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On a problem of E. Landaun
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IP. TURANI (Budapest)*

1. The starting point of these investigations was the following remark

~of Landau in his Handbuch der Lehre von der Verteilung der Primzahlen

from 1809: “... Die Tatsache, daB Yu?/o gerade in der Nédhe der Primzahlen

und der hoheren Primzahlpotenz;n und sonst in der Nihe keiner Stelle
> 1 ungleichmissig konvergiert, deutet auf einen arithmetischen Zusam-
menhang zwischen den komplexen Wurzeln ¢ der Zetafunktion und den
Primzahlen hin. Ich habe keine Ahnung, worin derselbe bestecht.” Much
later in 1930 Titchmargh wrote in his Cambridge Tract rouch less dramati-
cally (and more cautiously) after exposing Landau’s results that “... It is
clear that the numbers g are closely connected with prime numbers. No
more explicit relation bhetween them that what wag given by the above
formulae has been discovered.” .

These sentences reflect the situation (valid even today) that we
know a lot about primes, a lot about the ¢’s, we can use the ¢'s to deduce
fine properties of the primes but after all we do not uwnderstand why. The
aim of the present note is—shortly expressed — to find another type
of connection between finitely many ¢’s and finitely many primes and
draw varions conclusions from these. We shall omib the d.lSGTJ.SE]OIl of
analogous reanlts for other {-type functions.

* Panl Turdn died on 26, September 1976. He worked on this article in the
very last days of his lifo, Up to formula (6.8), exoept for the footnote to the senfence
following (6.2), it ix prosented lere in hig own words. The remaining exposition was
prepaved by Jénos Pintz, based en the as yet unpublished manuseript of the forth-
cormng hook of Paul Turdn [4]. An abhreviated vemon of this paper without proofs
is contained in [8].

Perhaps the best characterization of the personal courage &nd selentifie devotion
which made this article possible can be found in what Panl Turdn himself wrote about
the last work of another mathematician ([0]): “Being aware of a grave illness and
etill being able to coneetrate on guestions beyond life shows passion, devotion, energy
and one gets the impression of a heroic last ditek fight against death.”
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2. The germ of the resnlts we are going to discusg is contained in the
following two theorems contained in my paper [1]. Throughout this
paper let b be a constant with

(2.1) 0<b<1,

¢(d, &, ...) esplicitly calculable positive functions of the paramoters
d, £, ... and ¢ explicitly calculable positive constants not necessarily the
same at different oceurrences. Further, for

(2.2) N <N, < N,<2N
let Z(z, N,, N,) be defined by
(2.3) Z{'E_', Nl; Nz) = A(%) e—irlogfn’

Ny=in=<Ng
A(n} being the von Mangoldt symbol. Then we have
THEOREM A. Suppose the inequality

: ' Nlogh®
(2.4) iZ(TJNhNE”<e_”—b'_

holds with a positive constant ¢ for all v-values satisfying

@2.8) le—T| < 3T°

and oll (N, N,)-pairs with _

(26) 1T < N< Ny < N, < 2N,
‘ Then {(s) # 0 in the pm’allelogmm

(2.7) o ezl-bat,  [E—-Ti<3T' (5 = o+it)
provided T > c. '
3. Further, we have

‘TasorEM B. Suppose that with a 0 < B< 1, y<0<1, and T > 10,
£{8) does not vanish in the parallelogram

(3.1) o>0, {t—T|< }TR.
Then the inequality
. log* N

holds for all +’s with ‘
. ‘ T S
(3.3) -1 < =7 1
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and for all puirs (N, N,) satisfying

(3.4) TP NS Ny < N, < 2N

provided T > 0(8), 0 <8< 1.
Especially, if :

{8.5) B=b, §=1—pa2,

this gives

COROLLARY L If 0 < b < 1, bS/at LT >10,0< 6< Land £(s) % 0
in the parallelogram (2.7), then the inequality

6(é) Nlog*V
(3.6) 2, 3, ) < B2 T8N
holds for all t with

1—4
(3.7) lr—T| < - v

and for all pairs (Ny, Ny) satisfying
(3.8) T < N < N, < N, < 2N,

Corollary I and Theorem A are “essentially” of inverse character;

this indicates already the importance of the finite exponential sumsy

Z{z, N,y Ny} in connection with zero-free finite parallelograms in the
critical strip. '

4. Of Theorems A and B Theorem A is incomparably deeper,. Still
more surprising is Theorem C from my paper [1].

TuroREM C. Suppose that for a

(4.1) 0<bg1, ba*z}

there is o single vy > 2 sueh that the inequalily
Nlogtooy

(4.2) 1Z(z0) Ny N}l < 0 ————

[

holds for all pairs (Ny, N,) satisfying

(4.3) WL NN, < N, <2N.

Then [(s) 5 0 on the segment

(4.4) o2 1—-b%at, t=r1,.

Here I cannof prove the eorresponding inverse theorem.

5. Theorems A, C and B, however interesting they are, offer in the

7 — Acty Arithmetlca XXXV, 3



300 P. Turin

form given above no coneclusion on Landau’s problem. They are all right
with respect to the resulting zero-free domaing; they are finite parallelo-
grams or even segments. But to the ccearring primes, actually all suf-
Ticiently large primes occur in Theorem A, in the hypothesis. Nevertheless
two remarks will be helpful. First, in Theorem B the conclusion refers to
all sufficiently large primes owing to (2.6). Secondly, in Theorem A in-
squality (2.4) is trivially satisfied if

Nlogo N
,G_”O_g’b = >N

T

which is true for all

: Y 1 1/1001
(5.1) N> exp {(ZTb'E-) J,
ie. restriction (2.6) actnally refers only to all pairs (N, N,) salisfying
only

(6.2 T NNy < N, < 2N < 2exp (27) 00

So Theorem A - with (2.6) replaced by (5.2) — and Corollary I are
*“essentially” of converse. character and also have the additional advan-
tage that their hypotheses depend only on finitely many primes, resp.
Jinite parallelograms. So they are already Landau-type results. However,
interval (5.2) seems to be much too large; so the exciting question arises
what are “the shortest” intervals for the pairs (¥, ¥,) which still can
‘replace interval (5.2) without violating the surprising conclusion of The-
orem A (or even Theorem ().

6. We dealt with such questions in our papérs [2] and [3]. In ‘[2]
we proved that Theorem C is still valid in the form that ((s) = ¢ for

(6.1) oz2l—b, =1
provided 0 < b << ¢, I' > ¢(b), and (2.6) resp. (2.5) is replaced by
(6.2) T NN, < No< 2N < 78,
Tesp.
T < 7y < 2T

In [3] improvement-of prineipal importance is shown.(Y), namely, that

‘ () Actually in [3] ounly the covresponding theorem is stated sud the proot will
" be contained in the fortheoming boolk of Paul Turén (4] .
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it Dz4 and is fixed, and further 0 < b < ¢(D), then it for a suitable
7y = ¢(D, b) and a 7 > 7, the inequality ‘ -

T L N S N < N, < min(a, 000099
holds, then {(s) # 0 on the segment

U’=1‘—'b2, tm'};’_

The prineipal novelty is the oceurrence of the essentially arbitrary num-
her D, Its real importance lies in the fact that from it one conld deduce
the following relationship for the values of Z (v, N1, Ny} independently
of {-roots. Tf D 2= 4 and fixed, if 0 < b < ¢(D) and for o suitable ¢(D, )
for T'> e(, b) and for all v with

(6.3) T VIt PHVT
the inequality
: Nlpg w
(6.4) 1Z (7, Ny, Np) < 6 - fb
holds for
(6.5) YT < Ny < N, < min (0, 27700
then the inequality
MIO L0
(6.6) \Z (z, My, M) < o-—~—f;—~
. _ -

holds for the “r-range”

(6.7) T—-WI<e<TLWT

and the “(M,, M,)-range?
(6.8) T < M My < My< 20

This can be expressed shortly as follows: if the sums Z (z, Ny, V)
satisfy inequality (6.4) for the short prinie-range (6.3) then they satisty
inequality (6.6) of the same type (which is in the case of b < 1 even sharper)
for the unhounded prime-range (6.8) (which i#, however, as remarked in.
(8.1), (5.2), casentially bounded, but the domain in which {6.6) is non-
trivial (see (5.2)) is incomparably larger than the interval {6.5)). .

The fact described above shows that there is a connection between
the distribution of primes in the interval (6.5} and the distribution of
primes in the interval

(6.9) T < p < exp (T720)
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(where (6.6) is non-trivial); it seems as if the distribution of primes in the
interval (6.5) had an influence upon the distribution of primes in the
far longer interval (6.9).

Further, it is interesting to note that the fact deseribed a.bove is
an agsertion containing exclusively primes; {-roots cceur only in the
proof of the statement; still I cannot see any possibility of proving it
directly i we remain in the realm of integers.

7. As remarked already, Theorem A and Corollary I are essentially
of inverse character qualitatively but not in all the gnantitative respects.
An inverse theorem for the sums Z(r, ¥,, §,) which it more satisfactory
algo in the guantitative respects can be proved, however, by supposing
the truth of Lindelof's conjecture, i.e. of the assertion that for an arbi-
trarily small e > 0 the inequality

- (11) (2(8)] < e(e)#?
holds.

In the following let } > 8> 0 be arbitvavily small and let us fix it.
About @ and b we suppose that

3
(7.2) 65210g—d<b<1,
(7.3) . < bla < 1/2.
These imply
(7.4) 1/8 = a= 8,

In the following theorems and corollaries we always suppose the
truth of Lindeldf's conjecture (7.1).
Then we assert the following

TomorrEM D. Suppose that with a 7, > 10 the inequality

Nlo 100 A7
(7.5) B, Wy W< 0 "%
0
holds for _
(7.6) E N KN < Ny < min (2N, 40420
Then £(s) 550 on the segment
h b ‘
eE1—=(1-28), t=m,

provided 7, > o(4).

Theorem D has also a “semi-local” form; which is naturally a trivial
consequence of it, namely we have
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CororLARY II. Suppese, for a T > 10, the validity of (1.5) for all =,

with

(7.7) [to—T1 < 3T°
and for oll pairs (N, N,) with

{(7.8) 3N

provided T > ¢(8).

b
>1——(1l—
1—~(1-29),

LN, <N min (2N, Ta(l—béd)).
Then §(s) 5= 0 in the parollelogram -

t~Tl<5

To see the strength of Corollary IT we shall reformulate Theorem B

with the choice

Then, for

this gives

gram

b
6 =1—-(1-24
- (1-29),

b

a,<—2_(1

b
?1—&(1—25):

Then the inequality

holds for all pairs (N,, N,) with

Ta,l(l—-za)

and afl T, with

provided T > c(4).

SN N <N

B =5,
1

ET

f-T<g

0.6 Nlog? N
wummpmngéﬁwmi—

%

rg— | & S0 %

N

CoroLLARY IIL. Suppose for a T > 10 that £(s) = 0 in the parallelo-

The co:mparlson of Corollaries IT and ITI shows an almost completely
inverse character, even in every quantitative respect. Therefore it would
be highly interesting to prove Corollary IT without supposmg Lindelsf’s

conjecture.
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- On applying Corollary IT and IIT in succession, the already mentioned
phenomenon, namely that the distribution of primes in a short range
“have influence” upon the distribution of primes in & far longer range,
ean also he stated in a more transparent form, supposing the truth of
Lindel6f’s conjecture. This is given by

CoROLLARY IV. If & is an arbitrarily small fizved positive number, a, b
satisfy (7.2)-(7.4) and for a T > ¢(8) the inequality

Nloglte §y

iZ(TDJNIJNEN‘(c .
0
holds for all

lrg—T| < 371°
and for all pairs (N, N,) with
T N< N, < Ny < min (2N, T4+39)

then the ineguality .
¢(8) Nlog* N
| B(zo, Ny, Ny < S0 50 =
Ty

holds for all =, with

1—4§
[ro— 2 < = 1°

and for oll pairs (N, N,) with
T < N < W, < Ny < 2N,

8. So far § was arbitravily small and fixed and the fixed pair (a, D)
satisfied (7.2), (7.3). Now we fix besides & also b and let §,(48, b) be the
set of a-values satistying (7.3) for which (7.5), (7.7) and (7.8) hold,

Further, let §,(8, b) be the set of a-values satisfying (7.8).

Put

(8.1) inf o = a,;

asSy(d,h)

inf ¢ =a,.
_0551('5:0)
Corollary II shows that if 8, is non-empty, then immedintely £(8) 0
in the parallelogram

b
(8.2) Dyt o> 1——(1-28), [1—T]< 31",

&y

This is, in @ sense, the best possible, if @y > (L4 d)a,. Namely, let

us suppose that {(s) £ 0 would hold in the somewhat larger parallelogram
1

(B S g—— )

b
8.3 Dyo>1—2q1
(59) 0> a_o( +o) 31=8
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- Then we could apply Theorem B with

B
=1 (L48), B = b
L, gl

This would imply that for T > ¢(d) the inequality

. ’ 3
(s, By, W) < SO TOET
0

holds for all 7, with
ro— 1) < §1°
and for all pairs (V,, N,) with
Tl = N N, < N, < 2N, ,
But this means, owing to the definition of &,(8,d), 8,(d, b) and
ay = (1--8)a,, that : :
thy
1+4
which contradicts the definition of g, in (8.1). 7
Hence we obtain (supposing Lindeléf's conjecture). the interesting
CoroLLARY V. If 8ds arbitrarily small, b does not violate (7.2), both are
fized, and ay > a,(L -~ 8) (both defined in (8.1)), then [{s) does not panish

in the parallelogram D, (see (8.2)) but has ceriainly o zero in the “narrow”
frame

e 84(4, b),

DD,
(with Dy in (8.3)).

9, As to Landaun’s problem, the following picture can be formed,
based on the above-mentioned results. An essential role i played by the
finite sums Z(v,, Ny, N3) containing primes only from & finite interval
of a surprisingly small size, depending only on 7, from which one can
infer the existence of a finite zero-free segment (o > d, i = 7,) where the
size of the segment depends on the “strength of the modl inberference

behaviour of the numbers 59 logp”. Naturally if =, runs in an interval
T

then one can infer the existence of finite zero-free parallelograms. More-
over (supposing Lindelst’s conjecture), one of these zero-free parallelo-
gramsis the best possible in the sense that a “slightly bigger” parallelogram
is no longer zero-free, which shows a very interesting phenomenon, namely
that from the behaviour of primes of a finite interval one can locate a {-root
in a well-defined relatively small finite domain.
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10. Now we tun to the proof of Theorem D. We ghall necd the fol-
lowing :
LEMMA 1. For an integer k& = 2, real v and positive A Zet

]

) e da

— A

] . det 1 P
wlr B =5 @f 23w

Then we fave in the case of |y| > kA
(10.2) fy(y) =0

(10.1)

and in the case of |y| < kA
(10.3) By (v AN < 14,

Tuyther, h;(y,A) is monolonically increasing in y if -—kl
and monotonically decreasing in y if 0 << y < kA

For the proof of this see [b], Lemma I and [6], Lemma TL.

In the course of proof a very important role will be played by tho
go-called second main theorem of the powersumn theory, which we state
here in a special case (and in a slightly moditied form) as

LeMma 2, If 21y ..., 2, arve arbitrary complex numbers, and n < N and m
is an arbitroary posztwe ?eal number, then the're exists a positive integer k*
satisfying

(10,4) L msE
such that

SyY<o0

<sm+N

(10.5)

For the proof gee V. 7T, 865 and P. Turdn [7].
Finally we note that (7.2)-(7.4) implies

P 11
(10.6) max(—l;, ", b,a) < ofd).
11. TLet
def db dor
(11.1) ¢ = 1+§E + 47, = 14+ p-+dzg,

and let £ be an integer restricted at present only by

(11.2)

b 24
1373 logr, <k < 1_~}- -E—) blogz,.
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(The length of this interval is certainly >
Further, let

1 75> ¢(6).)

(11.3) J(89) = — ﬁ% ‘ftp(w)’“%(su—i-w)dw
whera
a, o
(11.4) @ (w) = 5 .'?ib___afa‘if:
2~3—b w

(11.5)

where I stands for the interval

a 8
[exp (Tc b(l - —)), oxp (Tc -5(1 + 5))]
Let us note that owing to (11.2) and 0 < 8 < 1/4

(11.7) I <[z,

and thus we can make use of our agsumption (7.5) and (7.6).

(11.6)
ray

-12. In order to use (7.5) and (7.6) we split the sum in (11.5) in at most

Ak —, ~
{12.1) [m-_—»—]-%l < Zadlogz, < ¢(8)logr,

log2
partial sums of the form
(12.2) y Ny < 2N,
N]_&E?lql\rg
owing to (10.6), (11.2) and (11.6).
This gives
ka ba
hk( ~logmn, )
(123) (sl <e(d)logrymax| S em 1P b
n* e

NysnaN,
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where max refers o 13. Next we shift the line of integration in (11.3) to Rew = —2.— K
a 6 . == =
(12.4) oxp (k%(l _ g)) <Ny < Ny < min(ZNl, exp (k}; (1.|_ .3.))) Uying the well-known estimate |
‘ : (13.1) Z(—1+it) = Oflog(Jt| 42},

i inner gum in (12.3) by H and ntroducing g(x) by
Demoting the e suz i { ) o we get for this integral the upper bound

1 A(n) o
(12.5) glr) = Z o o “ smwrin) gy P
. NiEnea (13.2) Lo [ log(24 -+ ol)exp (—-Js - u) — .
we get the representation ‘ . o L/ S R
. (Tm ] 6@) 2 53( — 1 1)
Nolty |54 0Zd y— ] ¢ 1 i i
s b 3b We shall nse the simple inequalit
{12.6) H = e dy(z). . q A
Ny ' & — " 1 ¢ )
. _ (18.3) L fezrdﬁ, < gltont.
Integration by parts, use of (10.3), (10.6) and (7.5)-(7.6) give o o o
vl m (k—a—;logm, Eff) C We write the last factor in the integrand in (13.3) as
NlogioN, | 1 a “\b 84 e g
IH] < c(é) 'ED NI—}-[& f ;IE .CG]'+‘u ) ] -
0 3 . : and, applying (18.3) to the first factor, we get
Nolog™ Ny 1 a1 S\k-2
<0 = i Teld) f e Kb 134) |1 < cexp(-—'- (1—_5) ;:2) X
1
Ny i : ' s
it (18 (e ) o : e
Nyt [dm A b 38 % f 102+ 7+ o) s dv,
: @
e o 2 ) (u?+07)
Nylogtie i, 1 Cod ka . da ( )
<e(o) Sr08 s NW(1+ J E—hh(?u—logm,%) dm). _ 3b
7, 1 N i which for = > ¢(8) owing to (7.2), (7.3) and (11.2) is
. _ ko | a o | e
Owing to Lemma 1 the function b, (—B—mlogm, §~5) consists of at (13.5) < o(8)p 1 j log(% %j@ v
. -0
mogt two monotonic parts and by (10.3) and (7.3) < e{8) 7 M log s < o(6)3 Plog,.
{12.8) h, Zﬂﬂ_]ogm,éf < pd < fi_, We shall niake use of the shuple fact that from (11.4)
b 3b ad 29
and thus using also ¥, < min (2N, vj***)) we get from (12.7) and (10.6) (13.6) lp (a) | <5 T for  Rew<0.
] e | L1110
log' N logloo Toghi g i |
(12.9) |H| < 0(8) =" < o{8){a(1 +-26))90 “E- 70 < o(8) 222 b
Tu. Ty g Thus for the regidunm in w =1 —g, we get. ¢*(1 —s,), which is by
Thus we obtain from (12.1), {(12.3) and (12.9) the final cstimate for (13.6) less in absolute value than

o 1 % 3 %
J(8,) a8 : (18.7) (___) < ( 1) < 4% < gt

. 1 101 LT.- —_—
(12.11) T (50} < ¢(8) E%TFP._ 5 %
: 0
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for 7, > 6/6, owing to (7.3), (11.2) and 8 < 1/4.

Hence we thain from (12.10), (18.5) and (13.7), writing
(13.8) ple—3%0) = 8y,
the inequality
(18.9) log'®™z, for 7> ¢(6).

IZZZI < ¢(8) 1y
2

14. Next we consider the contribution of the zeros with

| > 18d
(14.1) | p—Tel = o
(13.6) gives for
(14.,2) [y —Fol 2 =

the inequality

(14.3) lp(e—8o) = |z | < 1/fv.
Hence

3b 1 log(ry+»
(14.4) [, < g log(rn—}- {v —l—l)-—;)—,—ﬂ-)< 0(6) m"?rm(;%«ml

)
and thus
log{ry-+» log~
(14.5) ngi"<c(6)2 g(v,‘:~A—) < o)) ~6f—_,T°,
lp—rgl218b/a =6

which is
{14.6) ()75 logz,

owing to (11.2) and 6 < 1/4.
15. Next we have to eliminate the contribution of the zeros with
18b 1 &b

pemi<so B<5tan

15.
(15.1) d e Sa

For thiz purpoge it iz enough to remark that for Rew < U< 0

we have, owing to (11.4) and (13.3),

(15.2) o (w)| < exp (_g(l- f) U )
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and so from (11.1) we get: for the zeros in (15.1)

. S\l
(18.3) ot = p (2 — syl < oxp (mi‘f(l -2 k)

b 3/2
which in twrn, owing to (11.2) and (7.3), is

(16.4) SR AL
Sinee the number of terms in (15.1) is
(16.5) < a{d)logr,,

we obtain for the contribution of all zeros with (18.1) the upper bound
(15.6) o(8)logry 172

Thus from (13.9), (14.5} and (15.6) we get the basic inequality

17| = | e

[}

where the summation is extended to the ¢’s satisfying

1 46b 185
(16.8) f=> PRI |V"‘fo[<—ag-
16. In order to got » lower bound for the power sum Z in (15.7) we
ghall use Lemma 2. We choose

(18.7)

< ¢(d)7; ' log1 ¢,

(16.1) = e 1087

1—5/3
and we shall need an upper bound N for the number of zeros satisfying (15.8).
Here — and only here — we shall use the Lindelof conjecture or rather
its well known consoquence, namely that, denoting the number of zeros
in the parallelogram

(16.2) oz iy, IL<i<T+1
(n positive, arbitravily small) by H, (1), wo have
o H(T)
16.3
{ ) ]”2 lagﬁl’
This implieg at oneo that for 7, = ¢(8) we may choose
(16.4) N = 6ﬁlqgro.
Since § < 1/d wo got by (7.2)
24 1
16.5 3 I P
1e-5) ‘3<(1' 3 1wa/3)
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and so the integer &* in (10.4) will surely satisfy (11.2) in view of (16.1),
(16.4) and (16.5).
Suppose that Theorem D is false and there is a gy, = f, 47, zero
with '

b
(16.6) By = 1—&— {1—26)
Since for real
e
F=4 1
(16.7) - ,

we have by (11.1), (11.4) and {16.8)

. - - 11
168) s = Ipler—soll* > exp (ia*g(ﬁlwlwm)

e fpele Ia:S—-

= oxp(—k* (1 ~38)) = exp( — (1 —£d)logzy) = 7,

On the other hand, by 0< <14 amd (7.2) we have from (16.1)
and (16.4) :

b 3
(16.9) 33(%+1)=89 (—*—-——+1 < 86—2mn 1 <(-3-) ,

i) 11 d
—— | 3 .58
! 3)5 19
and so
1 N 1\ Plegr g3 b
(16.10) I = =1 35 lm:,;; T %,
Vi
—1 =
”(N* ) (6)

Thus we infer from Lemma 2 the exigtence of an intoger ¥ satisfying
(10.4) and thus, by (16.5), also (11.2), sueh that for the power suwm Z in {16.7)
the inequality

1 N
(16.11) |Z] > [ | ey [
8¢ (ﬂ +1
N

holds, from which by (16.8) and (16.10¢) wa getb

: ‘ LA a8
(16.12) 2] > 7y Tery 6w T8

This and (18.7) together give
P

(16.13) T, ¢ < o(8)zy logWe,,

On o problem of B, Tandan 313
ie.
b
(16.]&1) 173 T c(ﬁ)l()g- 101.5—0‘
Now, by (7.2), this implies
: agt Toiry
(](i.jﬁ) Ty “ (}( )10g1!)1.‘,‘-

which is surely false for v, =~ e(d). Thiy contradiction proves Theorem D.
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