLlg (2%acKTLl)|¢—1. Take for
example the smallest such ¢q. By Lemma 8 there iz an.m which sati-
gfies (30). Now Lemma 9 follows from Lemma 8.

Proof of Theorem 2. If the arithmetieal progressiom ax-+b,
where (a, b) = 1 contains prime numbers p such that p |V, xrmyes
(p,2KL) =1, where & >0, then (ML|p) = ~1 and p e {ex+d;} for
a certain d; € By, and {ax+5} n{ex-+d;} # 0. By Lemma 2: {ax+-b}tn
N {oz-+d;} = {age--b}, where [a;, by) = 1. Then ¢fa or in the case ¢|a
there exists such a & e By, that b = d,(mode) for a certain &, € By,
{d;, 0) = 1. Now Theorem 2 follows from Lemma 9. '

COROLLARY 1. In every arithmetical progression ax—+ b such that (o, b)
=1 and 1244 or 12 |a and b = +5(mod12) there are infinitely many
composite numbers sotisfying the Lucas condition for any fived trinomial
g% L 3M2 = f(2), where K(f) > 0. '

Remark. The Loeas numbers with respeet to the polynomial 22—
we Lz -+ M correspond to the Lehmer numbers with respect to the poly-
nomial

T M -
-1/ s =t VI My K = L5—4M, K, =T, 411,
? l/l}“, 3t (e o~ Y e y i

{
We have
. I M .
(LyMy | p) = ((Lﬂ, ) (@, 3 }1@) = (M|p) for (LM,p)=1



214 . A. Rotkiewicz and R, Wasén

and

(Ko Ty 1) = ((By—4M3) I p) — ((

A T
) T ) ? |
== (P —4M |p) = (K|p) for (HL,p)=1.

In the case of the Lehmer numbers with respect fo the pelynomial 22—
—VIz+M we can assame without loss of generality that (L, M) = 1.
(This s not true for the Lueas numbers.) Thig follows from the equaliby

(VAL +VaL, —4M, &) 4 (VaL, —VdL, —4 1, d)"
= (VAP LV A+ YLy~ M) (VL =V Ly =4 M,)"],
where d = (L, M), L = I,d, M = M,d.

Pro.c)f ?f Corollary 1. The Lumcas numbers with respect to the
polynomial 2* — Lz +-3M* correspond to the Lehmer numbers with respect

to the polynomial 2 — VI [(I*, 3M%) e +3M*|(L*, 3M%). We have
s
m .
(L*,800% (IF,30%)

) =m(B3MY) =m(3) =12, By = {5, 7}

and Corollary 1 follows directly from Lemma 9. For example there exist
infinitely many cotposite numbers satisfying the Lueas condition in
the arithrnetic progression az-+b (where (a,b) =1, 1244 or 12|a and
‘b = L5(mod12)) for the polynomial 22 —~424-3 and zo there are infinitely
many odd composite # in az b such that %30 D% 41 (of. [15]).
COROLLARY 2. In every arithmetic progréssion ax b such that (a, b) = 1
and 84 @ or 8|a and b =B, T(modB) there are infinilely many composite
numbers satigfying the Lucas condition for any fiwed trinomial & — Lg—2M*
= flz) where K (f) > 0.
. Proof. The Luecas numbery with respect to the . polynomial
#~TLz—2M* correspond to the Lehmer numbers with respect to the

polynomial 2* - TH(DE, 2 M2 —2 M2 (17, 2M*). We have

m( L . -2 r ~ :
(L%, 200%) (L2,2M2))=m(““=8’ E.,=1{5,7}

and Corollary 2 follows directly from Lemma 9.
. For exa-mple the Lucas numbers with respect to the polynomial
2 —2%2—2 correspond to the Lehmer numbers with respect to the poly-
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nomial &2 —l/E:w—l_ (here K = 6, L == 2} and there are infinitely many
odd composite n coprime with 12 in aw+b, where (@ B) =1, and 81 a
or 8]a and b = 4-3(mod8) such that

(V3R (1 Y3 n = 5, T(mod12),
ni (143 F(L—¥BYe i o= £ 1(moed12).

Mhis holds in view of the fact that (KLjn) = (6:2]n) = (3jn) = —1
if @ o= £B(modl2) and (Bin) =1 il n= +1(modl12}.

COROLLARY 3. In every arithmetic progression aw +b such that (@, b) = 1
and 44a or dja and b= 3(mod4) there are infinitely many eomposite
numbers satisfying the Tucas condition for any fized irinomial g*—Lz—M*
= f(z), where K(f)> 0.

Proof. The Lucas numbers with respect to the polynomial 22 — Lz —M*
correspond to the Lehmer numbers with respect to the polynomial

ot — VI (L3 M z—M2/(L* M. We have:

I? — M2 o
m((La’ M) ) (L*, Ma)) =m{—1) =4, R_,= {3}

and the corollary follows directly from Lerima 9,

For example, in every arithmetic progression az +b guch that (@, b} = 1
and 4+ea or 4] and b= 3(mod 4) there are infinitely many composite
numbers satistying the Lucas condition for the trinomial f == *—2z-—1
and go there are infinjtely many composite n in ax+b, coprime with 10
guch that '

m = =+ 1(mod5)

i

=y (n—1)j2 _ (n—1)i2
1+V5 . 1-VB 4
2 2

and

= (- 1)f2 _ = (n--1)/%
7 ]L(lt‘/’) —!—(1 21/.)) it m o= +2(modb).

This holds in view of the fact that K (22 —2z—1) =5, (Bin) = 1 if
n ez -1(modB) and (Bin) = —1 it n s 4-2(modb).

COROLLARY 4. In every arithmetic progression ax + b such that (e, b) = 1
and 8faor8la, b = + 5 (mod 8) there are infinitely many composite numbers
satisfying the Lmeas condition for any fived trinomial 22— Lz+2M* = f(2),
where K(f) > 0. :
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Proof. The Lucas numbers with respect to the polynomial 22— Lz--
+2M* correspond fo the Lehmer number with respect to the polynomial

2t —VIA (L2, M2} 2+ 242/(L2, 2]M2).
We have

I? 2M?
"\ @y (w20

) =m(2) =8, K ={3, 5}

and Corollary £ follows directly from Lemma 9. For cxample in every
arithmetic progression aw+b such that (e, b) =1 and 8ta or 8|a and
b == 33(mod8) there are infinitely many composite numbers satisfying
the Tmeas condition for 2*--3z-2 and so in ew+b there are infinitely
many compogite n such that »|20-V2_11,
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